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Background: Traumatic brain injury (TBI) is one of the most common and complex 
neurological conditions. Many TBI patients require ongoing rehabilitation 
beyond acute care, making treatment and discharge decisions critical. While 
individual risk factors for TBI outcomes are known, integrating comprehensive 
electronic health record (EHR) data into practical, validated prediction tools for 
personalized discharge planning and readmission risk assessment remains a 
key challenge. EHRs offer a valuable resource by integrating sociodemographic 
information, clinical care details, and prior healthcare encounters, providing an 
opportunity to develop models that predict key outcomes for TBI patients, such 
as discharge disposition and 30-day readmission.

Methods: This retrospective cohort study utilized EHRs from a large multi-
hospital health system (2017–2023) to develop and validate statistical models 
predicting discharge disposition and 30-day readmission among hospitalized 
TBI patients, and to translate these models into an accessible clinical prediction 
tool. Descriptive statistics were calculated to summarize patient characteristics. 
Multinomial logistic regression was used to model discharge disposition, and 
logistic regression was used for 30-day readmission. Forward stepwise regression 
based on the Akaike information criterion was used for variable selection. Cross-
validation using the area under the receiver operating characteristic evaluated 
predictive performance.

Results: Several factors were significantly associated with both outcomes. Older 
age was positively associated with discharge to Inpatient Rehabilitation Facility/
Skilled Nursing Facility or Hospice/Died versus Home (p < 0.001), and with 30-
day readmission (p = 0.002). Ethnicity, significant other status, insurance, prior 
inpatient stays, length of stay, as well as Glasgow Coma Scale, activities of daily 
living, and mobility were all significantly associated with discharge disposition 
(p < 0.001). Prior mental health diagnosis (p = 0.062), prior inpatient stays 
(p < 0.001), and intensive care unit admission (p = 0.002) were associated with 
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higher odds of 30-day readmission, while Commercial insurance was associated 
with lower odds compared to Medicare (p = 0.024). A prediction tool is available.

Conclusion: We developed and validated predictive models using EHR data, 
culminating in a practical tool that may enhance the management of patients 
hospitalized with TBI by supporting personalized discharge planning and risk 
stratification.

KEYWORDS

discharge planning, electronic health record, predictive modeling, readmission, 
rehabilitation, traumatic brain injury

1 Introduction

Traumatic brain injury (TBI) is a prevalent neurological disorder 
associated with significant individual costs and a substantial societal 
burden worldwide (1). Recovery from TBI typically requires 
substantial time and resources, highlighting the importance of 
effective treatment planning to improve long-term outcomes and 
reduce complications. Given the finite availability of therapy staff and 
rehabilitation services (2), efficient resource allocation is essential. 
Predictive tools can help identify patients who may benefit from 
specific services, thereby supporting more targeted and patient-
centered care. For example, identifying patients who are likely to 
require post-acute care in an inpatient rehabilitation facility (IRF) or 
skilled nursing facility (SNF) can facilitate early involvement of 
rehabilitation specialists, multidisciplinary care planning, and 
proactive communication with patients and families (3–5). Similarly, 
identifying patients with elevated risk of 30-day readmission can 
prompt targeted interventions such as medication reconciliation, 
focused education on warning signs, and timely post-discharge 
follow-up (6). Optimizing resource allocation, ensuring appropriate 
discharge disposition, and preventing readmissions all highlight the 
need for personalized treatment tailored to each patient’s prognostic 
profile. Historically, however, the ability to personalize patient care has 
been viewed as a luxury, often unattainable for resource-constrained 
acute care facilities (7).

Existing studies have explored predicting discharge disposition 
(8–11), 30-day readmission (12–15), and other outcomes, such as 
mortality and functional outcomes (16–20), among TBI patients. 
Nevertheless, a unique aspect of this study is its use of electronic 
health records (EHRs), a valuable resource for personalizing patient 
care. The widespread adoption of EHRs is a relatively recent 
development. In 2004, the United States government set a goal for all 
Americans to have an EHR by 2014 (21). However, it was not until the 
American Recovery and Reinvestment Act of 2009, which incentivized 
the adoption of EHRs, that many healthcare providers actively 
pursued the transition to EHR systems (22). Despite the widespread 
adoption of EHRs, they are sometimes perceived as a burden, 
diverting clinicians’ time and attention away from direct patient care 
(23). While various studies have focused on the challenges of EHRs, 
the unprecedented opportunities to leverage real-world clinical data 
to improve patient care are increasingly being recognized (24, 25). 
Still, translating the vast repository of real-world clinical data into 
reliable, interpretable, and actionable insights for specific conditions 
like TBI presents ongoing challenges. This study contributes to that 
effort by leveraging EHRs that contain a wealth of information on 
patient demographics, clinical care details, and medical history that 

influence recovery after TBI. Navigating these complex datasets and 
extracting meaningful insights necessitate advanced analytical 
techniques that can be translated into user-friendly tools.

