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Copper, an essential trace element for the human body, plays a key role in energy 
metabolism, mitochondrial respiration, redox reactions, and neural signal transmission. 
The recently proposed concept of “cuproptosis” has further revealed the unique 
status of copper in cellular regulation: when copper abnormally accumulates 
within cells, it can directly bind to the lipoylated proteins of the mitochondrial 
TCA cycle, triggering protein aggregation and metabolic disorders, ultimately 
leading to cell death. This form of cell death plays an important role in various 
neurodegenerative diseases of the central nervous system, such as Alzheimer’s 
disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), 
Huntington’s disease (HD), and stroke. This review summarizes recent research 
on the mechanisms of cuproptosis, providing new perspectives and a theoretical 
basis for understanding the pathogenesis of these neurodegenerative diseases.
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Introduction

Copper, an essential trace element, is primarily absorbed through dietary intake and enters 
intestinal epithelial cells (1). From there, it is distributed and transported throughout the body 
by various transport proteins (e.g., Ctr1 and Ctr2) and copper chaperone proteins (e.g., 
ATOX1, CCS, and COX17) (2). The liver, as the primary storage site for copper, regulates its 
distribution to tissues or excretion via bile (3). Copper is essential in physiological processes 
such as mitochondrial respiration, cellular energy metabolism, electron transport, and 
neurotransmitter synthesis (4). Copper levels are closely linked to immune function and 
typically remain stable within a certain range under normal physiological conditions, primarily 
in the brain, liver, and bones (5, 6). However, both excess and deficiency of copper can lead to 
pathological changes, adversely affecting health (7).

Cuproptosis is a newly identified form of cell death first reported and named by Tsvetkov 
et al. (8). The study found that copper ions bind directly to the lipoylated proteins of the 
mitochondrial TCA cycle, causing protein aggregation and metabolic disruptions that 
ultimately result in cell death (8). Among these key proteins, lipoylated proteins (particularly 
the PDH complex) and Fe–S cluster proteins serve as copper-binding sites and play critical 
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roles in the cell (9). When copper ion levels rise, the functions of these 
proteins are compromised, accompanied by protein toxicity stress 
(such as HSP70 induction) and the collapse of mitochondrial 
metabolism, ultimately leading to cell death (7). FDX1, identified as a 
central regulatory gene of cuproptosis, promotes copper-dependent 
cell death by regulating the protein lipoylation process (10). This 
copper ion overload-induced programmatic cell death mechanism 
differs from all known forms of programmed cell death (such as 
apoptosis, ferroptosis, pyroptosis, and necroptosis) (9). The key events 
involve abnormal copper accumulation in cells and mitochondria, 
leading to impaired mitochondrial function, enhanced oxidative 
stress, and metabolic dysregulation (11).

Neurodegenerative diseases (NDD) are caused by degeneration or 
demyelination of neurons in the brain or spinal cord and can result 
from various etiologies, such as abnormal protein aggregation, 
misfolded protein propagation, genetic mutations, and epigenetic 
modifications (12). Examples of NDDs include Alzheimer’s disease 
(AD), Parkinson’s disease (PD), Huntington’s disease (HD), 
amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), 
multiple sclerosis (MS), traumatic brain injury (TBI), and stroke. 
Studies have shown that between 1996 and 2016, the number of 
people with Parkinson’s disease (PD) doubled (13). Currently, 
approximately 47 million people worldwide live with dementia, with 
projections suggesting this number could triple to around 131 million 
by 2050 (14). The precise pathogenesis of these diseases remains 
incompletely understood (14).

This article reviews the role of cuproptosis in central nervous 
system immune responses and its potential mechanisms in 
neurodegenerative diseases. By investigating these mechanisms, this 
review provides new insights into disease pathogenesis and suggests 
potential directions for prevention and treatment through the lens 
of cuproptosis.

Copper absorption

Copper in the human body is primarily obtained from organ 
meats and shellfish, with adults recommended to consume between 0.8 
to 2.4 mg of copper daily to maintain balance (15). Copper is primarily 
absorbed through the duodenum, where it enters intestinal epithelial 
cells via copper transporter 1 (Ctr1) and divalent metal transporter 
DMT1 (DMT1) (2). Once inside these cells, copper is either distributed 
to copper chaperone proteins or stored as metallothionein (MT) and 
glutathione (GSH) (16). An animal study demonstrated that in mice 
lacking the copper transporter Ctr1, although copper accumulated 
significantly in intestinal epithelial cells, it could not be converted into 
a bioavailable form and thus failed to perform its normal physiological 
functions (17). These Ctr1-deficient mice exhibited marked growth 
retardation and reduced survival rates early after birth, likely due to 
insufficient copper absorption and subsequent impairment of copper-
dependent enzymes and proteins (18). Partial correction of growth and 
survival defects was achieved by copper supplementation, underscoring 
the vital role of copper in early development (17).

Research indicates that when copper levels are insufficient, Ctr1 
expression increases in key tissues (e.g., intestine, kidney, and brain), 
thereby promoting copper uptake and recycling to meet the body’s 
copper needs (19). Conversely, when copper levels are excessive, Ctr1 
expression decreases, limiting excessive copper absorption and 

preventing copper toxicity (18). Such regulation allows cells and the 
organism to maintain copper homeostasis under varying copper 
supply conditions (20). Another study reached a similar conclusion, 
demonstrating that copper homeostasis is maintained by regulating 
the expression of Sp1 (Specificity protein1) and hCtr1 (21). In copper 
excess, hCtr1 is upregulated to enhance copper uptake while Sp1 
expression is inhibited; when copper is deficient, Sp1 is upregulated to 
increase hCtr1 expression and thus boost copper intake (22). By 
means of a feedback mechanism, Sp1 and hCtr1 regulate each other, 
maintaining a balanced intracellular copper level (21).

Copper storage and transportation

Copper absorbed by intestinal epithelial cells via the transporter 
Ctr1 is guided by the copper chaperone Atox1 to ATPase copper 
transporter 7A (ATP7A) (23). ATP7A, located on the basolateral side of 
the epithelial cells, actively transports copper into the bloodstream (16). 
In the bloodstream, copper ions bind to proteins rather than circulating 
as free ions (23). Human serum albumin (HSA) and ceruloplasmin (CP) 
maintain the dynamic equilibrium of copper in the serum via distinct 
binding properties: CP stabilizes and stores most of the copper, while 
HSA is the primary carrier for exchangeable copper, aiding in copper 
transport and distribution (24). Specifically, about 75% of copper ions 
are bound to ceruloplasmin in a non-exchangeable form, whereas 
approximately 25% are bound to HSA in an exchangeable form (24).

Subsequently, the majority of copper ions travel via the portal vein 
to the liver, the central organ for copper metabolism by regulating 
absorption and biliary excretion (25). Metallothionein (MT), a 
molecule rich in thiol groups and with high affinity for copper ions, 
helps maintain copper homeostasis by storing and regulating copper 
ions (26). When cells require copper, MT releases these ions (26). This 
mechanism allows MT to prevent oxidative stress caused by copper 
overload while preserving physiological copper balance (27). ATP7B 
supports copper homeostasis, especially in the kidney, by facilitating 
copper efflux and modulating intracellular copper levels, redistributing 
copper from the liver to the bloodstream as needed (28).

Copper elimination

ATP7A and ATP7B are P1B-type ATPases responsible for the 
intracellular distribution, excretion, and storage of copper (29). When 
copper levels rise, these transporters relocate from the trans-Golgi 
network (TGN) to the cell membrane or lysosomes, promoting copper 
excretion or storage; when copper levels fall, they return to the TGN 
to restore the supply of copper for enzyme activity (25). Under normal 
physiological conditions, copper is primarily transported into bile by 
ATP7B and excreted with bile, with only about 2% excreted through 
urine (30).

An animal experiment demonstrated that deficiency of MURR1 
led to copper accumulation in the liver and reduced copper excretion 
into bile, ultimately causing cirrhosis (31). This result suggests that 
MURR1 may participate in extracellular copper excretion by 
regulating ATP7B-mediated copper discharge (32). In Wilson’s disease 
(WD), mutations in the ATP7B gene impair its function, hindering 
copper excretion (33). Certain mutations cause ATP7B to accumulate 
in the endoplasmic reticulum, impairing its proper localization to the 
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Golgi apparatus or cell membrane, preventing copper from being 
excreted in bile and leading to its buildup in the liver, brain, and other 
tissues (29). This accumulation leads to copper toxicity symptoms 
characteristic of Wilson’s disease (34) (Figure 1).

Systemic copper homeostasis

Copper is an essential trace nutrient in the human body, forming 
an integral part of various key metabolic enzymes like copper-zinc 
superoxide dismutase (SOD1), cytochrome c oxidase (CCO), and lysyl 
oxidase (LOX) (35). Copper is widely distributed in the body, 
primarily in the skeleton, liver, and kidneys (19). The skeleton contains 
the highest copper concentration, about 46 mg, while the kidneys 
contain relatively less, around 3 mg (36). Because copper exists in two 
oxidation states (Cu+ and Cu2+) and plays a critical cofactor role in the 
body’s redox systems (37). Excessively high or low copper levels can 
result in cytotoxicity and pathological changes (30). Maintaining 
copper levels within an appropriate range is essential (37).

