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Background: Effective connectivity (EC) refers to the directional influences or 
causal relationships between brain regions. In the field of artificial intelligence, 
machine learning has demonstrated remarkable proficiency in image recognition 
and the complex dataset analysis. In recent years, machine learning models 
leveraging EC have been increasingly used to classify neurodegenerative 
diseases and differentiate them from healthy controls. This review aims to 
comprehensively examine research employing EC—derived from techniques 
such as functional magnetic resonance imaging, electroencephalography, and 
magnetoencephalography—in conjunction with machine learning methods to 
classify neurodegenerative diseases.

Methods: We conducted a literature search in accordance with the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, 
collecting articles published prior to June 13, 2024, from the PubMed and 
Embase databases.

Results: We selected 16 relevant studies based on predefined inclusion criteria: 
six focused on Alzheimer’s disease (AD), six on mild cognitive impairment (MCI), 
one on Parkinson’s disease (PD), two on both AD and MCI, and one on both AD 
and PD. We summarized the methods for EC feature extraction and selection, 
the application of classifiers, validation techniques, and the accuracy of the 
classification models.

Conclusion: The integration of EC with machine learning techniques has 
demonstrated promising potential in the classification of neurodegenerative 
diseases. Studies have shown that combining EC with multimodal features 
such as functional connectivity offers novel approaches to enhancing the 
performance of classification models.
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1 Introduction

Neurodegenerative diseases are characterized by cognitive decline, 
severe motor disability, and dementia. These diseases include 
Parkinson’s disease (PD), Alzheimer’s disease (AD), Huntington’s 
disease, and amyotrophic lateral sclerosis (1). Furthermore, mild 
cognitive impairment (MCI), an antecedent to AD, is categorized into 
early MCI (EMCI) and late MCI (LMCI) (2). Recently, MCI has 
attracted considerable attention in clinical practice and research, 
owing to its progression to AD at an annual rate of approximately 
10–15% (3). The incidence of neurodegenerative diseases escalates 
with age, significantly impairing the quality of life and survival rates 
of the elderly (4). The causes of neurodegenerative diseases remain 
unclear, and current treatment options are limited. However, timely 
classification and diagnosis, followed by appropriate treatment, can 
significantly improve patients’ quality of life (5–8). Moreover, the 
current lack of methods for classifying and diagnosing 
neurodegenerative diseases complicates the identification and timely 
intervention of these conditions (9). Current approaches 
predominantly depend on clinical symptoms (10). For instance, in 
AD, the manifestation of dementia symptoms typically leads to 
confirmation through neuroimaging techniques and cerebrospinal 
fluid assessments, revealing neuronal loss, and abnormal accumulation 
of amyloid-β and tau proteins, and temporal lobe cortical atrophy (11, 
12). Similarly, the diagnosis of PD primarily involves an evaluation of 
the patient’s symptoms, medical history, physical examination, and 
response to dopamine therapy to differentiate it from other conditions 
and healthy individuals (13). Research indicates that identifying 
appropriate neural biomarkers is crucial for accurate disease 
identification (14). Employing neuroimaging techniques and 
electrophysiological biomarkers for disease classification can enhance 
treatment outcomes and slow disease progression (15).

Brain connectivity derived from imaging technologies 
elucidates the internal mechanisms of brain function, thereby 
expanding research avenues for the classification of 
neurodegenerative diseases (16, 17). Brain connectivity can 
be  categorized into functional connectivity (FC) and effective 
connectivity (EC), both of which can be  extracted through the 
analysis of functional magnetic resonance imaging (fMRI), 
electroencephalography (EEG), and magnetoencephalography 
(MEG) data. FC serves as a widely recognized physiological 
biomarker for diagnosing neurodegenerative diseases, illustrating 
the synchronous activity or correlation among different brain 
regions during resting or task states (18). It reflects the brain’s 
functional organization and network architecture by assessing 
inter-regional correlations, thereby unveiling connectivity 
alterations in specific brain regions associated with these diseases 
and facilitating the differentiation between healthy controls (HC) 
and those affected (19, 20). However, FC cannot provide 
information on directional interactions within brain networks, as 
correlations do not indicate any causal relationships or directionality 
between sites (21, 22). In contrast, EC reveals the causal effects and 
topological relationships of neural activities between different brain 
regions, offering valuable insights into the functional organization 
of the brain (23). Unlike FC, EC can identify lagged relationships 
between different brain areas, thus better elucidating the interaction 
mechanisms within the brain’s internal networks (24). Many 
neurodegenerative diseases may affect specific information 

transmission pathways in the brain at an early stage (25, 26). By 
analyzing changes in EC, it is possible to differentiate these diseases 
and develop classification models.

Machine learning is a technology that uses algorithms to learn 
from data and extract patterns to make predictions or decisions, 
while deep learning, a subset of machine learning, employs 
multilayer neural networks to model complex data and perform 
feature extraction (27, 28). Developing classification models based 
on brain EC using machine learning and deep learning techniques 
has become a cutting-edge approach for identifying and 
diagnosing neurodegenerative diseases. Extracted brain EC 
features can be used to train machine learning or deep learning 
models for the classification and diagnosis of neurodegenerative 
diseases. The models’ generalization capability and clinical 
application value are evaluated through cross-validation and 
validation with multicenter data. For example, Zhao et al. (29) 
developed a classification model using machine learning with EC 
features to distinguish AD from HC, while Qiao et  al. (30) 
employed deep learning with EC features for the same purpose. 
However, a comprehensive review of these studies is 
currently lacking.

