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Evaluation of the therapeutic
effect of adaptive deep brain
stimulation on motor symptoms
and sleep disturbances in
Parkinson’s disease and
construction of a response
prediction model
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!Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China,
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Background: Parkinson’'s disease patients often experience symptoms such
as motor impairments and sleep disturbances. This study aims to evaluate
the efficacy of adaptive deep brain stimulation therapy in improving motor
symptoms and sleep disorders in patients with Parkinson’s disease.

Methods: This retrospective cohort study included 280 patients with Parkinson’s
disease. Baseline data were analyzed to assess changes in motor symptoms
and sleep disorders before and after treatment. Factors influencing treatment
efficacy were explored using univariate and multivariate logistic regression
analyses, based on which a response prediction model was constructed. A
generalized linear mixed model was then employed to examine interactions
between the response model and other variables.

Results: After treatment, the Unified Parkinson’s Disease Rating Scale Part
II' (UPDRS 1I), Unified Parkinson’'s Disease Rating Scale Part Il (UPDRS IlI),
Parkinson’s Disease Sleep Scale (PDSS), Pittsburgh Sleep Quality Index (PSQI),
and Epworth Sleepiness Scale (ESS) scores in the observation group (adaptive
deep brain stimulation, aDBS) were significantly lower than those in the control
group, indicating better motor and non-motor symptom control. In contrast,
the Mini-Mental State Examination (MMSE) score was significantly higher in the
observation group, suggesting improved cognitive function. Age, body mass
index (BMI), disease duration, Hoehn and Yahr stage, smoking history, and
baseline neutrophil-to-lymphocyte ratio (NLR) were negatively associated with
symptom improvement. In contrast, adaptive deep brain stimulation (aDBS)
treatment showed a significant positive association with symptom improvement.
The predictive model constructed based on blood biomarkers, demographic
factors, and treatment response demonstrated good predictive performance
for clinical improvement. Furthermore, generalized linear mixed model (GLMM)
analysis revealed that the response model exerted an antagonistic effect on
BMI and high-density lipoprotein (HDL) levels, and a synergistic effect on the
platelet-to-lymphocyte ratio (PLR).

Conclusion: The effectiveness of adaptive deep brain stimulation (aDBS)
therapy in improving motor symptoms, sleep disorders, and quality of life in
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patients with Parkinson’s disease is superior to that of conventional treatment.
Factors such as patient age, body mass index (BMI), disease duration, Hoehn-
Yahr stage, and baseline blood marker levels can influence the efficacy of aDBS.
The constructed response model effectively predicts symptom improvement
and offers valuable guidance for clinical treatment decisions.

KEYWORDS

Parkinson'’s disease, adaptive deep brain stimulation, motor symptoms, sleep
disorders, generalized linear mixed model

1 Introduction

Parkinson’s disease (PD) is a common neurodegenerative disorder
characterized by motor symptoms such as tremors, rigidity, and
bradykinesia (1). These symptoms significantly impair patients’ daily
functioning and quality of life (2, 3). However, PD is not limited to
motor manifestations; an increasing number of studies highlight sleep
disorders as prevalent and severe non-motor symptoms in patients
with Parkinson’s disease (4, 5). These sleep disturbances include
insomnia, early awakening, nocturnal awakenings, and rapid eye
movement sleep behavior disorder (RBD), which pose substantial
challenges to patients’ physical and mental health. Moreover, they may
exacerbate cognitive decline and psychological issues, further
diminishing quality of life.

Traditional treatment methods primarily rely on
pharmacotherapy; however, many patients gradually develop drug
resistance or experience side effects after long-term medication,
resulting in poor symptom control (6). Deep brain stimulation
(DBS) has emerged as an effective treatment and has been widely
applied in patients with drug-resistant Parkinson’s disease in
recent years (7). DBS is a surgical intervention that involves
implanting electrodes in specific brain regions to deliver electrical
stimulation, thereby modulating neural activity and alleviating
symptoms (8). Adaptive deep brain stimulation (aDBS), an
innovative advancement of DBS, differs by adjusting stimulation
parameters in real-time according to the patients motor
symptoms, leading to improved therapeutic outcomes and reduced
side effects (9, 10).