Intracellular copper homeostasis

Copper uptake, distribution, and excretion within cells is a 
dynamic equilibrium regulated by metabolic demands, 

differentiation status, and environmental factors (38). Copper 
chaperone proteins like Atox1 and CCS transfer copper from Ctr1 
to ATP7A/ATP7B or to copper-dependent enzymes, ensuring the 
efficient allocation of copper (39). An animal study showed that 
copper, via Atox1 as a transcription factor within the cell nucleus, 
binds to the Cyclin D1 promoter and promotes Cyclin D1 
expression, thereby driving cell-cycle progression and cell 
proliferation (40). These findings indicate that Atox1’s nuclear 
translocation and structural domain integrity are essential for these 
processes (41).

CCS forms a heterodimer with superoxide dismutase 1 
(SOD1), facilitating copper ion transfer from CCS to SOD1 and 
activating its superoxide dismutase function (42). SOD1 is a key 
antioxidant enzyme widely present in eukaryotic cells (43). It 
catalyzes the conversion of superoxide radicals (O2

−) into hydrogen 
peroxide (H2O2) and oxygen (O2), a reaction critical for 
maintaining redox balance in cells (44). By doing so, it prevents 
oxidative stress and cellular damage caused by the accumulation of 
superoxide radicals (44). A recent study has shown that in SOD1-
knockout mice, the absence of CuZn superoxide dismutase 
(CuZnSOD) led to excessive superoxide accumulation, causing 
oxidative stress in mitochondria and the cytoplasm (45). This 
oxidative stress impaired multiple antioxidant enzymes (e.g., 
MnSOD and GPx) and led to widespread oxidative damage in the 
liver, including protein oxidation, lipid peroxidation, and DNA 

FIGURE 1

Schematic of normal copper metabolism. Copper from food is first reduced from Cu2+ to Cu+ by STEAP, then absorbed by enterocytes through the 
transporter Ctr1. In certain cases, DMT1 also participates in copper transport and absorption. Subsequently, copper is transported to the portal vein via 
the ATP7A transporter, where it binds to plasma proteins such as albumin and ceruloplasmin for further transport to the liver. After processing or 
transporting copper, the liver releases it into the bloodstream, which then enters the brain circulation, while excess copper is excreted through bile. 
Created with BioGDP.com (236). ATP7A, Cu-transporting ATPase 1; ATP7B, ATPase Cu-transporting beta; Ctr1, Cu transporter 1; Cu, copper; DMT1, 
divalent metal transporter 1; STEAP, six segment transmembrane epithelial antigen of prostate; Atox1, antioxidant 1; TGN, trans-Golgi network.
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damage (46). Significant pathological changes, including the 
formation of hepatocellular carcinoma (HCC), occurred in 
hepatocytes (47).

The protein encoded by Cox17 is crucial for copper ion 
transport, delivering copper ions from the cytoplasm to 
mitochondria, aiding in cytochrome c oxidase (CCO) assembly 
and activity (48). The mitochondrial inner-membrane protein PiC2 
(SLC25A3) can bind copper ions and acts as a mitochondrial 
copper transporter, delivering copper into the organelle and 
promoting the metallation of cytochrome c oxidase (CCO) in 
eukaryotic cells (49). Although there is not yet sufficient evidence 
to definitively classify COA6 as a copper chaperone, studies 
indicate that COA6 can indirectly facilitate copper binding by 
promoting the reduction of disulfide bonds in the copper-
coordinating cysteine residues of COX2 and SCO1 (49). Another 
study reported that Cox17 specifically transfers copper ions to 
Sco1 and Cox11 during the assembly of cytochrome c oxidase 
(CCO), functioning as a key copper donor (50). This mechanism 
ensures proper metallation of CCO and the maintenance of its 
normal biological function (51). An animal experiment revealed 

that loss of COX17p function leads not only to the failure of the 
mitochondrial respiratory chain but also to severe developmental 
defects in early embryogenesis (52). COX17p deficiency does not 
cause immediate lethality in early embryonic development, but as 
development progresses, impaired copper ion transport into 
mitochondria disrupts cellular energy supply, ultimately proving 
fatal (53).

Copper-regulated kinases (e.g., ULK1, ULK2, and MEK1) and 
the cAMP-degrading enzyme PDE3B mediate copper-dependent 
signaling that influences autophagosome formation, cell 
proliferation, and metabolism (54). Cytoplasmic glutathione affects 
both the rate of copper uptake and the oxidation state of Atox1, 
thereby modulating copper distribution (25). SLC31A1 (Ctr1) is the 
principal high-affinity copper transporter responsible for most 
cellular copper uptake (19). When intracellular copper levels rise, 
Ctr1 is internalized from the plasma membrane into endosomes 
through clathrin- and dynein-dependent endocytosis, thus reducing 
copper uptake; when copper levels fall, Ctr1 is redirected back to 
the plasma membrane via the retromer complex, reinstating its 
copper-uptake function (25) (Figure 2).

FIGURE 2

Overview of cellular copper homeostasis. Exogenous cupric ions (Cu2+) are first reduced to cuprous ions (Cu+) by the STEAP family of 
metalloreductases and subsequently imported into the cytosol via the membrane transporters CTR1 and DMT1; the resulting Cu+ is then precisely 
delivered to distinct targets by the copper chaperones ATOX1, CCS and COX17, while excess free copper is transiently sequestered by metallothioneins 
(MTs) and glutathione (GSH) to buffer cellular levels; when copper must be expelled, the P-type ATPases ATP7A and ATP7B pump Cu+ either out of the 
cell or into secretory vesicles; within the mitochondrial intermembrane space, SCO2 and COA6 cooperatively adjust the redox state of SCO1 so that it 
can bind Cu+ and hand the metal to cytochrome-c oxidase (CCO), whereas the inner-membrane carrier SLC25A3 transports Cu+ into the matrix to 
support this metallation process; these complementary mechanisms of uptake, storage, trafficking and efflux collectively ensure that copper-
dependent enzymes—including CCO, lysyl oxidase (LOX) and superoxide dismutase 1 (SOD1)—acquire their essential metal cofactor, thereby sustaining 
cellular energy metabolism and antioxidant homeostasis. Created with BioGDP.com (236). CCS, copper chaperone for superoxide dismutase; COX17, 
cytochrome-c oxidase copper chaperone 17; MTs, metallothioneins; GSH, glutathione; SCO2, synthesis of cytochrome-c oxidase 2; COA6, 
cytochrome-c oxidase assembly factor 6; SCO1, synthesis of cytochrome-c oxidase 1; CCO, cytochrome-c oxidase, complex IV; SLC25A3, solute 
carrier family 25 member 3, mitochondrial phosphate carrier; LOX, lysyl oxidase; SOD1, superoxide dismutase 1.
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Copper homeostasis and cuproptosis in 
neurodegenerative diseases of the central 
nervous system

Alzheimer’s disease
Alzheimer’s disease (AD) is a neurodegenerative disorder of the 

central nervous system, mainly characterized by progressively 
worsening cognitive impairment and behavioral abnormalities (55). 
It is the most common form of dementia (56). Studies predict that by 
2050, AD will affect 115 million people worldwide (57).

While the exact cause of Alzheimer’s disease remains unclear, 
multiple hypotheses have been proposed to explain its pathogenesis 
(55). An ATN (amyloid-β, tau protein, and neurodegeneration) 
framework based on biomarkers, emphasize the presence of β-amyloid 
(Aβ) and phosphorylated tau protein to confirm AD (58). According 
to the “amyloid cascade” hypothesis, the initial event in AD is the 
misfolding and aggregation of Aβ, which triggers a series of 
pathological changes, including abnormal tau phosphorylation, 
neuroinflammation, vascular abnormalities, and neurodegeneration 
(59). Accumulation of Aβ within neuronal mitochondria increases 
ROS levels and disrupts the mitochondrial membrane potential, 
resulting in energy metabolic disorders that lead to apoptosis or 
necroptosis, severely compromising neuronal function and 
survival (60).

Other studies suggest that oxidative damage—through excessive 
reactive oxygen species (ROS)—leads to metabolic disturbances in 
neurons and is closely associated with Aβ accumulation, creating a 
vicious cycle (61). Additionally, Aβ promotes the abnormal 
phosphorylation of tau protein, causing microtubule disassembly and 
neuronal dysfunction (62, 63). Hyperphosphorylated tau is strongly 
associated with neurofibrillary tangle (NFT) formation, with tau 
phosphorylation directly affecting its binding to microtubules (64, 65). 
Hyperphosphorylated tau loses its microtubule-stabilizing function 
and forms NFTs, further exacerbating neurodegenerative changes (66, 
67). Moreover, Aβ can activate signaling pathways such as p38MAPK 
to induce abnormal tau phosphorylation; once Aβ deposition reaches 
a certain level, it accelerates tau pathology and promotes the formation 
of amyloid plaques, ultimately causing a gradual decline in cognitive 
function (68, 69). In addition, theories such as the neuroinflammation 
hypothesis and the cholinergic hypothesis have been proposed to 
further explain the pathogenesis of AD (70).