Therefore, the primary objective of this review is to systematically 
examine and summarize recent advances in constructing 
neurodegenerative disease classification and diagnosis models based 
on brain EC. This review provides a comprehensive overview of the 
current research landscape, with a particular focus on the various 
methodologies and techniques employed in these models, such as the 
extraction and identification of brain EC features and the application 
of machine learning and deep learning techniques. Many studies have 
compared different EC estimation methods or proposed new 
approaches, while researchers have also explored various machine 
learning techniques to enhance classification accuracy. Consequently, 
this review emphasizes the estimation methods for EC and the 
selection of machine learning approaches, aiming to promote the 
clinical application of classification and diagnosis models based on 
brain EC and machine learning methods, ultimately offering new tools 
and strategies for the classification of neurodegenerative diseases.

2 Materials

2.1 Information sources

This review retrieved and screened literatures according to the 
Preferred Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) guidelines (31). PRISMA provides a standardized process 
for systematic reviews and meta-analyses, ensuring transparency and 
reproducibility in literature screening. This review gathered potentially 
relevant studies from two databases, including PubMed and Embase. 
After deleting the duplicate articles, two of the co-authors (YFW and 
YH) independently screened the articles based on the titles and 
abstracts for potential inclusion into this review. After reading the full 
text, articles agreed upon by both the authors were considered for the 
manuscript synthesis. In the event of a disagreement, a third 
researcher (FFH) will be invited to join the discussion and make the 
final determination. The steps of the screening, including literature 
exclusion reasons, were meticulously documented using a flow 
diagram (Figure 1).
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2.2 Search strategy

The literature retrieval terms were (“neurodegenerative disease” 
OR “Alzheimer’s disease” OR AD OR “Parkinson’s disease” OR PD OR 
“mild cognitive impairment” OR MCI OR “Huntington’s disease” OR 
HD OR “Amyotrophic Lateral Sclerosis” OR ALS) AND (“effective 
connectivity” OR “effective brain connectivity” OR “Granger 
causality” OR “autoregressive model” OR “partial directed coherence” 
OR PDC OR “direct transfer function” OR DTF OR “transfer entropy” 
OR TE OR “dynamic causal” OR DCM OR “structural equation” OR 
SEM OR “Ornstein-Uhlenbeck” OR OUM OR “Bayesian network” 
OR BNM) AND (“functional magnetic resonance imaging” OR fMRI 
OR electroencephalogram OR EEG OR magnetoencephalography OR 
MEG) AND (Classif* OR predict* OR diagnos* OR identif* OR 
distinguish* OR “machine learning” OR “deep learning” OR 
“multivariate pattern analysis” OR “support vector machine” OR SVM 
OR “convolutional neural network” OR CNN OR “graph neural 
network” OR GNN OR “graph convolutional network” OR GCN) 
AND (accuracy). Articles published up to June 13, 2024 were collected.

2.3 Inclusion and exclusion criteria

This review encompasses original, peer-reviewed articles that 
adhere to the following criteria: (1) The article must be written in 
English; (2) The study must be based on EC features and employ 
machine learning or deep learning techniques to construct 
classification models, enabling the differentiation between patients 
and HC as well as the distinction among various neurodegenerative 
diseases. Exclusion criteria include: studies that extract EC without 
performing classification; studies that do not utilize machine learning 
or deep learning for model construction; as well as reviews and 
case reports.

2.4 Data extraction

Two authors (YFW and YH) extracted data from the included 
studies using a standardized data extraction form. The extracted data 
included the first author, publication year, data type (fMRI, EEG, or 

FIGURE 1

PRISMA flow diagram of literature search.
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MEG), study features, EC estimation methods, classifiers, validation 
methods, classification groups, and model performance (accuracy). 
Any disagreements were resolved through discussion or by consulting 
another author (FFH).

3 Results

One hundred and fifty-seven articles were retrieved from PubMed 
and Embase, and 25 duplicates were discarded. After screening titles 
and abstracts, 105 irrelevant articles were excluded. Following a full-
text review, 12 additional articles were excluded, leaving 15 articles 
that met the inclusion criteria—Six papers focus on constructing 
classification models to distinguish AD from HC, five on 
differentiating MCI from HC, one on distinguishing PD from HC, two 
on distinguishing between AD, MCI, and HC, and one on 
differentiating AD, PD, and HC. Additionally, one more article on 
MCI was included by cross-referenced review, bringing the total to 
16 articles.

4 Extraction of EC features

4.1 Data preprocessing

The EC features were estimated using fMRI, EEG, or MEG data. 
It is essential to apply modality-specific preprocessing techniques. 
These methods must account for the physiological characteristics and 
noise patterns of different data types to extract high-quality time 
series signals.

4.1.1 Preprocessing of fMRI data
Twelve studies (29, 30, 32–41) included in this review employed 

fMRI data to estimate EC and exhibited a highly consistent 
preprocessing workflow encompassing the following key steps. First, 
the initial time points were discarded to mitigate magnetization 
effects. This was followed by slice timing and motion correction. For 
spatial normalization, data were registered to the Montreal 
Neurological Institute standard space. To enhance the signal-to-noise 
ratio, the majority of studies implemented spatial smoothing with a 
Gaussian kernel. Subsequently, linear regression was performed to 
remove confounding factors, including cerebrospinal fluid, white 
matter signals, and head motion parameters, while detrending was 
applied to suppress low-frequency drift. Finally, a band-pass filter was 
implemented to preserve the target frequency range. These analyses 
were primarily conducted using the Statistical Parametric Mapping 
(SPM) (42) and Data Processing Assistant for Resting-State fMRI 
(DPARSF) (43) toolboxes, with slight variations across studies in 
parameters such as smoothing kernel size and covariate selection.