Previous studies have demonstrated that adaptive deep brain
stimulation (aDBS) can effectively improve motor symptoms in
Parkinson’s disease patients (11), although most research has
focused primarily on optimizing aDBS parameter settings (12,
13). Furthermore, the improvement of motor symptoms and sleep
disorders in Parkinson’s disease is influenced not only by
treatment methods but also by other factors such as patient age,
disease duration, and disease severity. Previous studies have not
considered these factors that can affect the efficacy of aDBS. This
study aims to evaluate the effectiveness of adaptive deep brain
stimulation (aDBS) in improving motor symptoms and sleep
disturbances in patients with Parkinson’s disease. We performed
univariate and multivariate logistic regression analyses to identify
significant demographic and blood biomarker factors influencing
the efficacy of aDBS. Based on these significant factors,
we constructed a response prediction model and further analyzed
the interaction between the response model and other variables
using a generalized linear mixed model, with the goal of providing
a more scientific basis for individualized treatment.
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2 Materials and methods

2.1 Patients

This retrospective study included 280 patients with Parkinson’s
disease (PD) who visited our hospital between January 2019 and June
2022 as the research subjects, and divided them into a control group
(n=140) and an observation group (n =140) according to the
random number table method. The control group received
conventional drug treatment, while the observation group received
aDBS treatment in addition to conventional drug treatment. Inclusion
criteria: After examination of blood cerebrospinal fluid, positron
emission computed tomography (PET), single-photon emission
computed tomography (SPECT), all the patients were diagnosed with
PD; patients with normal heart, liver, kidney and other functions; The
patient or his/her family member signs an informed consent form.
Exclusion criteria: patients with allergic constitution or allergy to
drugs in this study; patients with contraindications for DBS treatment
or who could not tolerate the treatment; Patients with peripheral
nervous system diseases, or with diabetes complicated by clinically
diagnosed peripheral neuropathy, or other diseases affecting
peripheral sensory function; Patients with severe psychiatric disorders
(e.g., schizophrenia, major depressive disorder) or significant
psychological disturbances (e.g., anxiety disorders, cognitive
impairment) that result in poor treatment compliance; Patients with
hyperthyroidism and essential tremor; patients with malignant tumor;
Patients with secondary parkinsonism caused by drugs, viral
encephalitis, brain trauma, carbon monoxide poisoning, etc.

2.2 Treatment methods

The control group was treated with conventional drugs: the
patients were treated with Levodopa and Benserazide (Shandong
Xinhua Pharmaceutical Co., Ltd., GYZZ H10930198) at an initial dose
of 62.5 mg/time, twice a day, and then the dose was gradually
increased to 250 mg/time, three times a day, in addition to the
combined use of piribedil sustained-release tablets (Servier (Tianjin)
Pharmaceutical Co., Ltd., GYZZ J20090075), amantadine (Jiangsu
Ltd., GYZZ H32023575),
trihexyphenidyl hydrochloride (Changzhou Kangpu Pharmaceutical
Co., Ltd., GYZZ H32022135) and other anti-PD drugs.

The observation group receives adaptive deep brain stimulation
(aDBS) treatment in addition to the standard treatment: 12 h before
aDBS treatment, medications are discontinued, and the Leksell

Pengqiao Pharmaceutical Co.,

stereotactic frame (Elekta, Sweden) was installed until local
anesthesia acted, attention was paid to overlap the midsagittal plane
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with the midsagittal plane of the head during installation, and the
baseline of the frame and the projection line of the anterior-
posterior (AC-PC) line body surface maintained a parallel
relationship. After the installation of the base frame, computed
tomography (CT) thin-section scanning localization was
performed, while the surgical planning system was imported into it
to establish the coordinate system. Preoperative magnetic resonance
imaging (MRI) images and CT images were fused with the help of
SurgiPlan planning system (Elekta, Sweden) to fuse the subthalamic
nucleus target, while the puncture path was designed, taking care
to avoid sulci and intraventricular vessels. The puncture points on
the scalp were marked according to the surgical plan, and after local
anesthesia, a 1 mm microdrill bit was used to pass through the scalp
to find the exact entry point into the skull on the skull, and after
scalp incision, skull drilling was performed to incise the dura mater.
The arcuate arch of the stereotactic system was installed, the system
was advanced, and the microelectrodes were slowly pushed in.
LeadPoint (Medtronic, United States) was used to record the
neuronal cell discharges at different positions to determine the
location of the subthalamic nucleus. If the recorded subthalamic
nucleus signal was not satisfactory, the micromotor was slowly
withdrawn and the coordinates were readjusted. At this point, the
micromotor is implanted into the subthalamic nucleus and
connected to the aDBS system. The system continuously monitors
brain activity and automatically adjusts stimulation parameters—
frequency, intensity, and pulse width—based on real-time neural
signal changes. Through a closed-loop feedback mechanism, the
stimulator adjusts its intensity and frequency according to the brain
activity and the patient’s symptom feedback. Once the electrode
position is confirmed, and the aDBS system is successfully installed,
the physician adjusts the stimulation strength in real-time to
determine the optimal treatment plan. After ensuring the electrode
is in the best position and the patient’s symptoms have improved
satisfactorily, the stimulator is implanted under general anesthesia
beneath the left clavicle, with the lead wire extended through a
subcutaneous tunnel in the neck.
Both groups were continuously treated for 6 months.