Dysregulated copper metabolism is closely linked to AD 
progression (71). Studies show that in the brains of AD patients, 
copper distribution is abnormal; both copper excess and copper 
deficiency have been observed in various regions of the brain (72). 
Excess copper primarily exacerbates cognitive impairment by 
increasing the expression of amyloid precursor protein (APP) and 
β-site APP cleaving enzyme 1 (BACE1), promoting the accumulation 
of amyloid β (Aβ) (73). In particular, copper exposure significantly 
increased the mRNA and protein expression of APP and BACE1 in 
the hippocampus, leading to the accumulation of Aβ42, which further 
inhibited hippocampal long-term potentiation (LTP), a mechanism 
crucial for learning and memory (74). Copper exposure also disrupted 
synaptic plasticity by generating oxidative stress, leading to memory 
loss (74). In the cortex, although copper exposure did not significantly 
increase the expression of ADAM10, copper negatively affected the 
Aβ clearance mechanism (75). Copper may influence the expression 
of Aβ degrading enzymes such as neprilysin (NEP) and 

insulin-degrading enzyme (IDE), leading to insufficient Aβ clearance, 
which in turn affects decision-making, planning, and executive 
functions (76). Studies also suggest that reduced copper levels in the 
hippocampus may impair synaptic plasticity and neuronal growth, 
leading to memory decline (77). A randomized controlled trial found 
that copper concentration in the frontal cortex was significantly lower 
in Alzheimer’s disease (AD) patients compared to healthy controls, 
with this change mainly occurring in soluble components, leading to 
impaired cognitive control, such as difficulties in decision-making and 
attention deficits (78). This indicates a localized reduction in copper 
in the brains of AD patients, affecting only soluble components, while 
other regions such as peripheral membranes, vesicular material, and 
membrane components showed no significant differences (79). In the 
frontal cortex, copper overload induces oxidative stress and cell 
damage by increasing free copper, which impacts cognitive abilities 
and memory function (80). Although the antioxidant HT can restore 
copper levels and improve behavioral performance, the increase in 
calcium ion levels may limit these improvements, suggesting that 
copper metabolic imbalance affects cognitive function through a 
series of biochemical reactions (80). Excess copper in the medial 
temporal cortical region exacerbates oxidative stress, promoting the 
aggregation and deposition of β-amyloid, thereby worsening cognitive 
decline (55). An animal study showed that copper concentrations in 
the brainstem of AD model mice were significantly increased, 
particularly in transgenic AD mice, where copper levels were 
significantly higher in both young and old mice compared to healthy 
controls (Mann–Whitney U, p = 0.016), indicating that the brainstem 
may be a key area for early pathological changes in AD (81). Copper 
concentrations in the cerebellum also increased with age, but in AD 
mice, while copper levels did not significantly change (Mann–Whitney 
U, p  = 0.063), significant changes in copper isotope ratios were 
observed (Mann–Whitney U, p = 0.016), with a notable enrichment 
in copper isotope ratios in AD transgenic mice (Δ65Cu = 0.33‰) 
(81). This suggests that copper metabolism imbalance may alter the 
redox status of the cerebellum, thereby affecting its function (81). In 
the TgCRND8 mouse model, β-amyloid plaques predominantly 
accumulate in various regions of the cerebral cortex, where copper 
concentrations were significantly higher, with copper binding to Aβ 
peptides to promote Aβ aggregation and neurotoxicity (82). However, 
in areas surrounding the plaques, copper concentrations were lower, 
which may be related to the upregulation of ATP7A copper transport 
protein in activated microglia, particularly in the regions around the 
plaques (78). Activated microglia, through the secretion of 
inflammatory cytokines like interferon-γ (IFN-γ), participate in 
inflammatory responses, affecting copper uptake and transport. After 
IFN-γ stimulation, ATP7A proteins are redistributed to intracellular 
vesicles, suggesting copper accumulation inside the cell. Microglia 
may “sequester” copper to reduce the negative interaction between 
copper  and Aβ, thereby exerting a protective effect (82). In AD 
patients, the concentration of free copper (i.e., copper not bound to 
ceruloplasmin) is elevated, and free copper can cross the blood-brain 
barrier (BBB) to enter the cerebrospinal fluid (CSF) and cerebral 
cortex, where it interacts with Aβ to promote its aggregation (83). This 
copper metabolic dysfunction is closely associated with clinical 
symptoms, neuronal damage, and changes in biomarkers in the CSF 
(83). The increase in free copper is also closely linked to 
neuroinflammation, as it promotes the activation of microglia and 
astrocytes, triggering an inflammatory response in the brain, which 
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further exacerbates neuronal damage and cognitive decline (83). 
Studies suggest that copper deficiency in the basal forebrain and 
thalamus may impair cholinergic system function, negatively affecting 
behavior and cognition (84). Furthermore, abnormalities in copper 
levels in the anterior cingulate cortex, a key brain area involved in 
emotional regulation and cognitive conflict, may also be  closely 
related to cognitive symptoms and emotional changes in AD (85). 
Although the cerebellum is less affected in AD pathology, abnormal 
copper levels in this region may be associated with impaired motor 
coordination and cerebellar function in some AD patients (86). Other 
studies have found that abnormal copper distribution in the 
cerebellum, by affecting ion transport activity, membrane potential 
changes, and intracellular calcium levels, may directly influence the 
electrophysiological activity of neurons, leading to cognitive and 
behavioral changes (87). This phenomenon of copper imbalance is 
part of the AD pathology, referred to as the “CuAD hypothesis,” which 
suggests that both copper excess and deficiency lead to neuronal 
damage and functional impairment (88). Moreover, abnormal copper 
accumulation in the basal ganglia may disrupt the normal function of 
neurotransmitter systems, particularly those related to dopamine (89). 
Dopaminergic neurons in the basal ganglia play an important role in 
motor control, reward mechanisms, and emotional regulation (90). 
Research has shown that copper overload may alter dopamine 
synthesis, release, and clearance processes through interaction with 
dopamine receptors or by affecting dopamine transporter function, 
leading to dopamine metabolism abnormalities and impacting basal 
ganglia function (91). Insufficient or excessive activation of dopamine 
can directly lead to motor dysfunctions such as tremors and 
bradykinesia, which are common motor abnormalities observed in 
AD patients (92). Copper overload in the basal ganglia not only affects 
motor functions but may also further interfere with emotional and 
motivational regulation (93). Another important function of the basal 
ganglia is regulating emotions and decision-making (94). Copper 
overload may influence this function in two ways: first, the direct 
toxicity of copper to neurons may damage basal ganglia circuits, 
particularly those related to emotion and motivation; second, copper 
may alter the balance of neurotransmitter systems, leading to 
emotional regulation disorders, further contributing to depression, 
anxiety, and other emotional issues, which are very common in AD 
patients (95). AD patients often exhibit emotional changes, which are 
closely related to basal ganglia dysfunction (94).

These specific manifestations of copper abnormalities in different 
pathological stages and brain regions of AD suggest that copper’s role 
in AD is not merely confined to simple concentration changes within 
brain regions but rather influences neuronal function and the stability 
of neural circuits through complex biochemical mechanisms, thereby 
playing a critical role in the cognitive impairment and behavioral 
changes observed in AD (96).

Cu2+ coordinates with the histidine (His) and tyrosine (Tyr) 
residues of Aβ, affecting its aggregation pathway and forming two 
main aggregate types: amyloid-like fibrils and Cu2+-induced aggregates 
(97, 98). Cu2+-induced aggregates generate dityrosine, triggering 
oxidative stress and increasing neurotoxicity (99). When the Cu2+:Aβ 
molar ratio is below 1:1, Cu2+ primarily promotes the formation of 
amyloid-like fibrils; at higher molar ratios, it favors Cu2+-induced 
aggregates, which hinder fibrillization (100). Cu2+ binding also 
promotes the conversion of tau from its native structure into a 
conformation that is more prone to aggregation, providing a basis for 

pathological tau aggregations such as neurofibrillary tangles (NFTs) 
(30). Furthermore, Cu2+ induces nitrotyrosination of lipoprotein 
receptor-related protein 1 (LRP1), marking it for proteasomal 
degradation and thereby reducing LRP1 levels, which in turn lowers 
Aβ clearance efficiency (101).

A meta-analysis revealed significant alterations in trace elements 
in AD patients, notably copper (serum), iron (plasma), zinc (hair), 
and selenium (plasma), with standardized mean differences (SMD) of 
0.37, −0.68, −0.35, and −0.61, respectively (102). Another meta-
analysis showed that copper content in the brain tissue of AD patients 
decreases, while copper  and non-ceruloplasmin bound copper 
(non-Cp Cu) levels in serum/plasma increase (103). Moreover, the AG 
haplotype of the ATP7B gene is associated with increased susceptibility 
to AD, indicating that AD patients may fail to maintain proper copper 
metabolism and that certain individuals carrying the ATP7B AG 
haplotype may be  more prone to copper imbalance (103). This 
suggests that copper dyshomeostasis could represent a disease 
subtype in AD.

Research indicates that iron, copper, and zinc each bind to 
β-amyloid (Aβ) to modulate its aggregation and toxicity, inducing 
oxidative stress and programmed cell death (including ferroptosis and 
cuproptosis) and further aggravating neuronal damage (70, 104). At 
the same time, iron and copper contribute to neurofibrillary tangle 
(NFT) formation by activating tau-protein kinases (e.g., GSK3β) and 
facilitating excessive tau phosphorylation (70). One study revealed 
that copper ions bind to the histidine residues of Aβ, forming a non-β-
folded Aβ/Cu complex that inhibits fibrillization and blocks the 
formation of typical amyloid fibrils (70). This process may, in early 
stages of AD, influence the aggregation patterns of Aβ and the 
development of senile plaques, thereby driving disease pathology (105).