4.1.2 Preprocessing of EEG data
Three studies (44–46) incorporated in this analysis employed EEG 

data, with preprocessing primarily focused on noise reduction and 
physiological artifact elimination. The protocol initiated with data 
import and format conversion, followed by verification of electrode 
positioning and channel labeling. Subsequent signal processing 
involved downsampling and bandpass filtering to attenuate 
low-frequency drift and high-frequency noise, complemented by 

notch filtering for interference suppression. Notably, Avvaru et al. (45) 
implemented a 0.5 Hz high-pass filter to mitigate low-frequency drift, 
while McBird et al. (44) employed notch filtering to remove eye blink 
frequencies. Spatial signal processing involved two critical procedures: 
bad channel interpolation and reference electrode reconfiguration. A 
representative approach was demonstrated by Cao et al. (46), who 
implemented 23 customized bipolar montages to effectively mitigate 
volume conduction effects in EEG signal analysis. This methodological 
refinement significantly enhanced spatial resolution while maintaining 
signal integrity.

4.1.3 Preprocessing of MEG data
One study (47) included in this research utilized MEG data. 

Similar to EEG, MEG data preprocessing aimed to ensure the accuracy 
of high-temporal-resolution signals while additionally mitigating 
environmental magnetic interference and head motion artifacts. For 
instance, Sami et al. (47) employed temporally extended signal space 
separation to eliminate environmental artifacts while simultaneously 
correcting for head displacement. Subsequently, band-pass and notch 
filtering were applied to remove noise from irrelevant frequency bands 
(a step analogous to EEG preprocessing). Furthermore, data 
segmentation, baseline correction, and the removal of physiological 
artifacts such as eye movements and cardiac activity were crucial for 
enhancing the reliability of subsequent connectivity analyses.

4.2 Extraction of EC features

EC reveals directed causal relationships between brain regions 
by analyzing the temporal dependencies of neural signals. As 
shown in Figure  2, an effective connectivity network (ECN) 
comprises nodes representing distinct brain regions interconnected 
by directed edges. These edges not only delineate structural 
connections but also quantitatively characterize both the 
directionality and strength of information flow between neural 
regions. This deepens our understanding of the brain’s dynamic 
information processing mechanisms and demonstrates significant 
potential in neuropsychiatric research. The directional connectivity 
features inherent in EC exhibit high specificity and sensitivity, 
making them promising biomarkers for early classification and 
diagnosis (48). Several studies have employed FC as a comparative 
model or integrated FC and EC into hybrid models to enhance 
classification performance (30, 35, 36, 38). As shown in Figure 2, 
the FC network also consists of two core elements: nodes and 
edges. The nodes correspond to relevant brain regions, while the 
edges quantify the strength of FC between brain regions using 
statistical methods such as Pearson correlation. Unlike directed EC, 
the undirected edges in FC networks reflect the symmetric nature 
of connections. FC primarily reflects the correlation of neural 
activity across regions, typically measured by the synchronization 
of blood-oxygen-level-dependent signals (49, 50). While FC 
effectively characterizes functional coordination patterns, it is 
inherently constrained in uncovering neural regulatory 
mechanisms due to its inability to infer causality from temporal 
co-activation alone (51).

Therefore, the accurate quantification of causal interactions 
between brain regions constitutes the central objective of this study. 
Figure  3 shows the number of studies for different EC extraction 
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methods. The EC extraction methods used in the 16 selected 
publications are shown in Tables 1, 2, which can be summarized into 
Granger causality analysis (GCA), transfer entropy (TE), deep 
learning–based causal inference, and other emerging techniques for 
EC estimation.

4.2.1 Granger causality analysis
Among the studies included in this research, eight articles (29, 30, 

34, 36, 38, 41, 46, 47) employed GCA to extract EC. In the field of 
neuroscience, GCA between brain regions is typically modeled using 
linear autoregressive models. Early studies primarily relied on 
bivariate autoregressive models to identify causal relationships in the 
time domain (52, 53), as calculated by Equation (1): 

 
( ) ( ) ( )=

= − + ε∑ 11
p

iiX t a X t i t

 
( ) ( ) ( ) ( )= =

= − + − + ε∑ ∑ 21 1
p p

i ji jX t a X t i b Y t j t
 

(1)

Let ( )X t denote the observed value of the time series at time t , 
where ia  represents the autoregressive coefficients that quantify the 
influence of past values ( )−X t i  on the current value ( )X t . The terms 
( )ε1 t  and ( )ε2 t  represent white noise error components, while p 

denotes the model order. For example, Li et  al. (41) employed the 
dynamicBC (54) toolbox to analyze fMRI data, utilizing its built-in 

FIGURE 2

Brain FC network (A) and brain EC network (B). (A) The functional connectivity network is represented as an undirected graph, where nodes 
correspond to brain regions, and edges reflect the statistical correlation between regional time series. (B) The effective connectivity network is 
depicted as a directed graph, capturing the direction and strength of information flow between brain regions.

FIGURE 3

Number of studies for different EC extraction methods. CCM, Convergent Cross-Mapping; FDCCM, Frequency-Domain Convergent Cross-Mapping; 
GCA, Granger Causality Analysis; gKF, Group Constrained Kalman Filter; TE, Transfer Entropy; UG-LASSO, Ultra-Group LASSO; UOLS, Ultra-Orthogonal 
Least Squares; UOFR, Ultra-Orthogonal Forward Regression.

https://doi.org/10.3389/fneur.2025.1581105
https://www.frontiersin.org/journals/neurology


Wang et al. 10.3389/fneur.2025.1581105

Frontiers in Neurology 06 frontiersin.org

TABLE 1 Studies of classification model for neurodegenerative diseases based on machine learning and brain effective connectivity.

Study Date Feature Classification 
model

Validation Classification 
situation

The best 
performing model

Model Accuracy 
(%)

Li et al. (36) fMRI ECs estimated by GCA using MVAR model SVM LOOCV MIC vs. HC 91.89

FCs estimated by PC 86.49

McBride et al. 

