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Background: Parkinson’s disease patients often experience symptoms such 
as motor impairments and sleep disturbances. This study aims to evaluate 
the efficacy of adaptive deep brain stimulation therapy in improving motor 
symptoms and sleep disorders in patients with Parkinson’s disease.

Methods: This retrospective cohort study included 280 patients with Parkinson’s 
disease. Baseline data were analyzed to assess changes in motor symptoms 
and sleep disorders before and after treatment. Factors influencing treatment 
efficacy were explored using univariate and multivariate logistic regression 
analyses, based on which a response prediction model was constructed. A 
generalized linear mixed model was then employed to examine interactions 
between the response model and other variables.

Results: After treatment, the Unified Parkinson’s Disease Rating Scale Part 
II (UPDRS II), Unified Parkinson’s Disease Rating Scale Part III (UPDRS III), 
Parkinson’s Disease Sleep Scale (PDSS), Pittsburgh Sleep Quality Index (PSQI), 
and Epworth Sleepiness Scale (ESS) scores in the observation group (adaptive 
deep brain stimulation, aDBS) were significantly lower than those in the control 
group, indicating better motor and non-motor symptom control. In contrast, 
the Mini-Mental State Examination (MMSE) score was significantly higher in the 
observation group, suggesting improved cognitive function. Age, body mass 
index (BMI), disease duration, Hoehn and Yahr stage, smoking history, and 
baseline neutrophil-to-lymphocyte ratio (NLR) were negatively associated with 
symptom improvement. In contrast, adaptive deep brain stimulation (aDBS) 
treatment showed a significant positive association with symptom improvement. 
The predictive model constructed based on blood biomarkers, demographic 
factors, and treatment response demonstrated good predictive performance 
for clinical improvement. Furthermore, generalized linear mixed model (GLMM) 
analysis revealed that the response model exerted an antagonistic effect on 
BMI and high-density lipoprotein (HDL) levels, and a synergistic effect on the 
platelet-to-lymphocyte ratio (PLR).

Conclusion: The effectiveness of adaptive deep brain stimulation (aDBS) 
therapy in improving motor symptoms, sleep disorders, and quality of life in 
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patients with Parkinson’s disease is superior to that of conventional treatment. 
Factors such as patient age, body mass index (BMI), disease duration, Hoehn-
Yahr stage, and baseline blood marker levels can influence the efficacy of aDBS. 
The constructed response model effectively predicts symptom improvement 
and offers valuable guidance for clinical treatment decisions.
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Parkinson’s disease, adaptive deep brain stimulation, motor symptoms, sleep 
disorders, generalized linear mixed model

1 Introduction

Parkinson’s disease (PD) is a common neurodegenerative disorder 
characterized by motor symptoms such as tremors, rigidity, and 
bradykinesia (1). These symptoms significantly impair patients’ daily 
functioning and quality of life (2, 3). However, PD is not limited to 
motor manifestations; an increasing number of studies highlight sleep 
disorders as prevalent and severe non-motor symptoms in patients 
with Parkinson’s disease (4, 5). These sleep disturbances include 
insomnia, early awakening, nocturnal awakenings, and rapid eye 
movement sleep behavior disorder (RBD), which pose substantial 
challenges to patients’ physical and mental health. Moreover, they may 
exacerbate cognitive decline and psychological issues, further 
diminishing quality of life.

Traditional treatment methods primarily rely on 
pharmacotherapy; however, many patients gradually develop drug 
resistance or experience side effects after long-term medication, 
resulting in poor symptom control (6). Deep brain stimulation 
(DBS) has emerged as an effective treatment and has been widely 
applied in patients with drug-resistant Parkinson’s disease in 
recent years (7). DBS is a surgical intervention that involves 
implanting electrodes in specific brain regions to deliver electrical 
stimulation, thereby modulating neural activity and alleviating 
symptoms (8). Adaptive deep brain stimulation (aDBS), an 
innovative advancement of DBS, differs by adjusting stimulation 
parameters in real-time according to the patient’s motor 
symptoms, leading to improved therapeutic outcomes and reduced 
side effects (9, 10).

Previous studies have demonstrated that adaptive deep brain 
stimulation (aDBS) can effectively improve motor symptoms in 
Parkinson’s disease patients (11), although most research has 
focused primarily on optimizing aDBS parameter settings (12, 
13). Furthermore, the improvement of motor symptoms and sleep 
disorders in Parkinson’s disease is influenced not only by 
treatment methods but also by other factors such as patient age, 
disease duration, and disease severity. Previous studies have not 
considered these factors that can affect the efficacy of aDBS. This 
study aims to evaluate the effectiveness of adaptive deep brain 
stimulation (aDBS) in improving motor symptoms and sleep 
disturbances in patients with Parkinson’s disease. We performed 
univariate and multivariate logistic regression analyses to identify 
significant demographic and blood biomarker factors influencing 
the efficacy of aDBS. Based on these significant factors, 
we constructed a response prediction model and further analyzed 
the interaction between the response model and other variables 
using a generalized linear mixed model, with the goal of providing 
a more scientific basis for individualized treatment.