2.3 Data collection

Baseline data of patients were collected, including age, gender (male,
female), body mass index (BMI), course of disease, smoking history
(mild, moderate, severe), drinking history (mild, moderate, severe),
complications including cardiovascular disease (yes, no), diabetes (yes,
no), digestive system disease (yes, no), urinary system disease (yes, no),
musculoskeletal disease (yes, no), and mental disease (yes, no), Hoehn-
Yahr classification (phase I, II, and III), baseline C-reactive protein (CRP,
unit: mg/L), White blood cell count (WBC, unit: 10A9/L), neutrophil to
lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR), monocyte
to lymphocyte ratio (MLR), triglycerides (TGL, unit: mmol/L), Low
density lipoprotein cholesterol (LDL, unit: mmol/L) and high-density
lipoprotein cholesterol (HDL, unit: mmol/L). Before and after treatment,
the Unified Parkinson’s Disease Rating Scale Part II (UPDRS II) and Part
III (UPDRS III) scores, as well as the Mini-Mental State Examination
(MMSE) scores, PDSS (Parkinson’s Disease Sleep Scale, total score
0-120, with higher scores indicating more severe sleep problems), PSQI
(Pittsburgh Sleep Quality Index, total score 0-21, with higher scores
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indicating poorer sleep quality), and ESS (Epworth Sleepiness Scale, total
score 0-24, with higher scores indicating greater daytime sleepiness)
scores were used to assess the motor function and sleep disorders of both
groups of patients. We define a decrease of more than 10% in UPDRS II
score or more than 20% in UPDRS III score as significant improvement
in motor function, a decrease of more than 10 points in PDSS score, a
decrease of more than 3 points in PSQI score, and a decrease of more
than 3 points in ESS score as significant improvement in sleep disorders.

2.4 Statistical analysis

This study used R4.4.0 software for data analysis. All measurement
data are expressed as median (minimum-maximum), and t-test is
used for inter group comparison. For non-normally distributed metric
data, Mann-Whitney U test is used. Categorical variables are expressed
in frequency (percentage), and chi square tests are used for inter group
comparisons. We will divide the collected baseline data into two
categories: demographic and blood biomarkers, and conduct
univariate and multivariate logistic regression analyses with treatment
methods. The dependent variables are set to show significant
improvement in both motor function and sleep disorders. Analyze
and calculate the sensitivity, specificity, and area under the curve
(AUC) of the model using receiver operating characteristic (ROC)
curves, and evaluate the accuracy and effectiveness of the model in
predicting improvements in motor symptoms and sleep disorders. The
generalized linear mixed model (GLMM) was used to analyze the
interaction between the response model and other influencing factors
(such as BMI, HDL, etc.), and random effects were also added, that is,
the individual factors of the patient were treated as random effects.

3 Results

3.1 Demographic and baseline blood
marker characteristics of Parkinson'’s
disease patients

In this study, a total of 280 Parkinson’s disease patients were
included, with a median age of 62 years and an age range of 46 to
81 years. Male patients account for 62.5% and female patients account
for 37.5%. The median BMI of the patient is 30.0, ranging from 24.4 to
35.6. The median duration of the patient’ illness is 6.4 years, ranging
from 1.0 to 11.8 years. In terms of smoking, 72.5% of patients are light
smokers, 21.07% are moderate smokers, and 6.43% are heavy smokers;
In terms of alcohol consumption, 83.57% of patients are light drinkers,
12.86% are moderate drinkers, and 3.57% are heavy drinkers. Patients
with cardiovascular diseases accounted for 38.93%, patients with
diabetes 26.43%, patients with digestive system diseases 42.86%, patients
with urinary system diseases 33.93%, patients with musculoskeletal
diseases 26.43%, and patients with mental diseases 14.29%. In Hoehn
Yahr staging, 40% of patients are in stage I, 41.43% are in stage II, and
18.57% are in stage III. This indicates that the majority of patients are in
the early stage (Table 1). At baseline, blood markers showed that most
blood indicators such as C-reactive protein (CRP), white blood cells
(WBC), neutrophil to lymphocyte ratio (NLR), etc. did not show
significant differences between the two groups, while triglycerides
(TGL) were close to significant levels (p value of 0.0753) (Table 2).
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TABLE 1 Demographic characteristics of patients with Parkinson’s disease in the control and observation groups.