(44)

EEG ECs estimated by TE and represented by 

the mean temporal delays corresponding to 

peaks in inter-regional

SVM LOOCV AD vs. MIC vs. HC 91.7–93.8

Li et al. (37) fMRI ECN parameters estimated by UOLS and 

high-order ECN parameters estimated by 

UG-LASSO

DCT 10-fold CV MIC vs. HC 85.5

Khazaee et al. 

(39)

fMRI Whole-brain ECs estimated by Multivariate 

GCA and select directed graph measures as 

the original feature

NB 10-fold CV MIC vs. HC 93

Sami et al. (47) MEG ECs estimated by graph theory-based 

measures of local efficiency and used PDC 

between sensors

SVM LOOCV AD vs. HC 85

Guo et al. (33) fMRI ECN parameters estimated by BP_KFGC RBK_SVM Validation data AD vs. HC 95.89

Li et al. (38) fMRI Whole-brain ECs estimated by GCM MK-SVM LOOCV MIC vs. HC 72.44

Whole-brain FCs estimated by PC 77.95

Whole-brain ECs estimated by SR 81.1

PC and SR 85.83

PC and GCM 79.53

SR and GCM 82.68

MCPC 87.4

Wu et al. (34) fMRI dECs estimated by GCA and computed 

Sample Entropy of the clusters as the 

classification features

XGBoost, SVM, 

SVM Cluster, RF

LOOCV AD vs. HC SVM 89.8

Hu et al. (35) fMRI Whole-brain ECs estimated by RNN-GC SVM LOOCV AD vs. HC 78.72

Whole-brain FCs estimated by PC 68.09

sMRI Cortical measurements estimated by recon-

all function in Free Surfer

87.23

fMRI 

and 

sMRI

Whole-brain ECs and cortical 

measurements

91.49

Zhao et al. (29) fMRI dECs estimated by conditional GCA and 

Fused Lasso

SVM 10-fold CV AD vs. HC 86.24

ECs estimated by conditional GCA 80.71

dECs estimated by conditional GCA and 

sliding window

82.06

Avvaru and 

Parhi (45)

EEG ECN parameters estimated by FDCCM and 

CCM

NB, SVM, LDA, DT LOOCV PD vs. HC FDCCM-

NB

83.9

Wang et al. 

(32)

fMRI Whole-brain ECs estimated by GRU_GC RF, SVM 10-fold CV EMIC vs. HC RF 87.88

Whole-brain ECs estimated by LSTM_GC 62.73

Whole-brain ECs estimated by MVGC 61.52

AD, Alzheimer’s Disease; BP_KFGC, Back Propagation based Kernel Function Granger causality; CV, Cross-Validation; CCM, Convergent Cross-Mapping; DT, Decision Tree; dEC, Dynamic 
Effective Connectivity; EC, Effective Connectivity; ECN, Effective Connectivity Network; EEG, Electroencephalogram; EMCI, Early Mild Cognitive Impairment; FC, Functional Connectivity; 
FDCCM, Frequency-Domain Convergent Cross-Mapping; fMRI, Functional Magnetic Resonance Imaging; GCA, Granger Causality Analysis; GCM, Granger Causality Mapping; GRU-GC, 
Granger causality with Gate Recurrent Unit; HC, Health Control; LOOCV, Leave-One-Out Cross-Validation; LDA, Linear Discriminant Analysis; LSTM-GC, Long Short-Term Memory-based 
Granger Causality; MCPC, Multiple Connection Pattern Combination; MCI, Mild Cognitive Impairment; MEG, Magnetoencephalography; MK-SVM, Multi-kernel Support Vector Machine; 
MVGC, Multivariate Variables Granger Causality; NB, Naïve Bayes; PD, Parkinson’s disease; PC, Pearson’s correlation; PDC, Partial Directed Coherence; RF, Random Forest; RNN-GC, 
Recurrent Neural Networks Granger Causality; SVM, Support Vector Machine; SVM-Cluster, Support Vector Machine Cluster; sMRI; Structural Magnetic Resonance Imaging; TE, Transfer 
Entropy; UG-LASSO, Ultra-Group LASSO; UOLS, Ultra-Orthogonal Least Squares; XGBoost, eXtreme Gradient Boosting.
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Granger causality (GC) method to derive EC between brain regions. 
Similarly, Wu et al. (34) estimated whole-brain dynamic EC (dEC) using 
bivariate GCA within a sliding time window framework. Qiao et al. (30) 
also applied independent component analysis to extract independent 
components from fMRI data and constructed an EC matrix based on 
the GC index, which was used as a feature for classification.

However, this approach struggles to differentiate direct from 
indirect causal influences, often resulting in false positives (55). To 
address this limitation, researchers have developed multivariate Granger 
causality (MVGC) based on multivariate autoregressive (MVAR) models 
to infer causal relationships among multiple time series. For instance, 
Zhao et al. (29) applied the Fused Lasso method to identify change 
points in the connectivity time series, thereby segmenting distinct brain 
state phases. Within each phase, they employed conditional GC to infer 
directed dynamic brain networks and construct dEC matrices. Likewise, 
Li et al. (36) developed a sparse MVAR model based on GC principles 
to derive directional influence coefficient matrices from fMRI time 
series as indicators of EC. Moreover, Li et al. (38) utilized MVGC to 
evaluate EC between brain regions, employing the MVGC toolbox (56) 
to quantify causal influence strengths among regions of interests. MVGC 
methods not only mitigate the effects of indirect connections but also 
reduce external noise, improving the accuracy of EC estimation (56).

Additionally, extending GCA from the time domain to the 
frequency domain enables the detection of causal relationships across 
different frequency points or bands, allowing for a more precise 
characterization of interregional EC (57). Cao et al. (46) introduced a 
frequency-domain EC analysis method based on the MVAR model, 
where power spectral density represents network nodes. They 
integrated five directional connectivity measures to construct brain 
ECN, achieving superior performance in disease classification. 
Similarly, Sami et  al. (47) utilized MEG data to compute partial 
directed coherence-based brain networks and assessed EC using 
graph-theoretical local efficiency measures.