The role of copper in Alzheimer’s disease (AD) extends beyond 
the accumulation of Aβ and tau; copper also plays a significant role in 
disease progression by regulating immune system functions (58). 
Copper’s role in AD is first manifested in its regulation of immune 
molecules (59). Studies show that molecules like Aβ, tau, and ApoE 
maintain neural homeostasis under normal conditions, but in AD, 
their functions change, and they shift to exert antimicrobial effects 
(106). For example, Aβ, as a natural antimicrobial peptide (AMP), 
forms fibrous structures through aggregation, interacting with 
pathogens to defend against infections (106). In this process, copper 
binds to Aβ, promoting its aggregation and enhancing Aβ’s 
antimicrobial activity (106). However, prolonged copper accumulation 
can lead to excessive aggregation of Aβ, which in turn triggers 
neurotoxicity, causing immune system dysfunction and exacerbating 
neurodegenerative changes (106).

Additionally, copper significantly affects the activity of immune 
cells (107). In the brains of AD patients, abnormal distribution of 
copper leads to overactivation of microglial cells and astrocytes (107). 
The abnormal response of these immune cells to pathogen invasion 
aggravates neuroinflammation (107). The loss of function of copper-
dependent enzymes, such as cytochrome c oxidase and ceruloplasmin, 
in AD further disrupts iron homeostasis and redox reactions, thereby 
intensifying neuroinflammatory responses (107).

Copper’s role in immune regulation is also reflected in its control 
over immune cell function (59). In AD, copper binds to Aβ to form a 
more stable redox complex, which not only enhances Aβ’s 
antimicrobial activity but also leads to copper depletion, further 
affecting the normal function of the nervous system (101). Copper 
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deficiency reduces the activity of copper enzymes such as 
ceruloplasmin, which are closely related to neuroimmune functions 
and iron homeostasis, thereby exacerbating neurodegenerative 
changes (106).

Copper interacts with key proteins in the immune system to 
regulate immune responses (103). Studies have shown that copper 
promotes the release of interferon-γ (IFN-γ), increases copper uptake 
in microglial cells, and enhances ATP7A expression, which helps limit 
Aβ aggregation and improves its clearance (103). At the same time, 
copper regulates the M1/M2 shift in microglial cells, exerting its dual 
effect (107). In some cases, copper suppresses the generation of nitric 
oxide (NO), promoting the transformation of microglial cells from the 
pro-inflammatory M1 type to the neuroprotective M2 type, thus 
alleviating neuroinflammation and promoting neuroprotection (107). 
This indicates that the immune regulatory role of copper depends on 
its physiological concentration and distribution, with appropriate 
copper levels helping to suppress excessive immune responses and 
exert protective effects (107).

In summary, copper’s immune regulatory role in AD is dual in 
nature, potentially promoting harmful inflammatory responses but 
also, under appropriate conditions, exerting anti-inflammatory and 
neuroprotective effects (107). The dysregulation of copper homeostasis 
leads to immune dysfunction by affecting the function of immune 
molecules, the activation state of immune cells, and the deficiency of 
copper enzymes, which in turn drives the progression of 
neurodegenerative changes (59). Both copper overload and deficiency 
can affect the activity of microglial cells, astrocytes, and other immune 
cells, intensifying neuroinflammation and ultimately influencing the 
course of AD (106). Therefore, regulating copper homeostasis is a 
critical component of the pathological mechanism of AD, offering 
new directions and potential targets for AD treatment (59).

Amyotrophic lateral sclerosis
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease 

marked by the degeneration of motor neurons (108). Common 
symptoms include skeletal muscle weakness, atrophy, fasciculations, 
and bulbar palsy (109). Progressive paralysis eventually leads to 
respiratory failure, with death typically occurring within about 3 years 
of onset (110). The exact etiology of ALS remains unclear, potentially 
involving genetic factors, immune system dysfunction, lifestyle 
choices, and metabolic imbalances (111). Despite extensive studies on 
its pathogenesis, challenges in ALS diagnosis and treatment persist, 
with therapeutic outcomes still suboptimal (108). In recent years, an 
increasing number of studies have underscored the importance of 
targeted therapy for maintaining copper homeostasis (112, 113).

Research has shown that misfolded mutant SOD1 can bind to 
proteins on the mitochondrial outer membrane (OMM), such as Bcl-2 
and VDAC1, thereby causing mitochondrial dysfunction, increased 
oxidative stress, and activation of apoptotic pathways (114, 115). These 
changes promote cell apoptosis and ultimately lead to the death of 
motor neurons, contributing to the onset of ALS (116). Meanwhile, 
copper—regulating SOD1 activity—has gained recognition for its role 
in the aggregation and abnormal function of SOD1 (115). Copper 
metabolism imbalances may exacerbate SOD1 misfolding, forming 
insoluble aggregates and accelerating ALS pathology (117).

An animal study demonstrated that tetrathiomolybdate (TTM) 
provides protective effects in ALS by modulating superoxide 
dismutase 1 (SOD1) and copper metabolism, restoring abnormally 

elevated copper levels in the spinal cord (118). TTM significantly 
reduced insoluble SOD1 aggregates and suppressed SOD1 enzyme 
activity, thereby slowing the pathological progression of ALS (119). A 
randomized controlled trial showed significantly lower copper levels 
in the cerebrospinal fluid (CSF) of ALS patients compared to healthy 
controls, particularly in spinal-onset ALS (109). Research reports that 
certain SOD1 mutations (e.g., A4V) reduce enzymatic activity and 
copper-binding affinity (120). Under zinc-deficient conditions, mutant 
SOD1 can generate highly active hydroxyl radicals and peroxynitrite 
via abnormal copper chemistry, further exacerbating neuronal 
oxidative damage and protein nitration (120). This same study 
indicated that dysregulated copper metabolism promotes SOD1 
aggregation and disulfide bond instability, further aggravating ALS 
pathology (121).

Copper chaperone for SOD1 (CCS) regulates copper uptake and 
structural maturation of SOD1 (122). One study found a positive 
correlation between CCS expression and survival in ALS patients, 
suggesting that higher CCS expression may prolong survival and 
confer protective effects in ALS pathogenesis (123). A randomized 
controlled study revealed higher expression of copper metabolism-
related genes (CuRGs) in ALS patients, highlighting their pivotal role 
in ALS onset (111). Moreover, by analyzing differing CuRG expression 
profiles, the study classified ALS patients into two distinct pathological 
subtypes with marked differences in immune characteristics and 
biological processes, highlighting the complex interplay between 
abnormal copper metabolism and immune responses in ALS 
pathogenesis (111).

Some research indicates that copper metabolism dysfunction in 
ALS may increase oxidative stress, foster lipid peroxidation and 
ferroptosis, and thus injure neurons (122). Copper modulates the cell’s 
antioxidant defenses via interactions with enzymes such as thioredoxin 
reductase (TRXND) and glutathione peroxidase (GPX) (111). 
Another study found that copper is associated with membrane lipids 
such as sphingomyelins and fatty acid acyl glycosides, both essential 
for neuronal function and integrity (124, 125). Copper imbalance not 
only heightens oxidative stress but may also interfere with lipid 
metabolism and signaling, further advancing the neurodegenerative 
processes in ALS (111).

In one study, tetrathiomolybdate (TTM), used as a copper 
chelator, lowered spinal-cord copper levels and SOD1 activity in mice, 
delaying ALS onset and progression and extending survival (126). 
Another study showed that triazines, also acting as copper chelators, 
significantly improved survival in an ALS mouse model, suggesting 
that copper chelation can slow disease progression (127). 
Ceruloplasmin, a multi-copper oxidase involved in iron metabolism 
regulation and systemic copper transport, was found to increase in 
ALS model mice during disease progression, yet its enzymatic activity 
substantially declined (128). This indicates that ALS-related copper 
dysregulation not only affects metal loading in a single protein but also 
systematically reduces the functionality of copper-dependent 
enzymes, further disrupting metabolic balance in the central nervous 
system (129).

In the pathogenesis of amyotrophic lateral sclerosis (ALS), copper 
metabolism imbalance not only affects the function of SOD1 but also 
plays a key role in regulating immune responses in the central nervous 
system (CNS), thereby promoting the development of 
neurodegeneration and the pathological progression of the 
disease (119).
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First, in ALS, the mutant SOD1 interacts with mitochondrial 
membrane proteins such as Bcl-2 and VDAC1, leading to 
conformational changes in these proteins that expose their death 
domains, triggering apoptosis (116). The abnormal activity of VDAC1 
also affects the mitochondrial membrane potential and permeability, 
leading to an increase in intracellular Ca2+ concentrations, which 
further exacerbates the activation of immune cells and the 
inflammatory response (116).

Secondly, copper imbalance also directly participates in the 
regulation of immune cell function (119). Studies have shown that 
copper ions are important regulatory factors for the function of 
immune cells such as microglia and astrocytes (119). In ALS, excessive 
copper accumulation promotes the activation of these immune cells, 
particularly by enhancing their oxidative stress response and the 
secretion of pro-inflammatory cytokines (130). Copper interacts with 
antioxidant enzymes such as SOD1 within these immune cells, 
enhancing the oxidative stress response in neutrophils (123). 
Cytokines such as interferon-γ (IFN-γ) and tumor necrosis factor-α 
(TNF-α) secreted by these immune cells not only promote the further 
expansion of the immune response but also increase copper uptake 
and accumulation, forming a vicious cycle that exacerbates neuronal 
damage (111).

Copper metabolism imbalance may also worsen immune 
responses through mechanisms such as lipid peroxidation (130). In 
immune responses, oxidative stress is an important pathogenic 
mechanism (129). The excessive accumulation of copper promotes the 
generation of reactive oxygen species (ROS) and lipid peroxides, 
which can directly damage neurons, further activate the immune 
system, and lead to neurodegeneration (129). Therefore, copper not 
only alters the function of SOD1, leading to oxidative stress and cell 
death, but also activates inflammatory responses in immune cells, 
promoting the progression of ALS (130).