2 Materials and methods

2.1 Patients

This retrospective study included 280 patients with Parkinson’s 
disease (PD) who visited our hospital between January 2019 and June 
2022 as the research subjects, and divided them into a control group 
(n = 140) and an observation group (n = 140) according to the 
random number table method. The control group received 
conventional drug treatment, while the observation group received 
aDBS treatment in addition to conventional drug treatment. Inclusion 
criteria: After examination of blood cerebrospinal fluid, positron 
emission computed tomography (PET), single-photon emission 
computed tomography (SPECT), all the patients were diagnosed with 
PD; patients with normal heart, liver, kidney and other functions; The 
patient or his/her family member signs an informed consent form. 
Exclusion criteria: patients with allergic constitution or allergy to 
drugs in this study; patients with contraindications for DBS treatment 
or who could not tolerate the treatment; Patients with peripheral 
nervous system diseases, or with diabetes complicated by clinically 
diagnosed peripheral neuropathy, or other diseases affecting 
peripheral sensory function; Patients with severe psychiatric disorders 
(e.g., schizophrenia, major depressive disorder) or significant 
psychological disturbances (e.g., anxiety disorders, cognitive 
impairment) that result in poor treatment compliance; Patients with 
hyperthyroidism and essential tremor; patients with malignant tumor; 
Patients with secondary parkinsonism caused by drugs, viral 
encephalitis, brain trauma, carbon monoxide poisoning, etc.

2.2 Treatment methods

The control group was treated with conventional drugs: the 
patients were treated with Levodopa and Benserazide (Shandong 
Xinhua Pharmaceutical Co., Ltd., GYZZ H10930198) at an initial dose 
of 62.5 mg/time, twice a day, and then the dose was gradually 
increased to 250 mg/time, three times a day, in addition to the 
combined use of piribedil sustained-release tablets (Servier (Tianjin) 
Pharmaceutical Co., Ltd., GYZZ J20090075), amantadine (Jiangsu 
Pengqiao Pharmaceutical Co., Ltd., GYZZ H32023575), 
trihexyphenidyl hydrochloride (Changzhou Kangpu Pharmaceutical 
Co., Ltd., GYZZ H32022135) and other anti-PD drugs.

The observation group receives adaptive deep brain stimulation 
(aDBS) treatment in addition to the standard treatment: 12 h before 
aDBS treatment, medications are discontinued, and the Leksell 
stereotactic frame (Elekta, Sweden) was installed until local 
anesthesia acted, attention was paid to overlap the midsagittal plane 
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with the midsagittal plane of the head during installation, and the 
baseline of the frame and the projection line of the anterior–
posterior (AC-PC) line body surface maintained a parallel 
relationship. After the installation of the base frame, computed 
tomography (CT) thin-section scanning localization was 
performed, while the surgical planning system was imported into it 
to establish the coordinate system. Preoperative magnetic resonance 
imaging (MRI) images and CT images were fused with the help of 
SurgiPlan planning system (Elekta, Sweden) to fuse the subthalamic 
nucleus target, while the puncture path was designed, taking care 
to avoid sulci and intraventricular vessels. The puncture points on 
the scalp were marked according to the surgical plan, and after local 
anesthesia, a 1 mm microdrill bit was used to pass through the scalp 
to find the exact entry point into the skull on the skull, and after 
scalp incision, skull drilling was performed to incise the dura mater. 
The arcuate arch of the stereotactic system was installed, the system 
was advanced, and the microelectrodes were slowly pushed in. 
LeadPoint (Medtronic, United  States) was used to record the 
neuronal cell discharges at different positions to determine the 
location of the subthalamic nucleus. If the recorded subthalamic 
nucleus signal was not satisfactory, the micromotor was slowly 
withdrawn and the coordinates were readjusted. At this point, the 
micromotor is implanted into the subthalamic nucleus and 
connected to the aDBS system. The system continuously monitors 
brain activity and automatically adjusts stimulation parameters—
frequency, intensity, and pulse width—based on real-time neural 
signal changes. Through a closed-loop feedback mechanism, the 
stimulator adjusts its intensity and frequency according to the brain 
activity and the patient’s symptom feedback. Once the electrode 
position is confirmed, and the aDBS system is successfully installed, 
the physician adjusts the stimulation strength in real-time to 
determine the optimal treatment plan. After ensuring the electrode 
is in the best position and the patient’s symptoms have improved 
satisfactorily, the stimulator is implanted under general anesthesia 
beneath the left clavicle, with the lead wire extended through a 
subcutaneous tunnel in the neck.