4.2.2 Transfer entropy
One study (44) included in this research employed TE to utilized 

EC. As a causality metric within the framework of information theory, 
TE reveals directed information transfer between brain regions by 
quantifying the extent to which the historical information of variable Y  
enhances the prediction of the future state of variable X  (58). Its core 
principle lies in evaluating the direction of information flow by 
computing differences in conditional entropy, mathematically defined 
by Equation (2):

 
( ) ( )

( )
− −

→ − −
−

= ∑
,

, , log
|

|
n n d n d

Y X n n d n d
n n d

p x x y
TE p x x y

p x x
 

(2)

where nx  represents the state of variable X  at time step n, −n dx  and 
−n dy  denote the historical states d  steps in the past, 

( )− −log ,|n n d n dp x x y  is the conditional probability given past 
information −n dx , −n dy . McBride et al. (44) utilized TE to evaluate EC 
among brain regions by extracting time-series signals from multichannel 
EEG data. They computed TE values to quantify the direction and 
strength of information flow and employed peak information 
transmission entropy delays to measure the temporal lag in interregional 
information transfer. By averaging peak delays across all channel pairs, 
they derived information transfer characteristics, thereby inferring EC.

4.2.3 Deep learning-based estimation of EC
With advances in deep learning, neural networks are increasingly 

employed for EC estimation. Among the studies included in this 
research, three articles (32, 33, 35) integrated neural networks for EC 
extraction. By integrating GC with neural networks, researchers can 
better model the brain’s complex causal relationships. Unlike 
traditional linear GC methods, neural networks effectively capture 
nonlinear dynamics and handle fMRI data nonstationarity, 
minimizing regression errors (59). For example, Guo et  al. (33) 
introduced the back propagation-based kernel function GC (BP_
KFGC) method, which combines fuzzy inference systems with kernel 
techniques to enable nonlinear GC analysis through multilayer 
mapping and hybrid training. Furthermore, neural networks provide 
greater flexibility in modeling causal relationships over different 
temporal scales, overcoming the limitations of fixed time lags (60). Hu 
et  al. (35) introduced a recurrent neural network-based GC 
(RNN-GC) estimation algorithm that utilizes long short-term 
memory (LSTM) to capture delays in brain signal propagation, 
constructing dynamic connectivity across whole-brain subnetworks. 
Wang et al. (32) introduced the gated recurrent unit–GC (GRU_GC) 
model, which employs GRU to capture dynamic patterns in time 
series data and constructs an EC matrix for classification purposes.

4.2.4 Other methods for estimating EC features
Recent advances in EC estimation are demonstrated through four 

(37, 40, 41, 45) innovative methodologies examined in this study. Li 
et al. (37) pioneered a novel framework integrating low-and high-
order ECN through ultra-group lasso (UG-Lasso) and ultra-
orthogonal least squares (UOLS) algorithms. The UG-Lasso, applied 
within sliding windows, robustly estimates stable low-order EC 
structures, while UOLS provides unbiased quantification of 
connection strengths. This dual approach enables the construction of 
high-order ECN whose topological features demonstrate superior 
performance in MCI classification. Building upon this work, Li et al. 
(40) initially proposed an ultra-group constrained structure detection 
algorithm to identify the parsimonious topology of the ECN, 
employing the ultra-orthogonal forward regression (UOFR) 
algorithm to construct ECN. Parallel developments in EEG-based EC 
analysis include Avvaru et  al.’s (45) innovative application of 
convergent cross mapping (CCM) and its frequency-domain 
extension (FDCCM). This model-free approach uniquely captures 
nonlinear spectral dynamics in electrophysiological data, revealing 
hidden causal relationships undetectable by traditional spectral 
measures. For fMRI data, Li et al. (41) introduced a group-constrained 
kalman filter (gKF) approach that eliminates spurious connections 
through sparse regularization while precisely tracking EC 
temporal evolution.

4.3 Representation of EC features

When employed as input features for machine learning and deep 
learning models, EC can be represented in various forms, including 
direct variable input, connectivity matrices, and graph-structured 
data. Among the 16 studies included in this systematic review, 
approximately 11 adopted the first form—representing EC features as 
direct variables. These studies (33–35, 37–41, 44, 45, 47) typically 
extracted key numerical indicators from EC analysis—such as GC 
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values, TE, information flow measures, or graph-theoretical metrics—
and used them as input variables for classification models. This 
method is computationally efficient and easy to implement, making it 
suitable for traditional machine learning algorithms; however, it may 
fail to preserve the spatial and topological structure inherent in the 
original ECN.

In contrast, four studies (29, 30, 32, 36) employed the second 
approach, representing EC in the form of connectivity matrices. This 
strategy retains the directional relationships between brain regions, 
yet remains limited in its ability to capture the dynamic characteristics 
of brain networks.

Only one study (46) explored the third approach, modeling 
EC as a directed graph and leveraging a graph neural network 
(GNN) for classification. This method preserves both the 
directionality and topological attributes of EC while enabling 
structural learning across the entire graph, thereby offering 
superior representational capacity.

5 Establishments of classification 
models

5.1 Machine learning models

Machine learning is a branch of artificial intelligence that enables 
computers to autonomously learn patterns from data (61). Rather than 
depending on explicitly programmed instructions, it discerns 
underlying structures in existing datasets to generate predictions or 
make informed decisions (62). Table 1 summarizes relevant studies on 
constructing classification models for neurodegenerative diseases 
using brain EC and machine learning methods.