In conclusion, there is a complex interaction between copper 
metabolism imbalance and the immune response in ALS (111). 
Copper regulates the function and folding of SOD1, maintaining 
normal immune cell function, while excessive copper accumulation 
or deficiency changes immune cell activation and pro-inflammatory 
responses, leading to increased neuroinflammation, thereby 
promoting the occurrence of neurodegeneration (116). Copper 
homeostasis imbalance in ALS affects not only the redox state and 
immune cell function but also potentially modulates immune 
responses, influencing the progression of neurodegenerative diseases 
(123). Restoring copper metabolic balance, especially in the immune 
response, may provide a new direction for the treatment of ALS and 
other neurodegenerative diseases (111).

Huntington’s disease
Huntington’s disease (HD) is a progressive neurodegenerative 

condition caused by the expansion of the polyglutamine (polyQ) 
region in the huntingtin (Htt) protein (131). Symptoms include 
movement, cognitive, and psychiatric disturbances, typically 
manifesting in midlife and progressively worsening over the 
subsequent two decades (132). Current treatments mainly focus on 
reducing HTT gene expression, nucleic acid therapies, gene therapy, 
DNA repair, and cell replacement strategies (133).

Research has shown that altering the expression of copper 
transporters (e.g., Ctr1B and DmATP7) or regulating dietary copper 
intake can significantly influence HD pathology (131). Both copper 

excess and copper deficiency affect the aggregation and fibrillization 
of huntingtin protein (Htt exon1-polyQ), thereby influencing disease 
progression (131). Studies further indicate that removing potential 
copper-binding sites on Htt can eliminate copper’s pathogenic effect 
in HD, suggesting that Huntington’s disease is not only a polyglutamine 
disease but also involves copper-regulated pathogenic 
mechanisms (131).

One experiment demonstrated that copper ions markedly 
enhance the toxic aggregation of mutant huntingtin protein (Htt) 
associated with HD (134). In a fruit fly model, dietary copper 
promoted Htt oligomer formation, increased β-amyloid structures, 
and strengthened the interaction between Ref(2)P and Htt aggregates, 
contributing to neurotoxicity (134). Copper intensified synaptic 
degeneration, shown by elevated caspase-3-mediated cell death, 
reduced BRP expression, and thinner neuronal structures (134). 
Moreover, increased dietary copper led to more Htt aggregates, 
especially smaller ones (<5 μm2) (135). These results highlight the 
significant contribution of copper in HD pathogenesis by exacerbating 
Htt aggregation and neurotoxicity (136). Further research revealed 
that the copper chelator D-penicillamine (DPA) effectively alleviated 
this copper-induced Htt aggregation and β-amyloid accumulation, 
thereby reducing synaptic damage and cytotoxicity (137, 138). These 
findings provide new insights into copper’s potential role in HD and 
support copper chelation as a possible therapeutic avenue (134).

Some studies suggest that copper’s interaction with metals like 
zinc (Zn) may inhibit DMT1, causing imbalances in metals and 
worsening HD pathology (134, 136). Meanwhile, research indicates 
that natural antioxidants like rutin can mitigate copper-induced 
toxicity, reduce protein aggregation, and prevent neurodegenerative 
injury through chelating effects, suggesting a potential therapeutic 
application in HD (136).

Studies show that in early-stage HD, especially in the 
pre-symptomatic phase, copper levels in CSF are elevated while zinc 
(Zn) levels decrease (139). This rise in copper may reflect changes in 
blood-brain barrier integrity or metal transport mechanisms (139). 
Copper directly interacts with mutant huntingtin protein (mHTT), 
promoting its aggregation and hastening neuronal death (134). Excess 
free copper ions can increase reactive oxygen species (ROS) levels 
through the Fenton reaction, enhancing oxidative stress and cellular 
damage (140). Moreover, copper affects the regulation of 
neurotransmitters by promoting the synthesis and release of GABA, 
disturbing inhibitory neurotransmission and worsening HD-related 
motor and cognitive symptoms (141). Excess copper may also displace 
zinc in enzymatic sites, altering enzyme activity and interfering with 
vital biochemical processes such as mitochondrial function and 
antioxidant defense (139).

Conversely, copper deficiency could reduce its chelation of iron, 
leading to increased free iron participating in ROS generation and 
thereby exacerbating oxidative stress (142). Additionally, copper is a 
key component of cytochrome c oxidase, so inadequate copper might 
impair mitochondrial function and ATP production, further 
diminishing energy output (143). Because copper is also an essential 
cofactor of superoxide dismutase 1 (SOD1), insufficient copper may 
lower antioxidant activity and render the brain more vulnerable to 
oxidative damage (144).

An animal study showed that copper supplementation in the 
drinking water of mice with quinolinic acid (QUIN)-induced HD had 
a neuroprotective effect (139). After 28 days of copper 
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supplementation, there was no impact on the mice’s food intake, body 
weight, or water consumption, but striatal copper levels significantly 
increased (145). Notably, following QUIN-induced injury, copper 
supplementation elevated striatal copper content compared to the 
group receiving only QUIN injury, implying a potential protective role 
for copper in neural damage (146). Copper supplementation 
prevented QUIN-induced reductions in GABA levels and reduced 
circling behavior, suggesting copper protects by inhibiting NMDA 
receptor activity and enhancing antioxidant enzymes (e.g., Cu–Zn 
SOD) (146). Copper supplementation significantly decreased 
oxidative stress indicators [e.g., ROS and lipid peroxidation (LP)], 
supporting the idea that copper mitigates neuronal damage by 
activating endogenous antioxidant systems (147, 148). Copper showed 
protective effects in the QUIN-induced HD model, but further 
research is needed to fully understand its role in HD, particularly 
whether increased copper levels compensate for free radical 
damage (146).

The role of copper in Huntington’s disease (HD) goes beyond 
directly binding to mutant huntingtin (mHTT) and promoting its 
aggregation; it also involves exacerbating the pathological process 
through the regulation of immune responses and oxidative stress 
mechanisms (131). When copper metabolism is disrupted, excessive 
accumulation of copper generates reactive oxygen species (ROS) via 
the Fenton reaction (133). These free radicals damage lipids, proteins, 
and DNA within cells, leading to cell death (133). Additionally, 
oxidative stress activates immune cells, particularly microglia, which 
promote neuroinflammatory responses (133). The activation of these 
immune cells not only promotes further accumulation of copper in 
the nervous system but also exacerbates local neuronal damage (134).

Specifically, copper accumulation leads to abnormal activation of 
immune response cells (136). Copper directly affects the function of 
immune cells, altering their activation, proliferation, and migration 
behavior (136). When copper levels are excessive, immune cells such 
as microglia and macrophages become overactivated and release large 
amounts of pro-inflammatory cytokines, such as interferon-γ (IFN-γ), 
tumor necrosis factor-α (TNF-α), and interleukins (IL-1, IL-4, etc.) 
(139). These cytokines not only enhance local inflammation but also 
further promote copper uptake and accumulation through feedback 
mechanisms, thereby creating a vicious cycle that exacerbates 
neuronal damage (134).

Furthermore, copper regulates the expression of metallothioneins 
(such as MtnA and MtnB), which affect copper homeostasis within 
cells (131). Metallothioneins are intracellular copper regulators 
involved in copper absorption, storage, and excretion (131). When 
copper levels are excessive, the expression of these metallothioneins 
changes, which may lead to an ineffective cellular response to oxidative 
stress, further promoting neuronal damage (131). The excessive 
accumulation of copper not only exacerbates immune responses 
through these direct oxidative damage pathways but may also 
influence immune cell function by altering the metal ion balance in 
immune cells, thus advancing neurodegenerative processes (131).

Copper metabolism disruption may also impact immune 
responses through interactions with other metals, such as zinc and 
iron (136). Copper and metals like zinc share the same transport 
proteins and regulate similar signaling pathways (136). Therefore, 
excessive copper may compete with zinc for transport channels, 
altering zinc’s function in immune cells (136). Zinc is an essential 
metal for various antioxidant enzymes, and its deficiency reduces 

immune cells’ ability to defend against oxidative stress, thereby 
worsening immune responses and neuronal damage (136). The 
interaction between copper metabolism disruption and the imbalance 
of metals like zinc and iron complicates immune responses, further 
accelerating the neurodegenerative progression of HD (136).

In summary, copper’s role in HD is not limited to directly 
promoting mHTT aggregation and toxic expression but also 
exacerbates neurodegeneration by intensifying oxidative stress, 
altering immune cell function, and modulating immune responses 
(131). The excessive accumulation of copper plays a key role in HD’s 
pathological process through its dual impact on oxidative stress and 
immune responses (136, 144). Therefore, regulating copper 
metabolism and immune responses could provide new intervention 
strategies for HD treatment, especially in terms of copper homeostasis 
restoration and immune modulation (139).

Parkinson’s disease
Parkinson’s disease (PD) is a common neurodegenerative disorder 

and currently the fastest-growing neurological condition worldwide 
(149). Its etiology is complex. In 3–5% of cases, single-gene mutations 
are responsible, while others correlate with genetic risk variants, 
family history, constipation, nonsmoking status, and exposure to 
environmental toxins (e.g., pesticides and trichloroethylene) (149). 
Core manifestations include bradykinesia, resting tremor, and 
muscular rigidity, but non-motor symptoms (such as constipation, 
hyposmia, depression, cognitive decline, and sleep disturbances) also 
significantly impact quality of life (150). PD typically progresses 
slowly, with non-motor symptoms often appearing years before motor 
symptoms, leading to delayed diagnosis (151). Diagnosis primarily 
relies on clinical presentation and is further supported by a positive 
response to levodopa treatment; additional tests help rule out atypical 
presentations (152). Current trends in PD diagnosis focus on early 
detection and individualized approaches (150). Integrative methods—
combining highly sensitive technologies, specific molecular markers, 
and artificial intelligence—aim to improve early diagnostic accuracy 
and enhance patient treatment and quality of life (153).

