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Stroke survivors often experience sensory, cognitive, and motor consequences 
with gait disorders as a common problem. Therefore, there is a need for a deeper 
understanding of how neurological deficits affect the functioning of patients after 
a stroke. Current scientific literature lacks research on proprioception impairment, 
and gait recovery after stroke. In this narrative review, we discussed and summarized 
the current knowledge about the abnormal post-stroke gait pattern, the role 
of proprioception in motor control, methods of proprioception assessment, 
and the association between abnormal gait and proprioception deficit in stroke 
survivors. The present findings must be interpreted with some caution as current 
evidence is limited, as well as the correlation does not imply causation and might 
be underestimated by attributes of current tests for proprioception and motor 
function. Further studies are needed to better explain the mechanisms behind 
proprioception deficits and their association with functional recovery, as well as 
to investigate the cause-effect relationship.
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1 Introduction

Stroke is a serious health problem exploiting a significant proportion of health care system 
budgets worldwide (1). The World Health Organization (WHO) indicates that stroke is the 
incoming epidemic of the 21st century and a further increase in stroke rates is expected 
worldwide, especially in younger patients (2). According to the World Stroke Organization 
(WSO), stroke remains the second most common cause of death and the third most common 
cause of combined death and disability expressed by disability-adjusted life-years lost (DALYs) 
worldwide (3). The definition of stroke includes rapidly developing clinical symptoms of focal 
or global disturbance of cerebral function, while signs last at least 24 h or lead to death and 
their cause is no other than vascular origin (4).

Despite a decline in stroke mortality rates, the prevalence of people living with stroke 
consequences has risen due to an increasing and aging population. This leads to a greater need 
for long-term rehabilitation (5). People after a stroke often experience sensory, cognitive, and 
motor consequences (6). Gait disorders are a common problem in stroke survivors as they 
constitute one of the main functional limitations that affect the quality of life and increase the 
risk of falls. Moreover, independent walking is an important factor in overall health and one 
of the fundamental goals of stroke rehabilitation (7). Stroke survivors may have different gait 
patterns depending on the variety of sensorimotor disorders (8). However, the relationship 
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between sensory impairment and other impairments or functional 
deficits following a stroke is unclear and has not been widely explored 
in the literature. Moreover, despite the expectation that sensory or 
motor deficits may be associated with stroke severity due to lesion size 
and location, the association between these impairments is still not 
well understood (9). Previous studies showed that lesions in the 
supramarginal gyrus, arcuate fasciculus, and Heschl’s gyrus are linked 
to poor proprioceptive recovery. Also, proprioception impairment is 
common and persistent after stroke, particularly in the cortical and 
subcortical lesions (10).

Due to the constantly increasing incidence of stroke and the 
increasing number of people living with its consequences, there is a 
need for a deeper understanding of how neurological deficits, 
including proprioception deficit, affect the functioning of patients 
after a stroke. As this topic is underexplored in the scientific literature, 
we were prompted to perform this narrative literature review, which, 
according to the best knowledge of authors, is the very first review 
providing a comprehensive understanding of the role of 
proprioception in post-stroke gait recovery. In this review, we present 
and summarize the current knowledge about the abnormal post-
stroke gait pattern, role of proprioception in motor control, methods 
of proprioception assessment, and the association between abnormal 
gait and proprioception deficit in stroke survivors.

2 Hemiplegic gait and its 
characteristics

People after a stroke usually present various neurological deficits, 
such as motor, sensory, cognitive, or perceptual impairments. One of 
the major post-stroke disorders is a motor deficit manifesting in 
contralateral hemiparesis to the cerebrovascular incident, which 
decreases the capacity of affected limbs to initiate and control 
movements and maintain balance, resulting in abnormal gait patterns 
(11). Abnormal gait is very common after stroke as more than 80% of 
stroke survivors suffer from varying degrees of gait abnormalities, and 
about 25% of them have an enduring impairment requiring full 
physical assistance, despite long-term rehabilitation (12).

A characteristic gait pattern in stroke patients is the so-called 
hemiparetic (or hemiplegic) gait. This gait pattern is characterized by 
specific temporal and spatial patterns, including reduced cadence, 
reduced walking speed, increased step width, increased duration of the 
double stance phase, and asymmetric loading of a single lower limb. 
After a stroke, the affected limb shows a prolonged duration of the 
swing phase, caused by a deficit of the force required to move forward, 
and a shortened duration of the stance phase. As a result, a shortened 
duration of the swing phase and an increased duration of the stance 
phase are observed in the non-affected lower limb (11, 13, 14).