Statistical predictive modeling is a powerful approach for 
analyzing complex healthcare data, identifying patterns and 
relationships that are not readily apparent to care providers, and 
creating personalized predictions of patient outcomes (26). These 
insights can inform clinical decision-making, such as treatment 
strategies and discharge planning, and help reduce readmission rates.

We aim to develop and validate statistical models using a 
comprehensive set of EHR-derived variables to predict two key patient 
outcomes following TBI hospitalization: discharge disposition and 
30-day readmission. The goal is not only to identify significant 
predictors but also to transform these complex EHR data into an 
accessible prediction tool for clinicians, thereby demonstrating a 
practical pathway to support personalized treatment and discharge 
planning, optimizing resource allocation, and ultimately enhancing 
patient outcomes during and after acute care. The prediction tool can 
be accessed at https://tjzhou.shinyapps.io/INREACHapp/.

2 Materials and methods

2.1 Study design and setting

This retrospective cohort study analyzed data extracted from 
deidentified EHRs from a large multi-hospital health system. The 
study period encompassed records from 2017 to 2023. Data were 
obtained with support from Health Data Compass, an enterprise 
health data warehouse, and the study was approved by the Colorado 
Multiple Institutional Review Board and the Colorado State University 
Institutional Review Board.

2.2 Study population

Adult patients (18 years or older) hospitalized with a primary 
diagnosis of TBI were considered for inclusion. TBI diagnoses were 
identified using the International Classification of Diseases, Tenth 
Revision (ICD-10) codes.

2.3 Data collection and preprocessing

Data were extracted from the EHR system, including patient 
demographics, medical histories, treatment details, and outcomes. The 
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initial dataset of 11,137 patients was cleaned and coded, resulting in a 
final analytical cohort of 6,275 patients (Figure 1). A total of 4,862 
patients were excluded because they had missing data for at least one 
of the following continuous variables: median income for zip code 
(n = 213), Glasgow coma scale (GCS, n = 465), activities of daily living 
(ADL, n = 3,921), and mobility (n = 2,218). Some patients had more 
than one missing variable. Missing data for categorical variables were 
handled by creating a separate “Missing” category.

2.4 Predictor variables

A comprehensive set of predictor variables was considered, 
including:

 • Sociodemographic factors: Age, race, ethnicity, sex, significant 
other status, median income for zip code, percentage above high 
school education for zip code, and percentage above bachelor’s 
education for zip code.

 • Substance use: Tobacco, alcohol, and drug use.
 • Health and functional status: Glascow Coma Scale (GCS), a 

clinical tool used to assess a patient’s level of consciousness by 
evaluating verbal, eye, and motor responses (27, 28). The GCS 
score ranges from 3 to 15, with higher scores indicating higher 
levels of responsiveness. Activities of daily living (ADL), 
measured using the Activity Measure for Post-Acute Care 
(AM-PAC) “6-Clicks” tool, an electronically administered 
questionnaire (29, 30). The ADL score evaluates self-care abilities 
and ranges from 6 to 24, with higher scores indicating greater 
self-care independence. Mobility, also measured using the 
AM-PAC “6-Clicks.” The mobility score evaluates a patient’s 
ability to perform mobility tasks and ranges from 6 to 24, with 
higher scores reflecting greater mobility function. During a 
patient’s stay, multiple measurements of GCS, ADL, and mobility 
were taken, and the minimum and maximum scores recorded 
from assessments conducted throughout their acute care 
hospitalization were used. This approach captures the observed 
range of a patient’s neurological and functional status during 
their admission, rather than relying on a single time-point (e.g., 
initial emergency department GCS) assessment, to inform 

predictions related to discharge planning and 30-day readmission 
risk from the perspective of the entire hospital course.