10.3389/fneur.2025.1580273

Variables All patients (n = 280) Control group (n = 140) Observation group (n = 140) P-value
Age (year) 62 (46-81) 62 (46-81) 62 (46-80) 0.852
Gender 0.3233773
Male 175 (62.5%) 92 (65.71%) 83 (59.29%)
Female 105 (37.5%) 48 (34.29%) 57 (40.71%)
BMI 30.0 (24.4-35.6) 29.6 (24.4-35.6) 30.4 (24.7-35.5) 0.874
Disease course (year) 6.4 (1.0-11.8) 6.2 (1.0-11.8) 6.7 (1.1-11.8) 0.526
Smoking 0.6416802
Mild 203 (72.5%) 98 (70%) 105 (75%)
Moderate 59 (21.07%) 32 (22.86%) 27 (19.29%)
Heavy 18 (6.43%) 10 (7.14%) 8 (5.71%)
Drinking 0.07289003
Mild 234 (83.57%) 110 (78.57%) 124 (88.57%)
Moderate 36 (12.86%) 24 (17.14%) 12 (8.57%)
Heavy 10 (3.57%) 6 (4.29%) 4 (2.86%)
Cardiovascular diseases 0.2203291
Yes 109 (38.93%) 49 (35%) 60 (42.86%)
No 171 (61.07%) 91 (65%) 80 (57.14%)
Diabetes mellitus 0.4979995
Yes 74 (26.43%) 40 (28.57%) 34 (24.29%)
No 206 (73.57%) 100 (71.43%) 106 (75.71%)
Digestive system diseases 0.3979264
Yes 120 (42.86%) 64 (45.71%) 56 (40%)
No 160 (57.14%) 76 (54.29%) 84 (60%)
Urinary system diseases 0.07721267
Yes 95 (33.93%) 40 (28.57%) 55 (39.29%)
No 185 (66.07%) 100 (71.43%) 85 (60.71%)
Musculoskeletal diseases 0.6843132
Yes 74 (26.43%) 35 (25%) 39 (27.86%)
No 206 (73.57%) 105 (75%) 101 (72.14%)
Mental illness 0.2319005
Yes 40 (14.29%) 24 (17.14%) 16 (11.43%)
No 240 (85.71%) 116 (82.86%) 124 (88.57%)
Hoehn-Yahr classification 0.3310189
Stage I 112 (40%) 51 (36.43%) 61 (43.57%)
Stage IT 116 (41.43%) 64 (45.71%) 52 (37.14%)
Stage IIT 52 (18.57%) 25 (17.86%) 27 (19.29%)

3.2 Differences in scores of motor
symptoms and sleep disorders between the
observation group and the control group
before and after treatment

Before treatment, there were no significant differences in UPDRS
11, UPDRS III (open and closed), MMSE, PDSS, PSQI, and ESS scores
between the two groups. After treatment, the observation group had
lower UPDRS II score, UPDRS III (open) score, UPDRS III (closed)
score, PDSS score, PSQI score, and ESS score than the control group,

Frontiers in Neurology

and higher MMSE score than the control group. These differences were
significant, indicating that aDBS showed better efficacy in improving
motor symptoms, sleep disorders, and other aspects (Table 3).

3.3 Univariate logistic regression analysis of
factors affecting therapeutic efficacy

The treatment method does not solely determine the treatment
effect. Other factors such as age, disease duration, baseline blood marker
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TABLE 2 The expression differences of blood markers at baseline between the observation group and the control group.

Variables

All patients

(n = 280)

Control group
(n = 140)

Observation group
(n = 140)

P-value

C-reactive protein, CRP (mg/L) 8.6 (4.5-11.6) 8.5 (4.6-11.6) 8.6 (4.5-11.6) 0.928
White blood cell, WBC (10A9/L) 9.8 (6.1-12.9) 9.8 (6.1-12.8) 9.8 (6.3-12.9) 0.779
Neutrophil-to-lymphocyte ratio, NLR 3.8(1.8-5.5) 3.7 (1.8-5.5) 3.9 (1.9-5.5) 0.144
Platelet-to-lymphocyte ratio, PLR 290.0 (209.3-363.7) 286.6 (209.3-363.7) 292.4 (210.5-360.1) 0.442
Monocyte-to-lymphocyte ratio, MLR 0.5 (0.3-0.6) 0.4 (0.3-0.6) 0.5 (0.3-0.6) 0.24

Triglycerides, TGL (mmol/L) 1.9 (0.9-2.8) 1.8 (0.9-2.8) 2.0 (0.9-2.8) 0.0753
Low-density lipoprotein, LDL (mmol/L) 2.4 (1.1-3.9) 2.4 (1.1-3.8) 2.5(1.1-3.9) 0.856
High-density lipoprotein cholesterol, HDL (mmol/L) 1.1 (0.7-1.5) 1.1 (0.7-1.5) 1.1 (0.7-1.5) 0.833