The hallmark feature of PD is the gradual degeneration of 
dopaminergic neurons in the substantia nigra pars compacta (SNpc), 
leading to reduced dopamine levels in the striatum (particularly in the 
putamen) and motor symptoms (154). Loss of nigral neurons and the 
dopaminergic denervation of the basal ganglia underlie the onset of 
these motor deficits. Decreased expression of the dopamine 
transporter (DAT), aromatic L-amino acid decarboxylase (AADC), 
and vesicular monoamine transporter-2 (VMAT-2) in the striatum are 
important indicators of disease progression (152).

Lewy bodies—intraneuronal inclusions composed primarily of 
α-synuclein (α-Syn)—are another core pathological hallmark of PD; 
these α-Syn aggregates (oligomers and Lewy bodies) can be detected 
in neurons, glial cells, and peripheral tissues (152, 155). The aberrant 
aggregation of α-Syn leads to neuronal dysfunction and disrupts key 
processes, including synaptic transmission, lipid metabolism, vesicular 
transport, and dopamine metabolism, exacerbating neuronal damage 
(156). Misfolded α-Syn can propagate between neurons, inducing the 
aggregation of endogenous α-Syn in healthy cells and spreading 
pathology (157). This mechanism is considered a major driver of PD 
pathogenesis and interacts with mitochondrial dysfunction, lysosomal 
pathway abnormalities, and neuroinflammation to facilitate disease 
progression (158).
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To date, six monogenic forms of PD have been identified, arising 
from mutations in SNCA, LRRK2, Parkin, PINK1, DJ-1, and 
ATP13A2 (159). Additional genes—such as GBA, MAPT, and 
APOE—also raise PD risk via polymorphisms (157). The Bax protein 
promotes dopaminergic neuron apoptosis in PD through multiple 
mechanisms, including interactions with antiapoptotic Bcl-2 family 
proteins and translocation to the mitochondrial membrane to inhibit 
other antiapoptotic factors; this mechanism may function 
independently of cytochrome c release (160). Bax can exert either 
proapoptotic or antiapoptotic effects in different cell types, acting as a 
critical cofactor in the apoptotic cascade (161).

A randomized controlled trial demonstrated that copper levels in 
dopaminergic neurons of the substantia nigra are marginally lower in 
PD patients than in controls (162). Another mouse study showed that 
copper levels are abnormally elevated during the prodromal stage of 
PD and that ATH434 can regulate copper homeostasis and improve 
olfactory function (163). As the disease progresses, metal 
dyshomeostasis in PD may shift from copper-dominated abnormalities 
to iron-centered pathology (163). Copper-chelating agents like PBT2 
and TDMQ20 bind and transport excessive copper in the brain, 
reducing copper toxicity while preserving essential levels for normal 
neuronal physiology (164). These chelators can partially reverse or 
slow pathological damage associated with Aβ aggregation and PD 
(165). Proteins such as FDX1, DLAT, and LIAS play pivotal roles in 
the tricarboxylic acid (TCA) cycle; these proteins can undergo 
lipoylation and, under conditions of copper excess, abnormally 
aggregate, triggering cell death (166).

Research suggests that ceruloplasmin (Cp) is centrally involved 
not only in copper and iron metabolism in the liver and bloodstream 
but also in regulating metal homeostasis and neuronal function in the 
brain (167). Cp deficiency and mutations in copper-transporting 
genes such as ATP7B can cause abnormal metal distribution in the 
brain and induce (or exacerbate) neurodegenerative processes, 
including PD (168). Genes such as ATP7A, SLC31A1, and DBT, 
closely linked to copper homeostasis, neuronal function, and 
immunometabolism, display significantly altered expression in the 
substantia nigra of PD patients, correlating with disease staging (169). 
Other studies indicate that ATP7B maintains cellular copper 
homeostasis by transporting copper to the Golgi apparatus for 
integration into copper-dependent enzymes, NFE2L2 (NRF2) 
activates various antioxidant enzymes to mitigate oxidative stress and 
inflammation caused by copper excess, and MTF1 detects abnormal 
metal concentrations and induces detoxification and stress-response 
gene expression (170). These three factors together form a core 
network for copper regulation; dysfunctional expression or activity 
can exacerbate PD and other neurodegenerative diseases (170, 171).

α-Synuclein (α-Syn) binds Cu2+ with high affinity via its 
N-terminal amine, the side chain of Asp2, and the imidazole group of 
His50, inducing conformational changes that modulate copper redox 
activity, reduce oxidative stress, and promote membrane recycling and 
SNARE-complex membrane fusion (172). In PD, Cu2+ binding may 
weaken the interaction of α-Syn with membranes, increasing its 
soluble fraction, accelerating fibrillization, and promoting Lewy body 
formation, thereby driving disease progression (172). Copper ions 
have a high affinity for α-Syn, enhancing α-Syn fibril formation and 
directly leading to cytotoxicity or inducing α-Syn aggregation (173). 
Studies show that copper ions can promote the formation of α-Syn 
short fibrils (<0.2 μm) via an atypical pathway; these short fibrils 

regulated by copper display heightened intracellular transmissibility 
and toxicity (174). Other research has found that negatively charged 
membrane proteins, such as heparan sulfate proteoglycans (HSPGs), 
mediate copper/iron-induced fibril internalization via electrostatic 
interactions (175). Concurrently, changes in α-Syn secondary 
structure and fibril morphology induced by copper/iron ions enhance 
its aggregation and cellular toxicity (175). Clinically used chelators 
TETA and DF effectively hinder the damaging effects of copper/iron 
ions on α-Syn fibril propagation and prolong the lifespan of PD model 
nematodes (175). Furthermore, copper/iron ions have been found to 
affect the aggregation or toxicity of other disease-associated amyloid 
proteins (including β-amyloid, tau, and prion proteins), suggesting 
new avenues for investigating other protein misfolding disorders (175).

Copper ions (Cu2+) alter α-Syn conformation and aggregation by 
directly binding to critical residues (His50 and Asp121) and 
promoting reactive oxygen species (ROS) generation (176, 177). 
Studies indicate that upon Cu2+ binding, the hydrophobic 
non-amyloid-β component (NAC) domain becomes more solvent-
accessible, facilitating initial hydrophobic interactions that form toxic 
oligomers (178, 179). Moreover, Cu2+ binding can disrupt long-range 
intramolecular interactions (e.g., His50-Val71 and Asp121-Lys96), 
weakening the barrier effect among NAC domains and accelerating 
α-Syn fibrillization (180). Copper binding results in a more compact 
α-Syn peptide chain, reinforcing intramolecular hydrogen bonds and 
residue interactions (181). Such changes likely promote protein 
aggregation in PD by influencing the tightness of the NAC 
(non-amyloid-β component) region and the affinity of the peptide 
chain for membranes (182).

Studies demonstrate that copper triggers abnormal aggregation by 
directly binding lipoylated proteins, leading to protein toxicity stress 
and cell death (183). During this process, lipoylated TCA-cycle 
enzymes are key targets that, under copper’s influence, aggregate and 
destabilize iron–sulfur (Fe–S) cluster proteins, ultimately 
compromising mitochondrial metabolic function (184, 185). 
Glutathione (GSH), a natural intracellular copper chaperone, is critical 
in this context (186). When GSH is depleted, cells become markedly 
more sensitive to copper, presenting decreased lipoylation, increased 
DLAT aggregation, and further destabilization of Fe–S cluster proteins 
(8). These changes induce severe protein toxicity stress and cell death 
(8). An animal study using a novel fluorescent probe (R13) showed 
significantly reduced GSH levels in the brains of a PD mouse model, 
whereas oxidized glutathione (GSSG) levels increased, indicating that 
PD is associated with oxidative stress and that lower GSH levels reflect 
weakened radical-scavenging capacity (187). Other research has 
demonstrated that polymorphisms in GST (glutathione S-transferase) 
are closely related to PD risk; specifically, the deletion (null) genotypes 
of GSTM1 and GSTT1 significantly increase PD risk, and a combined 
deletion further heightens this association (188). In animal 
experiments, copper ions binding to GSH caused intracellular GSH 
depletion, impairing antioxidant capacity, exacerbating oxidative 
stress and protein nitration, and leading to neuronal damage (8). 
Meanwhile, GSH depletion disrupts the ubiquitin-proteasome system 
(UPS) and autophagic pathways, resulting in aggregation of proteins 
such as α-Syn—an important mechanism of neuronal injury in 
PD (189).

DLAT is a key enzyme in protein lipoylation and plays a vital role 
in the TCA cycle (8). Under copper overload, DLAT expression 
significantly increases, promoting abnormal protein lipoylation and 
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causing aggregated lipoylated proteins as well as the loss of iron–sulfur 
(Fe–S) proteins (190). These changes induce protein toxicity stress, 
further exacerbating cell apoptosis and tissue damage (148). Studies 
show that 4-amino-TEMPO (4-AT) provides antioxidant effects and 
may activate Nrf2, enhancing cellular antioxidant capacity and 
restoring GSH levels to improve neuronal viability (191). Another 
study found that hypoxanthine boosts cysteine uptake via EAAC1 (a 
cysteine transporter) in HEK293 and SH-SY5Y cells, increasing 
intracellular GSH synthesis and exhibiting neuroprotective effects 
against oxidative stress (e.g., H₂O₂ treatment) (192).