 • Hospital encounter information: Total length of stay, emergency 
department (ED) visits, and intensive care unit (ICU) admission.

 • Insurance and payment information: Insurance type (Medicare, 
Medicaid, Commercial, and Self-pay/Other).

 • Prior medical history: Prior mental health diagnosis and 
inpatient stays.

2.5 Outcome variables

The primary outcome variables of interest were:

 • Discharge disposition: Categorized as Home, IRF/SNF, Hospice/
Died, and Other.

 • 30-day readmission: Defined as any unplanned hospital 
readmission within 30 days of the initial discharge date for TBI.

2.6 Statistical analysis

Descriptive statistics, including frequencies for categorical 
variables and means with standard deviations for continuous variables, 
were calculated to summarize patient characteristics. Multinomial 
logistic regression was used to model discharge disposition (a 
categorical variable), with the reference category for the outcome 
variable set to “Home” (31). Logistic regression was used to model 
30-day readmission (a binary variable) (31). Forward stepwise 
regression based on the Akaike information criterion (AIC) was 
employed for variable selection and to identify important predictors 
for each outcome, with a maximum of 10 predictors included in each 
final model for ease of interpretation and model parsimony (32–34). 
A reasonable reference category was selected for each categorical 
predictor. Likelihood ratio tests were used to calculate p-values from 
multiple regression models that included all important predictors 
identified through stepwise selection. Statistical significance was 
determined using a p-value threshold of 0.05. Additionally, p-values 
from individual simple regression models with one predictor at a time 
(marginal p-values) were also calculated and reported. This approach 

FIGURE 1

Cohort selection diagram. (i) There can be overlapping missing data (e.g., both GCS and ADL can be missing for the same patient); (ii) when GCS, ADL, 
and mobility are missing, it is always the case that both the minimum and maximum scores are missing.
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captures both the conditional effect, the significance of a predictor 
after controlling for the other important predictors, and the marginal 
effect, which reflects a predictor’s significance when considered 
independently from the other predictors. The p-values are intended 
for descriptive purposes, with the understanding that their 
interpretation is complicated by post-selection inference (35) and 
multiple testing (36).

The area under the receiver operating characteristic curve (AUC) 
was used to evaluate the predictive performance of forward stepwise 
logistic regression (37). When the outcome variable has more than 2 
classes (discharge disposition), the multiclass AUC was applied (38). 
To better capture out-of-sample predictive performance, 5-fold cross-
validation was performed (39). Other candidate models and variable 
selection methods, including random forest (40), the least absolute 
shrinkage and selection operator (LASSO) (41), support vector 
machine (SVM) (42), and the full logistic regression model without 
variable selection, were compared based on cross-validated AUC 
values. Note that random forest, LASSO, and SVM do not provide 
straightforward quantification of predictor significance through 
p-values.

The R statistical software was used to fit the models to the data 
(43). The multinomial logistic regression model was fitted using the 
multinom function from the nnet package (44). Logistic regression 
was performed with the glm function in base R. Forward stepwise 
regression, based on the AIC, was conducted using the step function 
in base R. AUC values were calculated with the pROC package (45). 
The random forest model was fitted with the randomForest package 
(46), while the LASSO method was implemented using the glmnet 
package (47). The SVM method was implemented using the svm 
function from the e1071 package (48). The shiny package was used to 
create an R Shiny app that predicts a patient’s discharge disposition 
and chance of 30-day readmission (49).

3 Results

3.1 Study population characteristics

The study cohort comprised 6,275 adult patients hospitalized for 
TBI. Descriptive statistics are provided in Tables 1, 2. The mean age 
was 60.74 years (SD = 20.82), and 60.41% of the patients were male. 
The racial distribution of the cohort was as follows: 78.47% White, 
5.40% Black, 1.91% Asian, 0.76% Native American, 0.29% Pacific 
Islander, 0.62% Multiple Race, and 12.54% Missing. The ethnic 
distribution of the cohort was: 84.62% Non-Hispanic, 14.15% 
Hispanic, and 1.23% Missing. The distribution of insurance types was: 
49.72% Medicare, 20.13% Medicaid, 20.41% Commercial, and 9.74% 
Self-pay/Other. Prior mental health conditions were present in 10.61% 
of the cohort, and 16.03% of the cohort had prior inpatient stays. The 
average length of stay was 11.48 days (SD = 18.51), and 55.90% of 
patients required an ICU admission. 67.73% of patients had an ED 
visit, 7.01% did not have an ED visit, and for the remaining 25.26%, 
their ED visit status was missing. The cohort’s mean minimum and 
maximum GCS scores during their stays were 11.87 (SD = 4.14) and 
14.83 (SD = 0.68), respectively. The mean minimum and maximum 
ADL scores were 15.24 (SD = 5.31) and 17.55 (SD = 4.78), while the 
mean minimum and maximum mobility scores were 13.94 (SD = 5.48) 