TABLE 3 The differences in motor symptom scores and sleep disorder scores between the observation group and the control group before and after

treatment.
Variables All patients (n = 280)  Control group (n = 140) Observation group (n = 140) P-value
UPDRSII
Pre-treatment 22 (18-27) 22 (18-27) 22 (18-27) 0.783
Post-treatment 13 (8-17) 13 (8-17) 11 (8-17) 0.00755
UPDRSIII (open period) score
Pre-treatment 13 (10-16) 13 (10-16) 12 (10-16) 0.0916
Post-treatment 11 (8-14) 11 (8-14) 10 (8-14) 0.0103
UPDRSIII (closed period) score
Pre-treatment 48 (36-60) 48 (36-60) 48 (36-60) 0.673
Post-treatment 17 (12-21) 17 (12-21) 15 (12-21) 1.30E-06
MMSE
Pre-treatment 17 (14-20) 18 (14-20) 17 (14-20) 0.312
Post-treatment 22 (17-26) 21 (17-26) 23 (17-26) 0.0023
PDSS
Pre-treatment 65 (53-76) 64 (53-76) 66 (53-76) 0.104
Post-treatment 41 (31-53) 43 (32-53) 39 (31-53) 0.022
PSQl
Pre-treatment 11 (8-14) 11 (8-14) 11 (8-14) 0.344
Post-treatment 3 (0-6) 4 (0-6) 3 (0-6) 0.032
ESS
Pre-treatment 14 (11-17) 15 (11-17) 14 (11-17) 0.159
Post-treatment 7 (2-11) 8 (2-11) 6 (2-11) 0.00243

levels, etc. may also affect the efficacy. Therefore, we divided these factors
into two groups: demographic model and blood marker model, and
analyzed the impact of factors in both groups on the efficacy. The results
of univariate logistic regression indicate that in the demographic model,
age BMI. Disease duration, smoking, alcohol consumption, and Hoehn
Yahr staging are negatively correlated factors, while treatment methods
are positively correlated factors. In the blood biomarker model, baseline
blood indicators such as CRP, NLR, PLR, MLR, TGL, LDL also have a
significant negative impact on the improvement of motor symptoms and
sleep disorders, while HDL is positively correlated with the improvement
of these symptoms. This indicates that higher baseline levels of CRP,
NLR, PLR, TGL, LDL, and lower HDL levels are not conducive to aDBS
improving motor symptoms and sleep disorders in patients (Table 4).
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3.4 Multivariate logistic regression analysis
of factors affecting therapeutic efficacy

The results showed that age had a significant negative impact on the
improvement of motor symptoms and sleep disorders (p = 0.014), body
mass index (BMI) had a significant negative impact on symptom
improvement (p = 0.019), disease duration had a significant negative
impact on symptom improvement (p = 0.013), Hoehn Yahr grading had
a significant negative impact on symptom improvement (p < 0.001),
smoking had a significant negative impact on symptom improvement
(p=0.038), and treatment methods had a significant positive impact on
symptom improvement (p < 0.001). Patients treated with aDBS had a 19%
increased likelihood of symptom improvement (OR =1.190, 95% CI:
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TABLE 4 Univariate logistic regression analysis of the effects of variables
and treatment methods on motor symptoms and sleep disorders in the
two groups.

Term ‘ Estimate ‘ StdError ‘ Z-value ‘ p-value

Demographic model

Age —0.029 0.013 —2.192 0.028
Gender —0.247 0.284 —0.870 0.384
BMI —0.096 0.043 —2.251 0.024
Disease course —0.085 0.042 —1.993 0.046
Hoehn-Yahr

classification —0.896 0.194 —4.618 0.000
Smoking —0.458 0.214 —2.141 0.032
Drinking —0.698 0.258 —2.703 0.007
Treatment

method 0.938 0.283 3.321 0.001
Blood marker model

CRP —0.152 0.069 —2.204 0.028
WBC —0.128 0.067 -1.916 0.055
NLR —0.423 0.132 —3.206 0.001
PLR —0.006 0.003 —2.039 0.041
MLR -3.073 1.560 -1.970 0.049
TGL —0.552 0.251 -2.197 0.028
LDL —0.363 0.166 —2.193 0.028
HDL 1.299 0.604 2.152 0.031
Treatment

method 0.938 0.283 3.321 0.001

1.082-1.310). The neutrophil/lymphocyte ratio (NLR) has a significant
negative impact on symptom improvement (p = 0.013), and the effect of
treatment methods in blood marker models remains significant
(p =0.005). Patients treated with aDBS have a 15.5% increased likelihood
of symptom improvement (OR=1.155, 95% CI: 1.045-1.275). In
addition, we also compared the performance of two models, and the
results showed that the predictive ability of the demographic model was
slightly higher than that of the blood biomarker model (AUC 0.779 vs.
0.727), but overall, both models had higher predictive ability (Table 5;
Figures 1A,B).