Both groups were continuously treated for 6 months.

2.3 Data collection

Baseline data of patients were collected, including age, gender (male, 
female), body mass index (BMI), course of disease, smoking history 
(mild, moderate, severe), drinking history (mild, moderate, severe), 
complications including cardiovascular disease (yes, no), diabetes (yes, 
no), digestive system disease (yes, no), urinary system disease (yes, no), 
musculoskeletal disease (yes, no), and mental disease (yes, no), Hoehn-
Yahr classification (phase I, II, and III), baseline C-reactive protein (CRP, 
unit: mg/L), White blood cell count (WBC, unit: 10^9/L), neutrophil to 
lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR), monocyte 
to lymphocyte ratio (MLR), triglycerides (TGL, unit: mmol/L), Low 
density lipoprotein cholesterol (LDL, unit: mmol/L) and high-density 
lipoprotein cholesterol (HDL, unit: mmol/L). Before and after treatment, 
the Unified Parkinson’s Disease Rating Scale Part II (UPDRS II) and Part 
III (UPDRS III) scores, as well as the Mini-Mental State Examination 
(MMSE) scores, PDSS (Parkinson’s Disease Sleep Scale, total score 
0–120, with higher scores indicating more severe sleep problems), PSQI 
(Pittsburgh Sleep Quality Index, total score 0–21, with higher scores 

indicating poorer sleep quality), and ESS (Epworth Sleepiness Scale, total 
score 0–24, with higher scores indicating greater daytime sleepiness) 
scores were used to assess the motor function and sleep disorders of both 
groups of patients. We define a decrease of more than 10% in UPDRS II 
score or more than 20% in UPDRS III score as significant improvement 
in motor function, a decrease of more than 10 points in PDSS score, a 
decrease of more than 3 points in PSQI score, and a decrease of more 
than 3 points in ESS score as significant improvement in sleep disorders.

2.4 Statistical analysis

This study used R4.4.0 software for data analysis. All measurement 
data are expressed as median (minimum-maximum), and t-test is 
used for inter group comparison. For non-normally distributed metric 
data, Mann-Whitney U test is used. Categorical variables are expressed 
in frequency (percentage), and chi square tests are used for inter group 
comparisons. We  will divide the collected baseline data into two 
categories: demographic and blood biomarkers, and conduct 
univariate and multivariate logistic regression analyses with treatment 
methods. The dependent variables are set to show significant 
improvement in both motor function and sleep disorders. Analyze 
and calculate the sensitivity, specificity, and area under the curve 
(AUC) of the model using receiver operating characteristic (ROC) 
curves, and evaluate the accuracy and effectiveness of the model in 
predicting improvements in motor symptoms and sleep disorders. The 
generalized linear mixed model (GLMM) was used to analyze the 
interaction between the response model and other influencing factors 
(such as BMI, HDL, etc.), and random effects were also added, that is, 
the individual factors of the patient were treated as random effects.

3 Results

3.1 Demographic and baseline blood 
marker characteristics of Parkinson’s 
disease patients

In this study, a total of 280 Parkinson’s disease patients were 
included, with a median age of 62 years and an age range of 46 to 
81 years. Male patients account for 62.5% and female patients account 
for 37.5%. The median BMI of the patient is 30.0, ranging from 24.4 to 
35.6. The median duration of the patient’s illness is 6.4 years, ranging 
from 1.0 to 11.8 years. In terms of smoking, 72.5% of patients are light 
smokers, 21.07% are moderate smokers, and 6.43% are heavy smokers; 
In terms of alcohol consumption, 83.57% of patients are light drinkers, 
12.86% are moderate drinkers, and 3.57% are heavy drinkers. Patients 
with cardiovascular diseases accounted for 38.93%, patients with 
diabetes 26.43%, patients with digestive system diseases 42.86%, patients 
with urinary system diseases 33.93%, patients with musculoskeletal 
diseases 26.43%, and patients with mental diseases 14.29%. In Hoehn 
Yahr staging, 40% of patients are in stage I, 41.43% are in stage II, and 
18.57% are in stage III. This indicates that the majority of patients are in 
the early stage (Table 1). At baseline, blood markers showed that most 
blood indicators such as C-reactive protein (CRP), white blood cells 
(WBC), neutrophil to lymphocyte ratio (NLR), etc. did not show 
significant differences between the two groups, while triglycerides 
(TGL) were close to significant levels (p value of 0.0753) (Table 2).
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3.2 Differences in scores of motor 
symptoms and sleep disorders between the 
observation group and the control group 
before and after treatment

Before treatment, there were no significant differences in UPDRS 
II, UPDRS III (open and closed), MMSE, PDSS, PSQI, and ESS scores 
between the two groups. After treatment, the observation group had 
lower UPDRS II score, UPDRS III (open) score, UPDRS III (closed) 
score, PDSS score, PSQI score, and ESS score than the control group, 

and higher MMSE score than the control group. These differences were 
significant, indicating that aDBS showed better efficacy in improving 
motor symptoms, sleep disorders, and other aspects (Table 3).