and 18.34 (SD = 4.75). The distribution of discharge disposition of the 
cohort was: 50.57% Home, 38.74% IRF/SNF, 3.68% Hospice/Died, and 
7.01% Other. Lastly, 8.61% of the patients had unplanned 
30-day readmission.

3.2 Discharge disposition model

Multinomial logistic regression was used to model discharge 
disposition, with “Home” set as the reference category for the outcome 
variable. Forward stepwise regression was employed to identify 10 
predictors that were most predictive of discharge disposition. Table 3 
shows the full model output with regression coefficients, p-values, and 
marginal p-values. Older age, prior inpatient stays, and longer length 
of stay were all significantly associated with a greater likelihood of 
discharge to IRF/SNF, Hospice/Died, or Other compared to Home (all 
p < 0.001). Being Hispanic, having a significant other, having Medicaid 
or Commercial insurance rather than Medicare, higher minimum 
GCS scores, higher maximum ADL scores, and higher minimum/
maximum mobility scores were significantly associated with a greater 
likelihood of being discharged Home compared to all other categories 
(all p < 0.001). Higher maximum GCS score was linked to a lower 
likelihood of discharge to Hospice/Died and Other compared to 
Home, but a greater likelihood to IRF/SNF (p < 0.001). Higher 
minimum ADL score was linked to a lower likelihood of discharge to 
IRF/SNF and Other compared to Home, but a greater likelihood to 
Hospice/Died (p < 0.001). The difference in discharge disposition 
between patients with and without an ED visit was not significant 
when controlling for the above predictors (p = 0.211). However, ED 
visit was selected by forward regression, driven primarily by the 
“Missing” category (p = 0.003).

3.3 30-day readmission model

Logistic regression was used to model 30-day readmission, with 
forward stepwise regression identifying 7 predictors that were most 
predictive of the outcome variable. The full model results, including 
regression coefficients, p-values, and marginal p-values, can be found 
in Table 4. Older age (p = 0.002) and prior inpatient stays (p < 0.001) 
were significantly associated with higher odds of readmission. 
Commercial insurance was associated with lower odds of readmission 
compared to Medicare (p = 0.024), while the difference between 
Medicaid and Medicare was not significant (p = 0.963). Prior mental 
health diagnosis, being marginally significant in the multiple 
regression model (p = 0.062), was associated with higher odds of 
readmission. ICU admission, significant only in the multiple 
regression model (p = 0.002), was also associated with higher odds of 
readmission. The difference in 30-day readmission between patients 
with and without a significant other (p = 0.716) and with and without 
alcohol use (p = 0.571) was not significant when controlling for the 
other predictors included in the model. However, significant other 
status and alcohol use were selected by forward regression, driven 
primarily by the “Missing” category (p < 0.001 and p = 0.006, 
respectively).
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3.4 Model evaluation

The AUC was used as the performance metric to assess the 
predictive performance of the forward stepwise logistic regression 
model (37, 38). The AUC quantifies the model’s ability to distinguish 
between outcome categories by integrating sensitivity and specificity, 
providing a summary of performance across all classification 
thresholds. This makes the AUC particularly useful for applications 
involving imbalanced outcomes, as in this study. The AUC ranges 
from 0.5 to 1, with higher values indicating stronger discriminatory 
power. To obtain a robust estimate of out-of-sample performance, 
5-fold cross-validation was employed. The data were randomly 
partitioned into five subsets, with the model trained on four subsets 
and tested on the remaining one. This process was repeated five times, 
with each subset serving as the test set once, and the average AUC 
value was taken.

For comparison, additional candidate models and variable 
selection methods were considered, including random forest, LASSO, 
SVM, and the full logistic regression model without variable selection. 
These models were selected to represent a range of approaches varying 
in complexity and interpretability. Their performance was compared 
to the stepwise logistic regression model.