3.5 Construction of response model

We constructed a response prediction model (referred to as the
response model) based on two methods: conventional treatment and
aDBS treatment, to predict the improvement of motor symptoms and
sleep disorders. We selected significant factors (age, disease duration,
Hoehn Yahr grading, baseline NLR level) and treatment methods
from the multivariate logistic regression analysis of demographic
models and blood marker models, multiplied by the corresponding B
values (—0.00589, —0.01875, —0.16895, —0.05902, 0.1590189), and
finally added them up to obtain the response model. ROC curve
analysis shows that the AUC value of the model is 0.767, indicating a
high ability to predict improvement in patients’ motor symptoms and
sleep disorders. The threshold is —0.86. When the patient’s score is
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higher than this, there will be a response to treatment (significant
improvement in both motor function and sleep disorders), otherwise
there will be no response (Figure 1C).

3.6 Generalized linear mixed models are
used to analyze the interaction between
response model and other factors

For the convenience of analysis, we divided the continuous
variables into two categories: those above the median are coded as 0,
those below the median are coded as 1 (HDL is the opposite), gender
in the categorical variables is coded as 0 for males and 1 for females,
mild smoking and alcohol consumption are coded as 2, moderate
smoking and alcohol consumption are coded as 1, and severe smoking
and alcohol consumption are coded as 0. The results indicate a
significant interaction between the response model and BMI grouping,
with a regression coeflicient of 0.423, a p-value of 0.002, and an OR of
1.526 for the interaction term. This suggests that the combination of
the response model group and BMI group significantly increases the
likelihood of improving motor symptoms and sleep disorders.
However, the OR value of the response model group was 6.556, and
the OR value of the BMI group was 2.091, indicating that the response
model group had a greater impact on improving motor symptoms and
sleep disorders than the BMI group, meaning that the effect of the
response model was much higher than that of BMI. The OR value of
the interaction is smaller than the individual effect of the two,
indicating that the addition of BMI increases the probability of
symptom improvement, but this increase is not significant enough to
amplify the effect of the response model itself, that is, weaken the
effect of the response model. There is a significant interaction between
the response model group and the PLR group, with an OR value of
4.388, which is higher than their individual effects, indicating that the
addition of the PLR group enhances the predictive performance of the
response model. There is a significant interaction between the
response model group and the HDL group, with an OR value of 1.454,
which is lower than the individual effect of the response model group,
indicating an antagonistic effect between the two. The addition of the
HDL group weakens the predictive effect of the response model
(Table 6).

3.7 Analysis of quality of life and patient
satisfaction between the observation group
and the control group

The results showed that the quality of life of the observation group
was significantly higher than that of the control group at 1, 3, and
6 months after treatment. Patient satisfaction was significantly higher
than that of the control group (Figures 2A-D).

4 Discussion

Our research found that adaptive deep brain stimulation (aDBS)
improves motor function and sleep disorders in patients with
Parkinson’s disease, likely because aDBS delivers more precise
electrical stimulation to specific brain regions, such as the subthalamic
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TABLE 5 Multivariate logistic regression analysis of the effects of variables and treatment methods on motor symptoms and sleep disorders in the two

groups.
Term Estimate SE Statistic p-value OR Cl-lower Cl-upper
Demographic model
Age —0.006 0.002 —2.485 0.014 0.994 0.990 0.999
Gender —0.047 0.050 —0.954 0.341 0.954 0.865 1.051
BMI —0.018 0.008 —2.355 0.019 0.982 0.968 0.997
Disease course —0.019 0.007 —2.507 0.013 0.981 0.967 0.996
Hoehn Yahr classification —0.169 0.033 —5.135 0.000 0.845 0.792 0.901
Smoking —0.084 0.041 —2.082 0.038 0.919 0.849 0.995
Drinking —0.100 0.051 —1.960 0.051 0.905 0.819 1.000
Treatment method 0.174 0.049 3.579 0.000 1.190 1.082 1.310
Blood marker model
CRP —-0.014 0.013 —1.080 0.281 0.986 0.962 1.011
WBC -0.017 0.012 -1.357 0.176 0.983 0.960 1.007
NLR —0.059 0.024 —2.493 0.013 0.943 0.900 0.987
PLR —0.001 0.001 —-1.728 0.085 0.999 0.998 1.000
MLR —0.556 0.288 —-1.928 0.055 0.574 0.326 1.009
TGL —0.086 0.046 —1.888 0.060 0.917 0.838 1.003
LDL —0.038 0.031 —1.240 0.216 0.963 0.907 1.022
HDL 0.168 0.113 1.494 0.136 1.183 0.949 1.476
Treatment method 0.144 0.051 2.835 0.005 1.155 1.045 1.275
A B Cc
Demographic model Blood Marker Model Response Model
100
100 100
075 075 o7
5 5 3
»n »n
. AUC=0779 AUC=0727 - AUC = 0767
025 o Sensitivity = 0.746 025 Sensitivity = 0.668 Se"sf""f'y =0815
Specificity = 0.693 Specificity = 0.68 Specifiity = 0.613
Threshold = 0.675 Threshold = 0.699 Thresh«?ld =-086
Youden's Index = 0.44 Youden's Index = 0.348| Py Youden's Index = 0.428
0.00 0.00
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FIGURE 1
Receiver operating characteristic (ROC) curves of multivariate logistic regression models predicting improvement in motor symptoms and sleep
disturbances. (A) ROC curve for the demographic model based on multiple demographic variables, including age, gender, body mass index (BMI), and
disease duration, among others. (B) ROC curve for the blood marker model based on multiple blood markers, including neutrophil-to-lymphocyte
ratio (NLR), platelet-to-lymphocyte ratio (PLR), high-density lipoprotein (HDL) levels, among others. (C) ROC curve for the combined response model
integrating demographic and blood marker factors.