Moreover, hemiplegic gait is also characterized by asymmetry and 
shortened step length of the non-affected lower limb, compared to the 
gait of healthy individuals (14, 15). Also, the kinematic parameters of 
hemiparetic gait show increased movement of the trunk in the lateral 
and sagittal planes, greater movement of the upper part of the trunk 
in the transverse plane, reduced interphase rotation of the upper and 
lower parts of the trunk, and reduced stability and symmetry 
compared to non-pathological gait. Unlike the limbs, the functioning 
of the trunk after a stroke is impaired bilaterally. Both the part of the 
trunk on the paretic side and the part of the trunk on the side 

indirectly affected after a stroke are characterized by a reduced level 
of activity and reduced synchronization of its muscle work (14, 16).

Muscle strength deficits in the trunk muscles affect its balance and 
coordination and cause changes in the biomechanics of gait. Studies 
indicate that weakening of the trunk extensors and flexors and 
associated balance disorders contribute to reduced functional 
independence in walking and transfers getting up from a sitting 
position, as well as gait speed (17). Also, walking speed is mainly 
influenced by the weakening of the hip flexors and knee extensors, 
while gait symmetry is significantly influenced primarily by the degree 
of spasticity of the ankle flexors, however, the ankle flexors also affect 
walking speed (18–20).

Foot clearance is an important gait parameter that affects tripping 
during the swing phase, which is a serious cause of falls. In healthy 
subjects, foot clearance is determined by hip and knee joint flexion and 
ankle dorsiflexion (21, 22). In patients with hemiplegic gait, during the 
swing phase, flexion movement of the lower limb is impaired 
distinguishing “foot drop” and “stiff-knee gait” among them, which 
cause characteristic movements such as hip hiking and circumduction 
(21, 23, 24). These compensatory movements are performed to achieve 
better foot clearance to compensate for the reduced lower limb flexion 
(25). Foot drop is one of the most common post-stroke disorders 
affecting the gait of people after stroke, which is associated with the 
weakening or lack of voluntary control of the ankle dorsal flexors and/
or increased spasticity of the plantar flexors (26–28). It disturbs the 
dorsal flexion of the foot during the swing phase and causes disorders 
in accepting and transferring body weight in the initial foot contact and 
the stance phases (27). Approximately 60% of stroke survivors with gait 
impairment experience stiff-knee gait, also known as stiff-legged gait. 
The definition of this gait pattern in the literature varies depending on 
the source (29). However, it is characterized by reduced knee flexion 
during the swing phase of the gait cycle (12, 29, 30).

3 Proprioception and its role in motor 
control

Proprioception is the sensation of body position and movement 
and it is essential for movement control as it provides inputs to 
internal models that link sensory signals with motor commands (31, 
32). It involves signals from mechanoreceptors (transducers that 
transform mechanical stimuli into action potentials) positioned in 
muscles, tendons, and joint capsules (proprioceptors), whereas 
information received from cutaneous mechanoreceptors (cutaneous 
stretch receptors) related to tactile sensations, is regarded as additional 
sensory sources completing proprioceptive inputs (31). Muscle 
proprioceptors include muscle spindles, which respond to the 
stretching of muscle fibers, and Golgi tendon organs. Pacinian and 
Ruffini corpuscles are considered joint receptors because of their 
strong association with ligaments, but they can be  observed 
throughout the body. Skin proprioception is also associated with the 
same group of sensory receptors. However, they are embedded in the 
skin and deep connective tissues covering mobile joints or muscles. 
Sensory neurons, including Meissner and Merkel cells, are activated 
by movement or touch on the skin (33).

All collected proprioceptive information is processed in the spinal 
cord, brain stem, higher cortical centers and subcortical cerebral 
nuclei, and cerebellum. This data is then used in daily activities, 
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exercises, and sports (34) and it allows one to maintain posture, 
maneuver in the dark, and manipulate objects out of sight. Moreover, 
in people with correct proprioception, eliminating visual information 
still allows them to determine the position and movement of 
individual body parts (35). It has also been shown that information 
from both the joint and the skin is related to the sense of upright 
position, which affects balance. This also plays a critical role in 
providing feedback on the distribution of body weight on individual 
limbs (35, 36). Proprioception disorders can occur as a result of 
improper functioning of the musculoskeletal system due to injury, 
aging, or neurological disorders such as stroke (36, 37).

4 Proprioception assessment and its 
impact on gait

Due to the crucial role of proprioception in the human body, it is 
important to use specific methods and tools to assess it. Various 
techniques have been introduced in the literature to investigate 
proprioceptive mechanisms. Three primary methods for evaluating 
proprioception are: (1) TTDPM (threshold to detection of passive 
motion), (2) JPR (joint position reproduction or joint position 
matching), and (3) AMEDA (active movement extent discrimination 
assessment) (38) (Figure 1).