3.3 Univariate logistic regression analysis of 
factors affecting therapeutic efficacy

The treatment method does not solely determine the treatment 
effect. Other factors such as age, disease duration, baseline blood marker 

TABLE 1  Demographic characteristics of patients with Parkinson’s disease in the control and observation groups.

Variables All patients (n = 280) Control group (n = 140) Observation group (n = 140) P-value

Age (year) 62 (46–81) 62 (46–81) 62 (46–80) 0.852

Gender 0.3233773

  Male 175 (62.5%) 92 (65.71%) 83 (59.29%)

  Female 105 (37.5%) 48 (34.29%) 57 (40.71%)

BMI 30.0 (24.4–35.6) 29.6 (24.4–35.6) 30.4 (24.7–35.5) 0.874

Disease course (year) 6.4 (1.0–11.8) 6.2 (1.0–11.8) 6.7 (1.1–11.8) 0.526

Smoking 0.6416802

  Mild 203 (72.5%) 98 (70%) 105 (75%)

  Moderate 59 (21.07%) 32 (22.86%) 27 (19.29%)

  Heavy 18 (6.43%) 10 (7.14%) 8 (5.71%)

Drinking 0.07289003

  Mild 234 (83.57%) 110 (78.57%) 124 (88.57%)

  Moderate 36 (12.86%) 24 (17.14%) 12 (8.57%)

  Heavy 10 (3.57%) 6 (4.29%) 4 (2.86%)

Cardiovascular diseases 0.2203291

  Yes 109 (38.93%) 49 (35%) 60 (42.86%)

  No 171 (61.07%) 91 (65%) 80 (57.14%)

Diabetes mellitus 0.4979995

  Yes 74 (26.43%) 40 (28.57%) 34 (24.29%)

  No 206 (73.57%) 100 (71.43%) 106 (75.71%)

Digestive system diseases 0.3979264

  Yes 120 (42.86%) 64 (45.71%) 56 (40%)

  No 160 (57.14%) 76 (54.29%) 84 (60%)

Urinary system diseases 0.07721267

  Yes 95 (33.93%) 40 (28.57%) 55 (39.29%)

  No 185 (66.07%) 100 (71.43%) 85 (60.71%)

Musculoskeletal diseases 0.6843132

  Yes 74 (26.43%) 35 (25%) 39 (27.86%)

  No 206 (73.57%) 105 (75%) 101 (72.14%)

Mental illness 0.2319005

  Yes 40 (14.29%) 24 (17.14%) 16 (11.43%)

  No 240 (85.71%) 116 (82.86%) 124 (88.57%)

Hoehn-Yahr classification 0.3310189

  Stage I 112 (40%) 51 (36.43%) 61 (43.57%)

  Stage II 116 (41.43%) 64 (45.71%) 52 (37.14%)

  Stage III 52 (18.57%) 25 (17.86%) 27 (19.29%)
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levels, etc. may also affect the efficacy. Therefore, we divided these factors 
into two groups: demographic model and blood marker model, and 
analyzed the impact of factors in both groups on the efficacy. The results 
of univariate logistic regression indicate that in the demographic model, 
age BMI、 Disease duration, smoking, alcohol consumption, and Hoehn 
Yahr staging are negatively correlated factors, while treatment methods 
are positively correlated factors. In the blood biomarker model, baseline 
blood indicators such as CRP, NLR, PLR, MLR, TGL, LDL also have a 
significant negative impact on the improvement of motor symptoms and 
sleep disorders, while HDL is positively correlated with the improvement 
of these symptoms. This indicates that higher baseline levels of CRP, 
NLR, PLR, TGL, LDL, and lower HDL levels are not conducive to aDBS 
improving motor symptoms and sleep disorders in patients (Table 4).

3.4 Multivariate logistic regression analysis 
of factors affecting therapeutic efficacy

The results showed that age had a significant negative impact on the 
improvement of motor symptoms and sleep disorders (p = 0.014), body 
mass index (BMI) had a significant negative impact on symptom 
improvement (p = 0.019), disease duration had a significant negative 
impact on symptom improvement (p = 0.013), Hoehn Yahr grading had 
a significant negative impact on symptom improvement (p < 0.001), 
smoking had a significant negative impact on symptom improvement 
(p = 0.038), and treatment methods had a significant positive impact on 
symptom improvement (p < 0.001). Patients treated with aDBS had a 19% 
increased likelihood of symptom improvement (OR = 1.190, 95% CI: 

TABLE 2  The expression differences of blood markers at baseline between the observation group and the control group.