5.1.1 AD vs. HC
Guo et  al. (33) developed a diagnosis model for AD using 

fMRI-EC and support vector machine (SVM). By leveraging the 
topological features of ECN, they achieved automatic classification of 
AD and HC with an accuracy of 95.89%. Wu et al. (34) employed 
fMRI-EC to classify AD and subsequently developed classification 
models using various machine learning techniques. Among them, 
SVM demonstrated the best performance, achieving an accuracy of 
89.83% through cross-validation. Hu et al. (35) employed structural 
MRI (sMRI) and resting-state fMRI (rs-fMRI) to diagnose AD. They 
extracted fMRI-EC, fMRI-FC, and sMRI-cortical measurements as 
classification features for a SVM, achieving accuracies of 78.72, 68.09, 
and 87.23%, respectively. Notably, when fMRI-EC and sMRI-cortical 
measurements were combined, the classification accuracy improved 
to 91.49%. Sami et al. (47) developed an AD diagnosis model based 
on MEG-EC and SVM, achieving a cross-validation accuracy of 85%. 
Wu et al. (34) utilized fMRI-EC to assess the performance of four 
classifiers: extreme gradient boosting, SVM clustering, random forest, 
and SVM. Among these, the SVM classifier achieved the highest 
classification accuracy of 89.83% when applied to the optimal subset 
of extracted features. Traditional static functional brain network 
studies often overlook the rich dynamic information in brain 
connectivity. Therefore, Zhao et al. (29) developed an AD diagnosis 
model using fMRI-dEC and applied a SVM for classification, 
achieving a cross-validation accuracy of 86.24%. This result marks an 
improvement of 4.18% over conventional dEC models utilizing the 

sliding window technique and a 5.53% increase compared to models 
using static EC as features.

5.1.2 MCI vs. HC
Li et  al. (36) developed a diagnosis model for MCI based on 

fMRI-EC, employing SVM as the classifier. The model achieved a 
cross-validation accuracy of 91.89%, representing a 5.4% improvement 
over previous methods based on fMRI-FC. Li et al. (37) first built 
low-order and high-order ECN based on fMRI data, calculated a 
series of network parameters as features, and used a decision tree to 
construct a classification prediction model for identifying MCI, with 
a cross-validation accuracy of 85.5%. Li et al. (37) introduced a novel 
multi-connectivity pattern combination (MCPC) approach, which 
integrates three key connectivity features: fMRI-FC, fMRI-EC, and 
sparse representation. This integrative approach significantly improves 
the classification accuracy in distinguishing MCI from 
HC. Experimental results indicate that, when utilizing a multi-kernel 
SVM classification model, the MCPC method achieves an accuracy of 
87.4%, outperforming any individual connectivity model. Wang et al. 
(32) developed an EMCI diagnosis model based on fMRI-EC and two 
machine learning methods, with random forest showing the best 
performance and a test set validation accuracy of 87.88%.

5.1.3 AD vs. MCI vs. HC
Khazaee et al. (39) employed graph metrics as the primary feature 

set for machine learning algorithms. By utilizing optimal features and 
a naïve bayes (NB) classifier based on fMRI-EC, they classified AD, 
MCI, and HC, achieving a cross-validation accuracy of 93.3%. 
McBride et al. (44) developed a diagnosis model for AD and MCI 
using EEG-EC and SVM, achieving cross-validation accuracy ranging 
from 91.7 to 93.8%, depending on the protocol conditions.

5.1.4 PD vs. HC
Avvaru et al. (45) initially constructed a brain ECN based on EEG 

data, using the network parameters as features to build a PD diagnosis 
model. The classifiers employed included SVM, linear discriminant 
analysis, NB, and DT, with NB demonstrating the best performance, 
achieving a test set validation accuracy of 83.9%.

5.2 Deep learning models

Deep learning is a subset of machine learning that involves 
constructing and training multi-layer neural networks to automatically 
extract features and patterns from large datasets (63). Unlike traditional 
machine learning, which relies on manual feature extraction and 
selection, deep learning reduces the need for human intervention by 
leveraging the capabilities of neural networks. Table 2 summarizes 
relevant studies that utilize brain EC and deep learning methods to 
construct classification models for neurodegenerative diseases.

5.2.1 AD vs. HC
Qiao et  al. (30) evaluated various deep learning and machine 

learning techniques to differentiate AD from HC. The research results 
indicate that models constructed using directed acyclic graph 
networks outperform other models. The classification model utilizing 
fMRI-EC features achieved a cross-validation accuracy of 88.24%, 
which further improved to 95.59% upon integrating fMRI-FC features.
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5.2.2 MCI vs. HC
Li et al. (40) extracted local efficiency and rich club coefficients 

from brain fMRI-ECN parameters and constructed a diagnosis model 
for MCI using several multilayer perceptron and machine learning 
methods. The proposed elastic multilayer perceptron classifier 
demonstrated superior performance, achieving a cross-validation 
accuracy of 80.82%. Li et al. (41) extracted global and local features 
from fMRI-dEC and high-order dECN. They then developed a multi-
class prediction model for EMCI, LMCI, and HC classifications using 
a channel-weighted graph attention network (cwGAT), achieving a 
cross-validation accuracy of 82.7%.

5.2.3 AD vs. PD vs. HC
Cao et al. (46) first extracted five types of EEG-EC as edges and 

calculated power spectral density as nodes to form graph data. They 
then proposed a directed structure learning GNN (DSL-GNN) 
method to construct a multi-class prediction model to distinguish AD, 
PD and HC. The results indicated that the model based on full-
frequency direct transfer function EC features performed best, 
achieving a cross-validation accuracy of 93.0%.

6 Discussion

This study presents a systematic review of advances in classification 
models for neurodegenerative diseases, with a particular focus on the 
integration of EC and machine learning techniques. An analysis of 16 
key studies reveals that EC, by elucidating directional and causal 
information flow between brain regions, offers potential advantages in 

identifying disease-specific network biomarkers. Currently, an 
increasing number of classification models based on EC features are 
being developed using machine learning and deep learning approaches.