A standard TTDPM assessment includes indicating the first 
detection of passive motion at the joint by a blindfolded individual. 
This outcome is measured by the degree of the joint movement or the 
time elapsed before the individual indicates the detection of 
movement. Another variable is the detection of the movement 
direction of the examined body part (e.g., flexion or extension) (39).

In the JPR assessment, a blindfolded individual is asked to recreate 
a position of a joint angle that they previously experienced using their 
ipsilateral or the contralateral limb. The proprioceptive sensitivity is 
indicated by the magnitude of matching errors, as it is believed that 
subjects making significant position-matching errors are somehow 
proprioceptively deficient (40). Three methods of JPR assessment have 
been described in the literature: IJPR (ipsilateral JPR) and two CJPR 
(contralateral) assessments. In the IJPR assessment, the target position 
of the joint is passively or actively introduced to the individual for a 
few seconds prior. After that, the examined limb returns passively or 
actively to the initial start position. Then the participant is asked to 
recreate the target position of the joint either by pressing the stop 
button when the same limb is being moved passively or by moving the 
joint to the target position if the motion reproduction is active. In 

CJPR assessments, one method is identical to the JPR except for using 
the contralateral limb when recreating the target position. In the 
second CJPR assessment, instead of returning to the start position, the 
examined limb remains in the target position and the contralateral 
limb is required to recreate that position (38, 41).

Unlike the previous methods, the AMEDA assessment is 
performed in a standing position in an unconstrained weight-bearing 
stance that mimics the conditions that proprioception would 
encounter outside the laboratory in daily life (42). This method 
indicates an individual’s somatosensory function by assessing their 
sensitivity to detect small differences in the angular position of ankle 
inversion (43). In this method, the participants are asked to indicate 
in absolute terms the angle at which the plate is displaced from the 
horizontal (44). This approach provides ankle movement 
discrimination scores obtained with a single stimulus that utilizes a 
fixed set of stimuli with one variable stimulus value presented on each 
trial (45).

Although the AMEDA assessment demonstrates good reliability 
in healthy adults, it may be  impacted by various factors such as 
chronic ankle instability (46), lapses in attention, or disengagement 
from the task (47). Despite its established utility for discriminating 
between participant groups, concerns have been raised about using 
the AMEDA to classify proprioception acuity at an individual level. 
Issues included poor test–retest reliability, a small number of stimuli, 
task difficulty, and a lack of sequencing effects in the analysis (44). 
According to Waddington and Witchalls, better reliability in AMEDA 
assessments is achieved with a shorter, 25-response protocol rather 
than more traditional 50-response protocol, as the shorter version 
prevents disengagement or inattention (47). Additionally, as noted by 
Krewer et  al. (48), AMEDA measurements do not indicate the 
proprioception level of a specific joint. Instead, they represent a 
“multi-modal, multi-joint measure of a multi-segment posture” (48).

To better understand and evaluate the mechanism of 
proprioception in stroke survivors’ rehabilitation it is essential to 
use accurate and sensitive assessments and tools. In clinical settings, 
proprioception assessments were traditionally performed on simple 
subjective observation-based tests. Usually, the examiner moves the 
patient’s finger or toe while patients with eyes closed were asked to 
report the position of this body part. These tests, however, present 
poor reliability, lack resolution, and display “ceiling effects.” The 
above-outlined challenges prompted some research groups to 
design standardized and reliable clinician-administered 
questionnaires such as the Nottingham Sensory Assessment or 
Rivermead Assessment of Somatosensory Performance (RASP) 

FIGURE 1

Methods of proprioception assessment.
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(49). Moreover, recently automated and instrumented measurement 
tools such as electronic goniometers, smartphones, and robot-
assisted technologies, have been introduced to assess proprioception 
impairment (49, 50). Robot-assisted proprioception assessment 
allows to generation of a rich dataset of kinematic data quantifying 
impairments that may be difficult to assess by clinical observation-
based tests. This large volume of data may be useful in predicting 
outcomes and planning physiotherapy programs in many 
conditions, such as stroke (49, 51).

Somatosensory impairment, its nature, and its extent after stroke 
are not yet fully understood. It is known that it is common after stroke 
with the prevalence varying from 11 to 60% depending on the 
heterogeneity of populations, the number of somatosensory 
modalities, and body parts assessed (52, 53). Among stroke survivors 
with somatosensory impairment, about 34 to 64% of them suffer from 
proprioception impairment.