The relationship between copper metabolism abnormalities and 
central nervous system (CNS) immune responses has gained 
increasing attention in the pathological mechanisms of Parkinson’s 
disease (PD) (151). One of the pathological features of PD is the loss 
of dopaminergic neurons and the accumulation of Lewy bodies, with 
neuroinflammation being considered a key factor in this process 
(149). Abnormal copper accumulation plays an important role in PD 
pathology, and through its regulation of the immune system, 
particularly its impact on immune cells, it enhances 
neuroinflammatory responses and further exacerbates 
neurodegenerative damage (154).

Firstly, abnormalities in copper metabolism lead to the 
overactivation of immune cells, especially microglia and peripheral 
immune cells such as macrophages, monocytes, and neutrophils 
(168). Studies have shown that copper accumulation can stimulate 
microglial activation, as these cells are the primary immune cells in 
the CNS and play a critical role in neuroinflammation (168). 
Overactivation of microglia releases inflammatory cytokines, further 
promoting neuronal damage and exacerbating neurodegenerative 
lesions (170). The infiltration and activation of peripheral immune 
cells are also regulated by copper, which increases their ability to enter 
the CNS, thus intensifying the local inflammatory response (170). 
Copper not only directly affects the functions of these immune cells 
but also regulates their migration and activation, further driving the 
progression of PD (182).

Using the 6-hydroxydopamine (6-OHDA) mouse model, 
combined with TSPO PET and TREM1 PET imaging techniques, 
researchers further explored the role of copper in PD. TSPO is a 
marker for microglia and peripheral immune cells (193). The study 
found that copper accumulation is closely related to the activation of 
immune cells in the 6-OHDA mouse model (193). TREM1 PET 
imaging showed that the infiltration of peripheral immune cells, 
particularly neutrophils, enhanced this process, suggesting that the 
role of copper in immune activation should not be underestimated 
(193). The high expression of TREM1 as a pro-inflammatory immune 
cell marker, correlated with copper metabolism abnormalities, further 
reveals that copper may enhance neuroinflammatory responses by 
influencing immune cell dynamics, thus promoting the 
neurodegenerative process of PD (193).

Additionally, copper imbalance also affects the metal homeostasis 
within neurons, influencing the aggregation of α-synuclein (152). 
Studies have shown that copper can bind to α-synuclein and promote 
its aggregation, forming Lewy bodies, which is a hallmark pathological 
feature of PD (156). Copper accumulation not only promotes 
α-synuclein aggregation but also induces oxidative stress, further 
enhancing neuroimmune responses (157). The aggregation of 
α-synuclein promotes neuroinflammation, and this immune 
activation is closely related to copper regulation (170).

In conclusion, copper metabolism imbalance not only directly 
affects the functions of immune cells but also influences the 
aggregation of α-synuclein by altering metal homeostasis within 
neurons, thereby exacerbating neuroinflammation and 
neurodegenerative lesions (172). Copper accumulation drives 
neuronal damage and PD progression through immune cell activation 
and increased oxidative stress (175). This finding reveals the complex 
interplay between copper and immune responses, providing potential 
therapeutic targets for future PD treatment strategies, particularly in 
copper homeostasis regulation and immune response control (182).

Stroke
Stroke is caused by acute focal injury to the central nervous 

system (CNS), leading to neurological deficits from vascular lesions 
(194). Strokes are generally classified as ischemic or hemorrhagic; the 
vast majority are ischemic, attributable to reduced blood flow (usually 
due to arterial occlusion) (195). During stroke, blood flow is 
interrupted or a cerebral artery ruptures, discontinuing energy supply 
to brain tissue (194). This interruption results in metabolic imbalance 
within neurons and heightened oxidative stress responses (194). In 
this process, copper contributes to neuronal damage and death via 
multiple mechanisms, closely tied to reactive oxygen species (ROS) 
production, mitochondrial dysfunction, and regulation of apoptotic 
signaling pathways (196).

Copper serves as an essential cofactor for numerous redox 
enzymes—including superoxide dismutase (SOD)—that are critical 
for redox balance within neurons (197). When copper levels are 
dysregulated (deficient or excessive), ROS levels surge, collapsing 
mitochondrial membrane potential and accumulating ROS (198). 
Excessive ROS generation triggers lipid peroxidation, protein damage, 
and DNA breaks, initiating endogenous apoptotic pathways (2). These 
effects are particularly pronounced in ischemic stroke: oxygen and 
nutrient supply plummet, forcing neurons to rely on anaerobic 
glycolysis for ATP production, an inefficient pathway insufficient to 
meet metabolic demands (199). This shortfall further worsens 
intracellular calcium overload and redox imbalance (200).

Studies show that SOD1 overexpression substantially reduces ROS 
levels by enhancing the antioxidant capacity of neural stem cells 
(NSCs) against ischemia-reperfusion injury (201). Consequently, 
SOD1 overexpression lessens oxidative stress-mediated cell death and 
improves NSC survival and reparative capacity for ischemic brain 
damage both in vitro and in vivo (201). In addition to promoting 
vascular endothelial growth factor (VEGF) secretion and angiogenesis 
in ischemic regions, SOD1 overexpression supports the release of 
neuroprotective factors, reinforcing endogenous repair mechanisms 
that shrink infarct volume and improve brain function (202).

Research suggests that combined deficiency of copper-
transporting proteins (e.g., ATP7A) and metallothioneins (MTs) 
abolishes cellular tolerance to copper toxicity (203, 204). Even at 
extremely low copper concentrations, these cells experience severe 
copper overload, resulting in rapid ROS accumulation, collapse of the 
mitochondrial membrane potential, and disruption of the glutathione 
(GSH) redox system, ultimately activating various oxidative stress-
mediated cell death pathways (e.g., apoptosis, necrosis, or cuproptosis) 
(205). Another study indicates that high mobility group protein B1 
(HMGB1), acting as an inflammatory mediator induced by 
cuproptosis, is rapidly released extracellularly post-cerebral ischemia 
(206). HMGB1 then activates danger-associated molecular pattern 
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(DAMP) signaling, triggering microglial activation and 
proinflammatory cytokine release, thereby intensifying 
neuroinflammation and causing further disruption of the blood-brain 
barrier (205).

Metallothioneins (MTs) and the glutathione (GSH) system both 
modulate copper toxicity through their antioxidant properties 
following cerebral ischemia (207). MTs bind free copper via thiol 
groups, preventing copper ions from damaging other intracellular 
molecules, whereas GSH maintains redox homeostasis by binding 
copper ions (27). Under ischemic conditions, GSH is rapidly oxidized, 
reducing the GSH/GSSG ratio and weakening antioxidant capacity, 
rendering cells more vulnerable to the combined damage of 
copper and ROS (205). Additionally, copper overload inhibits the 
synthesis of iron–sulfur cluster proteins, further amplifying metabolic 
imbalance (208).

In ischemic stroke, autophagy can serve as a protective 
mechanism, clearing damaged mitochondria and proteins; yet 
excessive autophagic activation may hasten cell death (209). Copper 
modulates autophagy levels through the AMPK-mTOR axis and also 
directly binds to and activates autophagy-related kinases ULK1/
ULK2. In cerebral ischemia, copper-driven autophagy may not only 
counter cellular damage but also exacerbate neuronal loss by 
selectively degrading antiapoptotic or antioxidant factors such as 
GPX4 (205).

Copper regulation of inflammatory responses is closely 
interwoven with stroke pathogenesis (210). Studies suggest that 
copper-mediated redox reactions may escalate inflammatory 
responses by promoting proinflammatory cytokine release (210, 
211). In the setting of ischemia-reperfusion injury, copper 
accumulation may activate the NF-κB signaling pathway, 
intensifying inflammatory cascades (212). Moreover, disrupted 
copper metabolism can undermine extracellular matrix remodeling 
around blood vessels, triggering cerebrovascular dysfunction (213). 
For instance, copper enhances lysyl oxidase (LOX) activity, 
promoting collagen cross-linking and increasing vascular stiffness 
(214). This alteration compromises the integrity of the blood-brain 
barrier, creating a potential pathological foundation for vascular 
stroke (2).

Copper has dual roles in modulating excitotoxicity and neuronal 
death (215). By regulating N-methyl-D-aspartate receptor (NMDAR) 
activity, copper influences glutamate neurotoxicity (216). Under 
normal physiological conditions, copper released at the synapse 
suppresses NMDAR activity, thus exerting neuroprotective effects 
(216). However, in the presence of copper deficiency or ATP7A 
dysfunction, this regulatory mechanism falters, leading to NMDAR 
overactivation, calcium overload, and neuronal apoptosis (217, 218). 
In hemorrhagic stroke or following brain trauma, copper can 
accumulate directly in brain tissue, generating harmful hydroxyl 
radicals through the non-enzymatic Fenton reaction, which induces 
apoptosis or necrosis (219). Furthermore, copper can bind directly to 
key proteins (e.g., prion protein, Aβ, or tau), forming abnormal 
aggregates that magnify brain tissue injury in a vicious cycle (2).