The extraction of EC features is a critical component in 
constructing classification models that integrate EC with machine 
learning techniques. Current studies predominantly utilize GCA, with 
bivariate GCA widely adopted for its computational simplicity, despite 
notable limitations (64). To overcome these constraints, MVGC has 
gained prominence for its superior ability to model the brain’s 
nonlinear dynamic properties, thereby improving the accuracy of 
causal inference and broadening its applicability in classification tasks. 
Furthermore, advancements such as frequency-domain extensions of 
GCA and non-parametric approaches like TE have expanded the 
capacity to quantify nonlinear causal interactions. In recent years, 
researchers have introduced a range of innovative EC modeling 
methods, including UG-Lasso/UOLS-based network construction, 
UOFR constructs ECN by employing a parsimonious topological 
structure, FDCCM for nonlinear interaction analysis, and gKF for 
dynamic tracking. Notably, dEC captures temporal fluctuations in 
brain connectivity and provides novel insights into neural mechanisms. 
Models based on sliding window analysis, Fused Lasso for detecting 
state transitions, and deep learning architectures such as RNN-GC and 
GRU-GC outperform static EC models in classification accuracy, 
thereby enhancing our understanding of brain dynamics and 
contributing to more precise classification of neurodegenerative diseases.

In addition to the aforementioned approaches, widely adopted 
methods for estimating brain EC include structural equation modeling 
(SEM), dynamic causal modeling (DCM), and Bayesian network 
modeling (BNM). While these techniques have been extensively 

TABLE 2 Studies of diagnosis model for neurodegenerative diseases based on deep learning and brain effective connectivity.

Study Date Feature Classification 
model

Validation Classification 
situation

The best performing model

Model Accuracy (%)

Qiao et al. 

(30)

fMRI ECs estimated by GCA DAG, SVM, LDA, 

LeNet5, AE

LOOCV AD vs. HC DAG 88.24

ECs estimated by GCA 

and FCs estimated by 

3LHPM-ICA

95.59

Li et al. (40) fMRI ECN parameter LE and 

RCC estimated by 

UOFR and UG-LASSO

EMLP, MLP, L1-R 

MLP, L2-R MLP, 

KNN, RF

LOOCV MCI vs. HC EMLP 80.82

FCs estimated by PC 65.75

Li et al. (41) fMRI dECs estimated by 

gKF and High-order 

dECs network

VAT-CNN (Extract 

dEC 

features) + cwGAT

10-fold CV EMCIvs. HC 90.9

EMCIvs. LMCI 89.8

EMCI vs. LMCI vs. HC 82.7

Cao et al. 

(46)

EEG Whole-brain ECs 

estimated by PDC, 

GPDC, DTF, ffDTF, 

and GGC

DSL-GNN, SVM 5-fold CV AD vs. HC ffDTF+DSL-GNN 94

PD vs. HC ffDTF+DSL-GNN 94.2

AD vs. PD ffDTF+DSL-GNN 97.4

AD vs. PD vs. HC ffDTF+DSL-GNN 93

AD, Alzheimer’s Disease; AE, Autoencoder; CV, Cross-Validation; cwGAT, Connectivity Weight-Guided Graph Attention Networks; dEC, Dynamic Effective Connectivity; DAG, Directed 
Acyclic Graph; DSL-GNN Directed Structure Learning Graph Neural Networks; DTF, Directed Transfer Function; EC, Effective Connectivity; ECN, Effective Connectivity Network; EEG, 
Electroencephalogram; EMCI, Early Mild Cognitive Impairment; EMLP, Elastic Multi-Layer Perceptron; FC, Functional Connectivity; ffDTF, Full Frequency Direct Transfer Function; fMRI, 
Functional Magnetic Resonance Imaging; GCA, Granger Causality Analysis; GGC, Geweke-Granger Causality; gKF, Group Constrained Kalman Filter; GPDC, Generalized Partial Directed 
Coherence; HC, Health Control; KNN, K-Nearest Neighbor; LOOCV, Leave-One-Out Cross-Validation; LDA, Linear Discriminant Analysis; LASSO, Least Absolute Shrinkage and Selection 
Operator; LE, Local Efficiency; LMCI, Late Mild Cognitive Impairment; 3LHPM-ICA, Three-Level Hierarchical Partner Matching Independent Components Analysis; MCI, Mild Cognitive 
Impairment; MLP, Multi-Layer Perceptron; NB, Naïve Bayes; PD, Parkinson’s disease; PC, Pearson’s correlation; PDC, Partial Directed Coherence; SVM, Support Vector Machine; RCC, Rich 
Club Coefficients; UOFR, Ultra-Orthogonal Forward Regression; VAT-CNN, Virtual Adversarial Training Convolutional Neural Network.
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applied in the study of other psychiatric disorders, their application in 
neurodegenerative disease research remains limited (65). Future 
investigations should consider integrating these methods with machine 
learning or deep learning frameworks to construct more accurate and 
robust classification models for neurodegenerative diseases.

Although EC addresses the limitations of FC by elucidating the 
directional nature of inter-regional neural interactions and enabling 
causal inference, not all studies consider brain EC as the sole feature for 
constructing classification models of neurodegenerative diseases (66). 
Increasingly, research is adopting multimodal data fusion strategies that 
integrate EC with FC and clinical indicators to enhance model 
robustness and diagnostic accuracy. For instance, Hu et al. (35) improved 
the classification accuracy of AD from 78.72 to 91.49% by combining 
EC features extracted from fMRI with sMRI-based cortical thickness 
data. Moreover, several studies have demonstrated that combining EC 
and FC features further improves model performance, largely due to 
their inherent complementarity (30, 38, 67). Such fusion strategies 
enable the integration of multidimensional information—including 
static correlations and causal inferences—thereby overcoming the 
limitations of single-modality approaches. The MCPC method proposed 
by Li et al. (38) further supports this advantage, showing a significant 
boost in classification performance. Multimodal fusion not only 
capitalizes on the complementary nature of diverse indicators but also 
facilitates a more accurate characterization of the complex pathological 
features of neurodegenerative diseases. Additionally, combining 
traditional EC estimation methods with advanced machine learning or 
deep learning techniques presents a promising avenue for developing 
highly accurate and efficient diagnostic models.