Stroke severity is the main factor affecting somatosensory impairment 
and initial somatosensory impairment is a great predictive factor for 
recovery. Moreover, the somatosensory assessment provides useful 
prognostic information for the functional status of patients. Despite that, 
the scientific literature lacks research on somatosensory, especially 
proprioception, impairment, and recovery after stroke (52). On the other 
hand, the results of present studies indicate the controversies on the 
impact of sensory function on gait performance, which have been partly 
linked to the various methods used in assessing sensory function (54). 
Another reason is that the neuroanatomical injury caused by stroke varies 
greatly in both location and severity (55). Unfortunately, the 
understanding of the brain regions involved in processing and 
lateralization of the proprioceptive signals is still not well explored. It is 
known that each limb is controlled by contralateral regions of the brain 
(56). However, some studies suggest that brain activity related to 
proprioceptive tasks is lateralized, with the right hemisphere being more 
dominant, regardless of limb dominance (57). Although there is some 
evidence supporting this lateralization, it is limited and restricted to the 
upper limbs. For the lower limbs there is some evidence that the 
non-dominant side is preferred for position-matching tasks. However, 
contradictory findings regarding the impact of side dominance in lower 
limb position matching create uncertainty in this area of research (56).

Moreover, after stroke, somatosensory structures may 
be  impacted at some times or preserved at others. Also, 

proprioception assessment depends on cognitive abilities such as 
attention and working memory, which are frequently affected in 
stroke survivors and confounded by fatigue leading to further 
proprioception assessment variability (55).

A meta-analysis proved a correlation between proprioceptive 
impairment and motor deficits after stroke. The subgroup 
analysis revealed multiple factors with positive contributions to 
this relationship such as proprioception assessed in the axial 
segment under weight-bearing conditions, proprioception 
assessed by ipsilateral matching task, and motor function 
analyzed within ICF domains including movement function, 
activity independence, and activity performance (58). It was also 
proved that touch and proprioception are intimately integrated 
and their impairment affects functional activity. This may suggest 
that instead of individual sensory retraining, functional task 
training of both of these impairments may be a more effective 
treatment (59).

It was observed that in the acute phase of stroke rehabilitation, 
somatosensory impairment was related to lower functional status, 
poorer rehabilitation outcomes, and longer length of hospital stay 
(53). Another study proved that the interaction of knee extensor 
strength and proprioception on the affected side is strongly linked to 
gait independence in subacute stroke patients (60).

In the chronic phase of stroke rehabilitation, knee and ankle 
joint position sense is not related to gait performance, however, 
ankle proprioception was an important contributor to gait speed 
and stride length, which supports the importance of 
proprioception in the decision-making process about changing 
the gait pattern in stroke survivors (54). Another study also 
showed that ankle proprioception is the main indicator of balance 
impairment in stroke survivors with balance disorders in the 
chronic recovery stage affecting walking velocity and overall gait 
efficiency. This may demonstrate that ankle proprioception 
should be included in post-stroke lower limb rehabilitation (36). 
The relationship between proprioception deficit and gait  
function in a specific stroke recovery phase has been presented 
in Figure 2.

Interestingly, proprioception deficit was also observed on the 
unaffected leg in chronic stroke patients which suggests a possible 
contribution of peripheral mechanisms (61).

FIGURE 2

The relationship between proprioception deficit and gait function after stroke.
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5 Summary and future directions

The current understanding of proprioception and its impact on 
gait function in individuals after stroke remains limited. The present 
findings should be interpreted with caution, as correlation does not 
imply causation and may be confounded by limitations inherent in 
current assessments of proprioception and motor function.

Additional research is necessary to elucidate the cause-and-effect 
relationships involved and to clarify the mechanisms underlying 
proprioceptive deficits and their association with functional recovery.

In particular, future research should aim to deepen our 
understanding of the neuroanatomical foundations of proprioception, 
including the involvement of specific cortical centers in each cerebral 
hemisphere. Further research should also investigate whether similar 
right hemisphere lateralization and non-dominant side preference for 
proprioception are evident among individuals with left-limb or 
mixed-limb dominance. Advances in neuroimaging and 
neurophysiological techniques could provide valuable insights into 
how various brain regions contribute to proprioceptive processing and 
recovery following stroke.

Furthermore, targeting both proprioceptive and motor impairments 
simultaneously may offer a more effective approach to post-stroke 
rehabilitation. The integration of robotic technologies holds promise for 
the development of reliable and sensitive proprioceptive assessment 
tools. Developing and implementing more standardized, reproducible, 
and accurate devices is essential to quantify proprioceptive function and 
monitor changes over time. Such advancements would improve 
diagnostic precision and consequently enable more personalized and 
targeted rehabilitation strategies.
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