Variables All patients 
(n = 280)

Control group 
(n = 140)

Observation group 
(n = 140)

P-value

C-reactive protein, CRP (mg/L) 8.6 (4.5–11.6) 8.5 (4.6–11.6) 8.6 (4.5–11.6) 0.928

White blood cell, WBC (10^9/L) 9.8 (6.1–12.9) 9.8 (6.1–12.8) 9.8 (6.3–12.9) 0.779

Neutrophil-to-lymphocyte ratio, NLR 3.8 (1.8–5.5) 3.7 (1.8–5.5) 3.9 (1.9–5.5) 0.144

Platelet-to-lymphocyte ratio, PLR 290.0 (209.3–363.7) 286.6 (209.3–363.7) 292.4 (210.5–360.1) 0.442

Monocyte-to-lymphocyte ratio, MLR 0.5 (0.3–0.6) 0.4 (0.3–0.6) 0.5 (0.3–0.6) 0.24

Triglycerides, TGL (mmol/L) 1.9 (0.9–2.8) 1.8 (0.9–2.8) 2.0 (0.9–2.8) 0.0753

Low-density lipoprotein, LDL (mmol/L) 2.4 (1.1–3.9) 2.4 (1.1–3.8) 2.5 (1.1–3.9) 0.856

High-density lipoprotein cholesterol, HDL (mmol/L) 1.1 (0.7–1.5) 1.1 (0.7–1.5) 1.1 (0.7–1.5) 0.833

TABLE 3  The differences in motor symptom scores and sleep disorder scores between the observation group and the control group before and after 
treatment.

Variables All patients (n = 280) Control group (n = 140) Observation group (n = 140) P-value

UPDRSII

Pre-treatment 22 (18–27) 22 (18–27) 22 (18–27) 0.783

Post-treatment 13 (8–17) 13 (8–17) 11 (8–17) 0.00755

UPDRSIII (open period) score

Pre-treatment 13 (10–16) 13 (10–16) 12 (10–16) 0.0916

Post-treatment 11 (8–14) 11 (8–14) 10 (8–14) 0.0103

UPDRSIII (closed period) score

Pre-treatment 48 (36–60) 48 (36–60) 48 (36–60) 0.673

Post-treatment 17 (12–21) 17 (12–21) 15 (12–21) 1.30E-06

MMSE

Pre-treatment 17 (14–20) 18 (14–20) 17 (14–20) 0.312

Post-treatment 22 (17–26) 21 (17–26) 23 (17–26) 0.0023

PDSS

Pre-treatment 65 (53–76) 64 (53–76) 66 (53–76) 0.104

Post-treatment 41 (31–53) 43 (32–53) 39 (31–53) 0.022

PSQI

Pre-treatment 11 (8–14) 11 (8–14) 11 (8–14) 0.344

Post-treatment 3 (0–6) 4 (0–6) 3 (0–6) 0.032

ESS

Pre-treatment 14 (11–17) 15 (11–17) 14 (11–17) 0.159

Post-treatment 7 (2–11) 8 (2–11) 6 (2–11) 0.00243
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1.082–1.310). The neutrophil/lymphocyte ratio (NLR) has a significant 
negative impact on symptom improvement (p = 0.013), and the effect of 
treatment methods in blood marker models remains significant 
(p = 0.005). Patients treated with aDBS have a 15.5% increased likelihood 
of symptom improvement (OR = 1.155, 95% CI: 1.045–1.275). In 
addition, we also compared the performance of two models, and the 
results showed that the predictive ability of the demographic model was 
slightly higher than that of the blood biomarker model (AUC 0.779 vs. 
0.727), but overall, both models had higher predictive ability (Table 5; 
Figures 1A,B).

3.5 Construction of response model

We constructed a response prediction model (referred to as the 
response model) based on two methods: conventional treatment and 
aDBS treatment, to predict the improvement of motor symptoms and 
sleep disorders. We selected significant factors (age, disease duration, 
Hoehn Yahr grading, baseline NLR level) and treatment methods 
from the multivariate logistic regression analysis of demographic 
models and blood marker models, multiplied by the corresponding B 
values (−0.00589, −0.01875, −0.16895, −0.05902, 0.1590189), and 
finally added them up to obtain the response model. ROC curve 
analysis shows that the AUC value of the model is 0.767, indicating a 
high ability to predict improvement in patients’ motor symptoms and 
sleep disorders. The threshold is −0.86. When the patient’s score is 

higher than this, there will be a response to treatment (significant 
improvement in both motor function and sleep disorders), otherwise 
there will be no response (Figure 1C).