In developing classification models for neurodegenerative diseases, 
both traditional machine learning and deep learning approaches offer 
unique advantages. Among traditional methods, SVM have 
consistently demonstrated superior performance due to their 
effectiveness in handling high-dimensional data (34). In contrast, deep 
learning techniques exhibit remarkable modeling capabilities through 
automated feature extraction. Graph-based deep learning approaches, 
such as GNN, are especially well-suited for inputs in the form of ECN 
graphs. Notable implementations include the DSL-GNN model 
incorporating node attributes and directed edge weights, which 
achieved 93% classification accuracy in distinguishing AD, PD, and 
HC. Similarly, the cwGAT network integrating dynamic connectivity 
with higher-order features attained 82.7% accuracy in classifying mild 
MCI subtypes (EMCI/LMCI/HC). Current research employing deep 
learning approaches in this domain remains relatively limited, 
indicating substantial potential for future exploration and advancement.

Current classification models for neurodegenerative diseases 
based on brain EC show promising results on specific datasets, yet 
their generalizability across diverse samples and clinical settings 
remains to be thoroughly validated. For the accuracy of classification 
models, while a classification accuracy of 90% may be considered an 
initial benchmark for certain clinical diagnoses, the development of 
neuroimaging-based classification models demands a more 
comprehensive evaluation. Beyond achieving high accuracy, it is 
crucial to assess sensitivity, specificity, and both positive and negative 
predictive values to ensure the model’s clinical applicability (68). 
Furthermore, accuracy alone does not substantiate model robustness, 
as factors such as data dependency, overfitting, and inherent biases 
may lead to inflated performance estimates. Therefore, a rigorous 
evaluation framework incorporating multiple performance metrics is 

essential to provide a more thorough assessment, ultimately enhancing 
the model’s reliability and clinical credibility (69). On the other hand, 
the selection of brain atlas significantly affects classifier generalizability, 
as EC varies with different atlas levels (70). Khazaee et  al. (39) 
compared the performance of the automated anatomical atlas and the 
264 putative functional areas atlas for graph node classification, with 
the latter showing superior classification performance.

Most of the fMRI data employed in this study were derived from 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 
(29, 32–35, 38–41). Although ADNI provides a valuable resource for 
studying disease mechanisms and training predictive models, its 
reliance on a single data source may constrain the generalizability of 
the models across diverse populations and clinical settings. 
Consequently, future research should emphasize the inclusion of 
multicenter, heterogeneous datasets for external validation and assess 
model feasibility in real-world clinical environments to enhance 
generalizability and practical relevance.

Future investigations should consider the following directions: 
(1) increasing the sample size to enhance model robustness and 
generalization; (2) advancing brain network modeling and feature 
extraction methods, with a focus on multi-scale strategies for dEC; 
and (3) developing integrated models that leverage state-of-the-art 
machine learning and deep learning techniques to enable more 
accurate and personalized classification and diagnosis. These efforts 
will provide a stronger theoretical basis and technical support for the 
precise identification and intervention of neurodegenerative diseases.

7 Conclusion

This study presents a comprehensive review of recent advances in 
the application of brain EC and machine learning techniques for 
classifying neurodegenerative diseases. EC, as a key metric for 
capturing causal interactions between brain regions, has shown 
promising advantages when utilized as discriminative features in 
classification model construction. The EC estimation methods adopted 
in the reviewed studies, along with their practical applications in 
classification models, are systematically summarized. Future research 
should prioritize expanding sample sizes to improve model robustness 
and generalizability, enhancing brain network modeling and feature 
extraction through multimodal data integration, and developing more 
efficient ensemble learning frameworks to enable more accurate and 
individualized diagnostic classification of neurodegenerative disorders.
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Glossary

AD - Alzheimer’s disease

BNM - Bayesian network modeling

BP_KFGC - Back propagation-based kernel function Granger causality

CCM - Convergent cross-mapping

CNN - Convolutional neural network

DCM - Dynamic causal modeling

dEC - Dynamic effective connectivity

DSL-GNN - Directed structure learning graph neural network

EEG - Electroencephalography

EC - Effective connectivity

ECN - Effective connectivity network

EMCI - Early mild cognitive impairment

fMRI - Functional magnetic resonance imaging

FC - Functional connectivity

FDCCM - Frequency-domain convergent cross-mapping

GCA - Granger causality analysis

GC - Granger causality

GCN - Graph convolutional network

gKF - Group-constrained Kalman filter

GRU-GC - Gated recurrent unit Granger causality

HC - Healthy control

HD - Huntington’s disease

LMCI - Late mild cognitive impairment

LSTM - Long short-term memory

MCPC - Multiple connection pattern combination

MEG - Magnetoencephalography

MCI - Mild cognitive impairment

MVAR - Multivariate autoregressive model

MVGC - Multivariate Granger causality

NB - Naïve Bayes

PD - Parkinson’s disease

PRISMA - Preferred reporting items for systematic reviews and 
meta-analyses

RNN-GC - Recurrent neural network Granger causality

SEM - Structural equation modeling

sMRI - Structural magnetic resonance imaging

SVM - Support vector machine

TE - Transfer entropy

UG-LASSO - Ultra-group least absolute shrinkage and 
selection operator

UOFR - Ultra-orthogonal forward regression

UOLS - Ultra-orthogonal least squares
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