nucleus and internal capsule, thereby restoring neural circuit function
(14). In Parkinson’s disease patients, electrical stimulation of the
medial thalamus and subthalamic nuclei effectively inhibits excessive
basal ganglia activity, reducing motor symptoms. Simultaneously,
aDBS also influences brain areas involved in sleep regulation by
stabilizing neural circuit discharge patterns, which helps alleviate sleep
problems such as insomnia and daytime sleepiness. A key advantage
of aDBS lies in its high degree of individualization and adaptability. By
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precisely adjusting stimulation frequency, amplitude, and pulse width,
aDBS provides personalized treatment tailored to the patients
condition and symptom profile, thereby optimizing clinical
outcomes (15).

The response model constructed in this study holds significant
clinical value. It can predict whether a patient will respond to adaptive
deep brain stimulation (aDBS) treatment based on the treatment
method and several baseline factors. For instance, if a patient undergoes
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TABLE 6 Generalized linear mixed model analysis of the interaction between the response model and other factors.

Estimate  Std error  Statistic p-value Cl-upper
Reference 0.243 0.211 1.150 0.250 1.275 0.843 1.929
Response model group 1.759 0.398 4.415 0.000 5.804 2.659 12.670
Gender 0.301 0.364 0.826 0.409 1.351 0.662 2.757
Response model group * gender —0.356 0.640 —0.557 0.578 0.700 0.200 2.454
Reference 0.000 0.236 0.000 1.000 1.000 0.630 1.587
Response model group 1.880 0.429 4.388 0.000 6.556 2.830 15.183
BMI group 0.738 0.350 2.105 0.035 2.091 1.052 4.155
Response model group * BMI group 0.423 0.135 3.128 0.002 1.526 1.171 1.989
Reference —0.988 0.590 —1.674 0.094 0.372 0.117 1.184
Response Model group 2.499 0.964 2.591 0.010 12.166 1.838 80.524
Smoking 0.795 0.347 2.287 0.022 2.213 1.120 4.373
Response model group * smoking —0.500 0.516 —0.969 0.333 0.607 0.221 1.667
Reference —0.935 0.618 —1.513 0.130 0.393 0.117 1.318
Response model group 3.198 1.573 2.034 0.042 24.478 1.123 533.722
Drinking 0.740 0.352 2.102 0.036 2.097 1.051 4.183
Response model group * drinking —0.891 0.805 —1.107 0.268 0.410 0.085 1.987
Reference 0.000 0.232 0.000 1.000 1.000 0.634 1.577
Response model group 1.846 0.429 4.305 0.000 6.333 2.733 14.675
CRP group 0.762 0.352 2.163 0.031 2.143 1.074 4.275
Response model group * CRP group —0.498 0.627 —0.794 0.427 0.608 0.178 2.077
Reference 0.167 0.237 0.706 0.480 1.182 0.743 1.879
Response model group 1.713 0.429 3.994 0.000 5.547 2.393 12.859
WBC group 0.375 0.345 1.087 0.277 1.455 0.740 2.863
Response model group * WBC group —0.176 0.623 —0.283 0.777 0.838 0.247 2.842
Reference 0.279 0.250 1.113 0.266 1.321 0.809 2.159
Response model group 1.193 0.388 3.075 0.002 3.297 1.541 7.054
PLR group 0.127 0.344 0.369 0.712 1.135 0.578 2.228
Response model group * PLR group 1.479 0.720 2.053 0.040 4.388 1.069 18.009
Reference 0.158 0.230 0.687 0.492 1.171 0.746 1.839
Response model group 1.652 0.428 3.863 0.000 5.217 2.256 12.061
MLR group 0.420 0.348 1.208 0.227 1.522 0.770 3.008
Response model group * MLR group —0.090 0.624 —0.144 0.886 0.914 0.269 3.108
Reference 0.029 0.241 0.120 0.904 1.029 0.642 1.650
Response model group 1.779 0.418 4.260 0.000 5.926 2.614 13.435
TGL group 0.643 0.348 1.849 0.064 1.902 0.962 3.761
Response model group * TGL group —-0.270 0.630 —0.429 0.668 0.763 0.222 2.621
Reference —0.059 0.243 —0.243 0.808 0.943 0.586 1.517
Response model group 1.571 0.391 4.021 0.000 4.814 2.238 10.355
LDL Group 0.815 0.350 2.327 0.020 2.260 1.137 4.490
Response model group * LDL group 0.445 0.694 0.641 0.522 1.560 0.400 6.086
Reference 0.158 0.230 0.688 0.492 1.171 0.746 1.839
Response model group 1.939 0.462 4.197 0.000 6.951 2.811 17.192
HDL group 0.420 0.348 1.208 0.227 1.522 0.770 3.008
Response model group * HDL group 0.374 0.117 3.187 0.001 1.454 1.155 1.830
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FIGURE 2
Differences in SF-36 scores between the observation group and the control group at (A) 1 month, (B) 3 months, and (C) 6 months post-treatment.
(D) Differences in patient satisfaction between the observation group and the control group. *p < 0.05, **p < 0.01, ***p < 0.001.