3.6 Generalized linear mixed models are 
used to analyze the interaction between 
response model and other factors

For the convenience of analysis, we  divided the continuous 
variables into two categories: those above the median are coded as 0, 
those below the median are coded as 1 (HDL is the opposite), gender 
in the categorical variables is coded as 0 for males and 1 for females, 
mild smoking and alcohol consumption are coded as 2, moderate 
smoking and alcohol consumption are coded as 1, and severe smoking 
and alcohol consumption are coded as 0. The results indicate a 
significant interaction between the response model and BMI grouping, 
with a regression coefficient of 0.423, a p-value of 0.002, and an OR of 
1.526 for the interaction term. This suggests that the combination of 
the response model group and BMI group significantly increases the 
likelihood of improving motor symptoms and sleep disorders. 
However, the OR value of the response model group was 6.556, and 
the OR value of the BMI group was 2.091, indicating that the response 
model group had a greater impact on improving motor symptoms and 
sleep disorders than the BMI group, meaning that the effect of the 
response model was much higher than that of BMI. The OR value of 
the interaction is smaller than the individual effect of the two, 
indicating that the addition of BMI increases the probability of 
symptom improvement, but this increase is not significant enough to 
amplify the effect of the response model itself, that is, weaken the 
effect of the response model. There is a significant interaction between 
the response model group and the PLR group, with an OR value of 
4.388, which is higher than their individual effects, indicating that the 
addition of the PLR group enhances the predictive performance of the 
response model. There is a significant interaction between the 
response model group and the HDL group, with an OR value of 1.454, 
which is lower than the individual effect of the response model group, 
indicating an antagonistic effect between the two. The addition of the 
HDL group weakens the predictive effect of the response model 
(Table 6).

3.7 Analysis of quality of life and patient 
satisfaction between the observation group 
and the control group

The results showed that the quality of life of the observation group 
was significantly higher than that of the control group at 1, 3, and 
6 months after treatment. Patient satisfaction was significantly higher 
than that of the control group (Figures 2A–D).

4 Discussion

Our research found that adaptive deep brain stimulation (aDBS) 
improves motor function and sleep disorders in patients with 
Parkinson’s disease, likely because aDBS delivers more precise 
electrical stimulation to specific brain regions, such as the subthalamic 

TABLE 4  Univariate logistic regression analysis of the effects of variables 
and treatment methods on motor symptoms and sleep disorders in the 
two groups.

Term Estimate StdError Z-value p-value

Demographic model

Age −0.029 0.013 −2.192 0.028

Gender −0.247 0.284 −0.870 0.384

BMI −0.096 0.043 −2.251 0.024

Disease course −0.085 0.042 −1.993 0.046

Hoehn-Yahr 

classification −0.896 0.194 −4.618 0.000

Smoking −0.458 0.214 −2.141 0.032

Drinking −0.698 0.258 −2.703 0.007

Treatment 

method 0.938 0.283 3.321 0.001

Blood marker model

CRP −0.152 0.069 −2.204 0.028

WBC −0.128 0.067 −1.916 0.055

NLR −0.423 0.132 −3.206 0.001

PLR −0.006 0.003 −2.039 0.041

MLR −3.073 1.560 −1.970 0.049

TGL −0.552 0.251 −2.197 0.028

LDL −0.363 0.166 −2.193 0.028

HDL 1.299 0.604 2.152 0.031

Treatment 

method 0.938 0.283 3.321 0.001
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nucleus and internal capsule, thereby restoring neural circuit function 
(14). In Parkinson’s disease patients, electrical stimulation of the 
medial thalamus and subthalamic nuclei effectively inhibits excessive 
basal ganglia activity, reducing motor symptoms. Simultaneously, 
aDBS also influences brain areas involved in sleep regulation by 
stabilizing neural circuit discharge patterns, which helps alleviate sleep 
problems such as insomnia and daytime sleepiness. A key advantage 
of aDBS lies in its high degree of individualization and adaptability. By 

precisely adjusting stimulation frequency, amplitude, and pulse width, 
aDBS provides personalized treatment tailored to the patient’s 
condition and symptom profile, thereby optimizing clinical 
outcomes (15).

The response model constructed in this study holds significant 
clinical value. It can predict whether a patient will respond to adaptive 
deep brain stimulation (aDBS) treatment based on the treatment 
method and several baseline factors. For instance, if a patient undergoes 

TABLE 5  Multivariate logistic regression analysis of the effects of variables and treatment methods on motor symptoms and sleep disorders in the two 
groups.