TABLE 1 (Continued)

Outcome variables

Discharge disposition Home 3,173 (50.57%)

IRF/SNF 2,431 (38.74%)

Hospice/Died 231 (3.68%)

Other 440 (7.01%)

30-day readmission No 5,735 (91.39%)

Yes 540 (8.61%)

TABLE 2 Descriptive statistics of continuous variables for the study 
population (n = 6,275).

Variable Range Mean (SD)

Sociodemographic factors

Age 18—103 Years 60.74 (20.82)

Median income for zip 11,000—203,000 USD 69028.23 (22493.28)

% High school for zip 4.80—93.40% 33.27 (12.20)

% Bachelor’s for zip 0.30—88.40% 9.58 (5.44)

Health and functional status

Glasgow Coma Scale (Min) 3—15 11.87 (4.14)

Glasgow Coma Scale (Max) 4—15 14.83 (0.68)

Activities of daily living (Min) 6—24 15.24 (5.31)

Activities of daily living (Max) 6—24 17.55 (4.78)

Mobility (Min) 6—24 13.94 (5.48)

Mobility (Max) 6—24 18.34 (4.75)

Hospital encounter information

Total length of stay 0—413 Days 11.48 (18.51)

TABLE 1 Descriptive statistics of discrete variables for the study 
population (n = 6,275).

Variable Category Frequency (%)

Sociodemographic factors

Sex Male 3,791 (60.41%)

Female 2,484 (39.59%)

Race White 4,924 (78.47%)

Black 339 (5.40%)

Asian 120 (1.91%)

Native American 48 (0.76%)

Pacific Islander 18 (0.29%)

Multiple Race 39 (0.62%)

Missing 787 (12.54%)

Ethnicity Non-Hispanic 5,310 (84.62%)

Hispanic 888 (14.15%)

Missing 77 (1.23%)

Significant other No 3,146 (50.14%)

Yes 2,615 (41.67%)

Missing 514 (8.19%)

Substance use

Tobacco No 4,036 (64.32%)

Yes 1854 (29.55%)

Missing 385 (6.14%)

Alcohol No 2,426 (38.66%)

Yes 3,422 (54.53%)

Missing 427 (6.80%)

Drug No 4,360 (69.48%)

Yes 1,403 (22.36%)

Missing 512 (8.16%)

Hospital encounter information

ED visit No 440 (7.01%)

Yes 4,250 (67.73%)

Missing 1,585 (25.26%)

ICU admission No 2,767 (44.10%)

Yes 3,508 (55.90%)

Insurance and payment information

Insurance Medicare 3,120 (49.72%)

Medicaid 1,263 (20.13%)

Commercial 1,281 (20.41%)

Self-pay/Other 611 (9.74%)

Prior medical history

Prior mental health 

diagnosis

No 5,609 (89.39%)

Yes 666 (10.61%)

Prior inpatient stays No 5,269 (83.97%)

Yes 1,006 (16.03%)

(Continued)
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The cross-validated AUC values for each model are presented in 
Table  5. For discharge disposition, the forward stepwise logistic 
regression model achieved an AUC of 0.773, comparable to the AUC 
of 0.779 for random forest, 0.770 for LASSO, and 0.772 for the full 
model. SVM yielded a slightly lower AUC of 0.759. For 30-day 
readmission, the forward stepwise logistic regression model achieved 
an AUC of 0.656, comparable to LASSO (AUC = 0.655) and 
outperforming random forest (AUC = 0.609), SVM (AUC = 0.546), 
and the full model (AUC = 0.638).

Based on these results, the forward stepwise logistic regression 
model demonstrated good predictive performance for both discharge 
disposition and 30-day readmission, comparable to or better than the 
alternative models considered. Given its competitive performance, 

straightforward variable selection, and the added benefit of providing 
interpretable regression coefficients and p-values, forward stepwise 
logistic regression was selected as the primary modeling approach for 
this study.

3.5 Prediction tool

An R Shiny app was developed to provide an interactive interface 
for these predictive models. The app allows clinicians to input a 
patient’s values for the identified predictors and subsequently receive 
estimated probabilities for different discharge dispositions and the 
likelihood of 30-day readmission. This tool aims to support clinical 

TABLE 3 Multinomial logistic regression results for discharge disposition.