aDBS, variables such as age, disease duration, Hoehn-Yahr stage, and
baseline neutrophil-to-lymphocyte ratio (NLR) can be used to assess
the likelihood of effective improvement in motor function and sleep
disorders. A final score above —0.83 indicates that the patient is a
suitable candidate for aDBS therapy. This model therefore reduces the
uncertainty and randomness in treatment selection, enhancing
treatment precision. By utilizing this model, clinicians can better
predict treatment outcomes, optimize therapeutic decisions, and
ultimately improve patients’ quality of life and satisfaction with care.
A major strength of this study is the use of generalized linear
mixed models (GLMM) for interaction analysis. In medical research,
data often exhibit a hierarchical structure—for example,
measurements taken at multiple time points from the same patient
and variability between different patients. GLMMs effectively
accommodate such hierarchical data by accounting for both fixed
effects and random effects, the latter representing individual
differences among patients. This is particularly important because
patient responses to treatment can vary widely (16). These variations
are influenced not only by known baseline factors such as age and
gender but also by numerous unknown factors. Incorporating
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random effects allows for quantification of these individual
differences, providing a more comprehensive analysis. This approach
distinguishes our study from previous interaction analyses.

Our study suggests that patients with lower baseline platelet-to-
lymphocyte ratio (PLR) exhibit a stronger response to adaptive deep
brain stimulation (aDBS) treatment. This may be because a lower
PLR reflects reduced inflammation and a healthier immune status
(17, 18), which enhances aDBS’s regulatory effects on the nervous
system. Patients with low inflammation can better adapt their neural
circuits to aDBS stimulation, leading to significant improvements in
motor symptoms and sleep quality. Conversely, patients with lower
body mass index (BMI) show a weaker response to aDBS, possibly
due to insufficient nutritional and energy reserves, as well as reduced
fat and muscle mass, resulting in poorer adaptability to the treatment
and diminished effectiveness. Additionally, patients with higher
baseline high-density lipoprotein (HDL) levels also demonstrate a
weaker response to aDBS. Although HDL is generally regarded as
“good” cholesterol that facilitates cholesterol clearance and reduces
inflammation, it also has neuroprotective properties (19, 20).
However, in Parkinson’s disease patients, excessively high HDL levels
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may interfere with certain neural repair mechanisms or the neural
adaptation processes triggered by electrical stimulation, thereby
weakening the treatment response.

Similarly, this study also has certain limitations. Firstly, as a
retrospective study, the data comes from existing clinical cases or
treatment records, which may lead to data selection bias. Secondly, the
mechanism of aDBS treatment response in patients with lower
baseline PLR levels, lower BMIJ, and higher baseline HDL levels needs
to be further validated through experimental studies.

5 Conclusion

This study found that aDBS significantly improved the motor
function and sleep disorders of Parkinson’s disease patients, and
constructed a response model that can effectively predict the treatment
effect of Parkinson’s disease patients. It was also found that the response
model was correlated with baseline PLR, BMI. There is a significant
interaction between baseline HDL. This study can help clinical doctors
more accurately evaluate the treatment prognosis of patients before
treatment, thereby achieving personalized treatment and improving
treatment effectiveness. And this study also provides basic data for
further exploring the mechanism of aDBS treatment and its relationship
with biomarkers, which has important clinical application value.
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