Term Estimate SE Statistic p-value OR CI-lower CI-upper

Demographic model

Age −0.006 0.002 −2.485 0.014 0.994 0.990 0.999

Gender −0.047 0.050 −0.954 0.341 0.954 0.865 1.051

BMI −0.018 0.008 −2.355 0.019 0.982 0.968 0.997

Disease course −0.019 0.007 −2.507 0.013 0.981 0.967 0.996

Hoehn Yahr classification −0.169 0.033 −5.135 0.000 0.845 0.792 0.901

Smoking −0.084 0.041 −2.082 0.038 0.919 0.849 0.995

Drinking −0.100 0.051 −1.960 0.051 0.905 0.819 1.000

Treatment method 0.174 0.049 3.579 0.000 1.190 1.082 1.310

Blood marker model

CRP −0.014 0.013 −1.080 0.281 0.986 0.962 1.011

WBC −0.017 0.012 −1.357 0.176 0.983 0.960 1.007

NLR −0.059 0.024 −2.493 0.013 0.943 0.900 0.987

PLR −0.001 0.001 −1.728 0.085 0.999 0.998 1.000

MLR −0.556 0.288 −1.928 0.055 0.574 0.326 1.009

TGL −0.086 0.046 −1.888 0.060 0.917 0.838 1.003

LDL −0.038 0.031 −1.240 0.216 0.963 0.907 1.022

HDL 0.168 0.113 1.494 0.136 1.183 0.949 1.476

Treatment method 0.144 0.051 2.835 0.005 1.155 1.045 1.275

FIGURE 1

Receiver operating characteristic (ROC) curves of multivariate logistic regression models predicting improvement in motor symptoms and sleep 
disturbances. (A) ROC curve for the demographic model based on multiple demographic variables, including age, gender, body mass index (BMI), and 
disease duration, among others. (B) ROC curve for the blood marker model based on multiple blood markers, including neutrophil-to-lymphocyte 
ratio (NLR), platelet-to-lymphocyte ratio (PLR), high-density lipoprotein (HDL) levels, among others. (C) ROC curve for the combined response model 
integrating demographic and blood marker factors.
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TABLE 6  Generalized linear mixed model analysis of the interaction between the response model and other factors.