Copper’s functions are not limited to the onset of brain injury but 
also extend to neurological recovery (220). Copper participates in the 
maturation of various neuropeptides, including neuropeptide Y and 
corticotropin-releasing hormone, both of which are vital for 
neuroprotection and modulating neuroinflammation after stroke 
(196, 199). Additionally, copper-dependent metalloproteins play 

regulatory roles in angiogenesis and neural regeneration, influencing 
the functional remodeling of brain tissue (2).

Clinically, modulating copper metabolism abnormalities shows 
therapeutic promise (221). Under copper deficiency, copper 
supplementation restores copper-dependent enzyme function and 
bolsters antioxidant defenses (196, 222). Conversely, when copper is 
elevated or abnormally localized, copper-chelating agents (e.g., 
penicillamine or trientine) alleviate oxidative stress and neurotoxicity by 
reducing copper load (2). The fine-tuned regulation of copper 
metabolism and distribution in the brain, via lipophilic metal-protein-
attenuating compounds (MPACs) that redistribute copper, might be a 
potential strategy for treating stroke and related neurodegenerative 
diseases (71, 223). This approach provides an avenue to intervene in 
copper metabolism and precisely modulate copper distribution to 
restore brain function and reduce pathological damage (2). Thus, 
targeted copper regulation provides new avenues for clinical therapy (71).

An animal study showed that in a mouse model treated with 
tetrathiomolybdate (TM), microvessel density (MVD) decreased 
by 50% (224). A case-control study indicated a nonlinear, L-shaped 
relationship between increased copper intake and reduced stroke 
risk: stroke risk gradually fell with greater copper intake before 
leveling off beyond a certain intake threshold (225). Other research 
has found that elevated plasma copper concentration is significantly 
associated with increased ischemic stroke risk (226). The same 
study also discovered a strong correlation between plasma copper 
levels and hyperlipidemia, a known risk factor for carotid 
atherosclerosis and ischemic stroke (227). A meta-analysis 
corroborated these findings: across eight high-quality studies, 
serum copper levels were significantly higher in patients with 
ischemic stroke than in controls (228).

An animal experiment showed that mice consuming trace 
amounts of copper (one-tenth the EPA’s upper limit) for 14 weeks 
had increased infarct volume and worse neurologic outcomes in a 
MCAO-induced ischemic brain injury model (229). This damage 
was closely tied to endothelial progenitor cell (EPC) dysfunction, 
as copper intake impaired EPC migration, tube formation, and 
adhesion, while markedly reducing phosphorylated eNOS and 
MnSOD levels, lowering nitric oxide (NO) production, and raising 
TSP-1 expression—ultimately inhibiting angiogenesis (230–232). 
Brain tissue analyses revealed that copper-exposure-induced EPC 
dysfunction led to significantly lower microvessel density in 
ischemic regions, hindering vascular growth factor (e.g., VEGF) 
secretion and endothelial repair mechanisms, and aggravating 
ischemic brain injury (229, 233, 234). These findings illuminate the 
core molecular and cellular processes by which trace copper intake 
exacerbates cerebral ischemic damage (229).

Copper plays a key role in immune responses in the central 
nervous system (CNS), primarily through its involvement in redox 
reactions and its regulation of immune system function (196). 
Copper not only participates in neurotransmitter synthesis, energy 
metabolism, and antioxidant defense but also directly influences 
immune responses (198). When copper metabolism is disrupted, 
either through excess copper or copper deficiency, it can trigger 
abnormal immune responses, thereby exacerbating neuronal 
damage, especially in neurodegenerative diseases such as ischemic 
stroke (200).

Firstly, the role of copper in the immune response within the 
nervous system is closely related to oxidative stress (2). Copper, 
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through its participation in redox reactions, helps maintain the 
redox balance within cells (2). For example, copper acts as a 
cofactor for antioxidant enzymes such as copper/zinc superoxide 
dismutase (Cu/Zn SOD), helping to clear reactive oxygen species 
(ROS) and thus mitigating oxidative damage (2). However, 
excessive copper accumulation leads to increased ROS generation, 
resulting in oxidative stress and cellular damage (196). This 
oxidative stress not only directly harms neurons but also activates 
immune cells in the CNS, particularly microglia, which play a 
critical role in neuroinflammation (227). Excess copper 
accumulation can stimulate microglial activation, prompting the 
release of more pro-inflammatory cytokines such as TNF-α and 
IL-1β, which further exacerbate local neuroinflammatory 
responses (235).

The mechanism by which copper excess activates immune cells 
through oxidative stress is especially important during stroke 
(196). Oxidative stress increases the accumulation of free radicals 
and activates signaling pathways such as MAPK and NF-κB, 
promoting the production of pro-inflammatory cytokines (196). In 
this process, copper exacerbates oxidative damage by enhancing 
ROS generation and promoting the overactivation of immune cells, 
further amplifying local inflammation (2). These interactions 
create a vicious cycle, where the continuously enhanced 
inflammatory response not only causes neuronal damage but also 
accelerates the development of neurodegenerative lesions (196).

In addition to oxidative stress, copper’s role in immune 
modulation within the nervous system is also crucial (2). During 
neuro-pathological conditions like stroke, copper homeostasis 
directly impacts immune cell function (205). Copper regulates the 
intensity of immune responses through interactions with immune-
modulatory factors such as metallothioneins (MTs) (2). When 
copper is deficient, the activation of microglia and immune 
responses is suppressed, leading to a weakened immune response 
and making the nervous system more vulnerable to damage (196). 
In contrast, excess copper enhances immune cell activation and 
pro-inflammatory cytokine release, thus promoting 
neuroinflammation and accelerating pathological 
progression (196).

Furthermore, the neuroimmune mechanisms related to stroke 
also involve copper’s relationship with atherosclerosis (227). Excess 
copper accumulation may promote lipid deposition in blood vessel 
walls through the oxidation of low-density lipoprotein (LDL), 
leading to the development of atherosclerosis (229). Copper 
exacerbates vascular damage through this mechanism and may 
also stimulate immune responses in the vascular endothelium, 
increasing local inflammation and thereby raising the risk of 
ischemic stroke (228).

Dysregulation of copper metabolism, especially copper excess, 
has been confirmed as a significant factor in the occurrence and 
progression of neurodegenerative diseases like stroke (235). Excess 
copper not only causes direct oxidative damage but also alters 
immune cell function, changing the neuroimmune response and 
further promoting inflammation within the nervous system (235). 
Moreover, maintaining copper homeostasis is crucial for normal 
immune function in the CNS, protecting neurons from damage, 
and promoting cerebrovascular repair (228). Disrupted copper 

metabolism may become a potential factor in the worsening of 
neurodegenerative diseases and cerebral ischemic injuries, 
suggesting that special attention should be given to copper balance 
in the treatment of stroke and other neuroimmune diseases (227). 
Proper copper intake and homeostasis are vital for stroke 
prevention, neuronal damage repair, and the normal regulation of 
immune responses (229).

Condensing content
Copper homeostasis is crucial for normal physiological 

functioning, playing pivotal roles in energy metabolism, 
antioxidant defense, and immune regulation, while also being 
intimately involved in the onset and progression of 
neurodegenerative diseases. The recent conceptualization of 
cuproptosis has elevated copper from its conventional classification 
as an “oxidative stress factor” and “enzyme cofactor” to a central 
determinant of cell fate. Existing studies indicate that in the central 
nervous system, copper can drive protein misfolding and 
aggregation to exacerbate neuronal injury, but it can also 
participate in the activation of antioxidant enzymes and repair 
factors to inhibit excessive cell death and inflammation, 
demonstrating a “double-edged sword” effect. As research into the 
pathological mechanisms of Alzheimer’s disease, Parkinson’s 
disease, amyotrophic lateral sclerosis, Huntington’s disease, and 
stroke intensifies, emerging causal connections between copper 
homeostasis and neuronal damage, protein aggregation, 
mitochondrial dysfunction, and immune-inflammatory processes 
provide new insights into critical disease pathogenesis and clinical 
intervention strategies (72, 119, 131, 157, 196). Nevertheless, the 
precise mechanisms and pathological significance of cuproptosis 
in neurodegenerative conditions require further investigation. 
First, copper dysregulation involves dynamic, multilayered 
regulation—encompassing transmembrane transport, chaperone-
mediated protein allocation, and redox coupling—leaving many 
key regulatory factors and interactions incompletely understood. 
Second, cuproptosis may intersect with ferroptosis, apoptosis, and 
autophagy, potentially synergizing to amplify damage, 
underscoring the importance of clarifying its predominant role at 
various disease stages for targeted therapy and prognostic 
assessment. Third, current evaluations of interventions such as 
copper chelators, metal-protein-attenuating compounds (MPACs), 
and gene therapy remain constrained by dosage windows, blood-
brain barrier permeability, and individual variability, necessitating 
large-scale clinical trials to confirm their safety and efficacy. Future 
research might focus on real-time, high-resolution molecular 
imaging and multi-omics platforms that monitor copper dynamics 
in the brain and its binding states with critical proteins, on 
systematically screening and optimizing cellular and animal 
models to identify drug targets and small-molecule compounds 
that can balance removal of excess copper or replenishment of 
copper deficiency without disrupting the overall metal equilibrium, 
and on leveraging gene editing and immune modulation to 
reconstruct copper homeostasis and inflammatory pathways in the 
neural microenvironment for personalized therapies. As our 
understanding of cuproptosis and the pathophysiology of the 
nervous system deepens, interventions centered on copper 
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homeostasis may pave the way for next-generation treatments of 
neurodegenerative diseases, offering novel possibilities for slowing 
disease progression and improving patient quality of life.
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