Term Estimate Std error Statistic p-value OR CI-lower CI-upper

Reference 0.243 0.211 1.150 0.250 1.275 0.843 1.929

Response model group 1.759 0.398 4.415 0.000 5.804 2.659 12.670

Gender 0.301 0.364 0.826 0.409 1.351 0.662 2.757

Response model group * gender −0.356 0.640 −0.557 0.578 0.700 0.200 2.454

Reference 0.000 0.236 0.000 1.000 1.000 0.630 1.587

Response model group 1.880 0.429 4.388 0.000 6.556 2.830 15.183

BMI group 0.738 0.350 2.105 0.035 2.091 1.052 4.155

Response model group * BMI group 0.423 0.135 3.128 0.002 1.526 1.171 1.989

Reference −0.988 0.590 −1.674 0.094 0.372 0.117 1.184

Response Model group 2.499 0.964 2.591 0.010 12.166 1.838 80.524

Smoking 0.795 0.347 2.287 0.022 2.213 1.120 4.373

Response model group * smoking −0.500 0.516 −0.969 0.333 0.607 0.221 1.667

Reference −0.935 0.618 −1.513 0.130 0.393 0.117 1.318

Response model group 3.198 1.573 2.034 0.042 24.478 1.123 533.722

Drinking 0.740 0.352 2.102 0.036 2.097 1.051 4.183

Response model group * drinking −0.891 0.805 −1.107 0.268 0.410 0.085 1.987

Reference 0.000 0.232 0.000 1.000 1.000 0.634 1.577

Response model group 1.846 0.429 4.305 0.000 6.333 2.733 14.675

CRP group 0.762 0.352 2.163 0.031 2.143 1.074 4.275

Response model group * CRP group −0.498 0.627 −0.794 0.427 0.608 0.178 2.077

Reference 0.167 0.237 0.706 0.480 1.182 0.743 1.879

Response model group 1.713 0.429 3.994 0.000 5.547 2.393 12.859

WBC group 0.375 0.345 1.087 0.277 1.455 0.740 2.863

Response model group * WBC group −0.176 0.623 −0.283 0.777 0.838 0.247 2.842

Reference 0.279 0.250 1.113 0.266 1.321 0.809 2.159

Response model group 1.193 0.388 3.075 0.002 3.297 1.541 7.054

PLR group 0.127 0.344 0.369 0.712 1.135 0.578 2.228

Response model group * PLR group 1.479 0.720 2.053 0.040 4.388 1.069 18.009

Reference 0.158 0.230 0.687 0.492 1.171 0.746 1.839

Response model group 1.652 0.428 3.863 0.000 5.217 2.256 12.061

MLR group 0.420 0.348 1.208 0.227 1.522 0.770 3.008

Response model group * MLR group −0.090 0.624 −0.144 0.886 0.914 0.269 3.108

Reference 0.029 0.241 0.120 0.904 1.029 0.642 1.650

Response model group 1.779 0.418 4.260 0.000 5.926 2.614 13.435

TGL group 0.643 0.348 1.849 0.064 1.902 0.962 3.761

Response model group * TGL group −0.270 0.630 −0.429 0.668 0.763 0.222 2.621

Reference −0.059 0.243 −0.243 0.808 0.943 0.586 1.517

Response model group 1.571 0.391 4.021 0.000 4.814 2.238 10.355

LDL Group 0.815 0.350 2.327 0.020 2.260 1.137 4.490

Response model group * LDL group 0.445 0.694 0.641 0.522 1.560 0.400 6.086

Reference 0.158 0.230 0.688 0.492 1.171 0.746 1.839

Response model group 1.939 0.462 4.197 0.000 6.951 2.811 17.192

HDL group 0.420 0.348 1.208 0.227 1.522 0.770 3.008

Response model group * HDL group 0.374 0.117 3.187 0.001 1.454 1.155 1.830
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aDBS, variables such as age, disease duration, Hoehn-Yahr stage, and 
baseline neutrophil-to-lymphocyte ratio (NLR) can be used to assess 
the likelihood of effective improvement in motor function and sleep 
disorders. A final score above −0.83 indicates that the patient is a 
suitable candidate for aDBS therapy. This model therefore reduces the 
uncertainty and randomness in treatment selection, enhancing 
treatment precision. By utilizing this model, clinicians can better 
predict treatment outcomes, optimize therapeutic decisions, and 
ultimately improve patients’ quality of life and satisfaction with care.

A major strength of this study is the use of generalized linear 
mixed models (GLMM) for interaction analysis. In medical research, 
data often exhibit a hierarchical structure—for example, 
measurements taken at multiple time points from the same patient 
and variability between different patients. GLMMs effectively 
accommodate such hierarchical data by accounting for both fixed 
effects and random effects, the latter representing individual 
differences among patients. This is particularly important because 
patient responses to treatment can vary widely (16). These variations 
are influenced not only by known baseline factors such as age and 
gender but also by numerous unknown factors. Incorporating 

random effects allows for quantification of these individual 
differences, providing a more comprehensive analysis. This approach 
distinguishes our study from previous interaction analyses.

Our study suggests that patients with lower baseline platelet-to-
lymphocyte ratio (PLR) exhibit a stronger response to adaptive deep 
brain stimulation (aDBS) treatment. This may be because a lower 
PLR reflects reduced inflammation and a healthier immune status 
(17, 18), which enhances aDBS’s regulatory effects on the nervous 
system. Patients with low inflammation can better adapt their neural 
circuits to aDBS stimulation, leading to significant improvements in 
motor symptoms and sleep quality. Conversely, patients with lower 
body mass index (BMI) show a weaker response to aDBS, possibly 
due to insufficient nutritional and energy reserves, as well as reduced 
fat and muscle mass, resulting in poorer adaptability to the treatment 
and diminished effectiveness. Additionally, patients with higher 
baseline high-density lipoprotein (HDL) levels also demonstrate a 
weaker response to aDBS. Although HDL is generally regarded as 
“good” cholesterol that facilitates cholesterol clearance and reduces 
inflammation, it also has neuroprotective properties (19, 20). 
However, in Parkinson’s disease patients, excessively high HDL levels 

FIGURE 2

Differences in SF-36 scores between the observation group and the control group at (A) 1 month, (B) 3 months, and (C) 6 months post-treatment. 
(D) Differences in patient satisfaction between the observation group and the control group. *p < 0.05, **p < 0.01, ***p < 0.001.
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may interfere with certain neural repair mechanisms or the neural 
adaptation processes triggered by electrical stimulation, thereby 
weakening the treatment response.

Similarly, this study also has certain limitations. Firstly, as a 
retrospective study, the data comes from existing clinical cases or 
treatment records, which may lead to data selection bias. Secondly, the 
mechanism of aDBS treatment response in patients with lower 
baseline PLR levels, lower BMI, and higher baseline HDL levels needs 
to be further validated through experimental studies.

5 Conclusion

This study found that aDBS significantly improved the motor 
function and sleep disorders of Parkinson’s disease patients, and 
constructed a response model that can effectively predict the treatment 
effect of Parkinson’s disease patients. It was also found that the response 
model was correlated with baseline PLR, BMI. There is a significant 
interaction between baseline HDL. This study can help clinical doctors 
more accurately evaluate the treatment prognosis of patients before 
treatment, thereby achieving personalized treatment and improving 
treatment effectiveness. And this study also provides basic data for 
further exploring the mechanism of aDBS treatment and its relationship 
with biomarkers, which has important clinical application value.
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