Predictor IRF/SNF Hospice/Died Other p-value Marginal p-value

Intercept 2.531 5.406 8.717

Age 0.018 0.054 0.007 < 0.001 < 0.001

Ethnicity < 0.001 < 0.001

 Non-Hispanic . . .

 Hispanic −0.469 −0.623 −0.694 < 0.001 < 0.001

 Missing 0.145 1.146 0.755 0.129 0.020

Significant other < 0.001 < 0.001

 No . . .

 Yes −0.399 −0.229 −0.217 < 0.001 0.008

 Missing −0.180 0.691 −0.132 0.004 < 0.001

Insurance < 0.001 < 0.001

 Medicare . . .

 Medicaid −0.953 −0.695 −0.208 < 0.001 < 0.001

 Commercial −0.524 −0.942 −0.159 < 0.001 < 0.001

 Self-pay/Other −0.742 −0.729 0.048 < 0.001 < 0.001

Glasgow Coma Scale < 0.001 < 0.001

 Min −0.024 −0.197 −0.137 < 0.001 < 0.001

 Max 0.277 −0.096 −0.140 < 0.001 < 0.001

Activities of daily living < 0.001 < 0.001

 Min −0.051 0.036 −0.008 < 0.001 < 0.001

 Max −0.135 −0.304 −0.211 < 0.001 < 0.001

Mobility < 0.001 < 0.001

 Min −0.087 −0.125 −0.001 < 0.001 < 0.001

 Max −0.150 −0.139 −0.186 < 0.001 < 0.001

Prior inpatient stays < 0.001 < 0.001

 No . . .

 Yes 0.087 0.845 0.114 < 0.001 < 0.001

ED visit 0.006 < 0.001

 No . . .

 Yes −0.057 0.481 −0.181 0.211 0.007

 Missing −0.190 0.624 −0.597 0.003 < 0.001

Length of stay 0.021 0.025 0.023 < 0.001 < 0.001

The “Home” discharge setting is chosen as the reference category for the outcome variable, with the other categories, “IRF/SNF,” “Hospice/Died,” and “Other,” compared against “Home.” 
Important predictors are selected by forward stepwise regression. A “.” in the regression coefficient indicates that the category is designated as the reference category for the corresponding 
predictor variable.

https://doi.org/10.3389/fneur.2025.1581176
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Zhou et al. 10.3389/fneur.2025.1581176

Frontiers in Neurology 07 frontiersin.org

decision-making for treatment and discharge planning by predicting 
a patient’s discharge disposition and chance of 30-day readmission. 
The app is available at https://tjzhou.shinyapps.io/INREACHapp/.

4 Discussion

We used statistical predictive modeling to create a practical tool 
that may support treatment and discharge planning for TBI patients, 
leveraging the rich data available in EHRs. While several factors 
identified in our models, such as age and GCS, are established 
predictors of TBI outcomes (9, 12, 18), this study’s primary 

contribution extends beyond re-identifying individual risk factors. 
We demonstrate the utility of integrating a comprehensive suite of 
readily available EHR variables, encompassing sociodemographics, 
functional status, hospital encounter details, insurance, and medical 
history from a large, multi-hospital system into parsimonious yet 
robust predictive models. Furthermore, we show that forward stepwise 
logistic regression, a highly interpretable method, performs 
comparably or better than more complex machine learning approaches 
like random forests or SVMs for these specific TBI outcomes (Table 5). 
Crucially, we  translate these validated models into an accessible, 
interactive prediction tool, bridging the gap between data analysis and 
potential clinical application. Our analyses identified several 
important predictors for discharge disposition and 30-day 
readmission, providing valuable insights for clinical decision-making.

The INREACHapp prediction tool1 is designed to translate these 
statistical insights into actionable information at the point of care. For 
instance, when a clinician inputs a patient’s data, the tool provides 
probabilities for discharge to Home, IRF/SNF, Hospice/Died, or Other. 
A high predicted probability for IRF/SNF might prompt earlier 
engagement of rehabilitation specialists, multidisciplinary team 

1 https://tjzhou.shinyapps.io/INREACHapp/

TABLE 5 5-fold cross-validated AUC for measuring and comparing the 
predictive performance of forward stepwise logistic regression (Forward), 
random forest (RF), the least absolute shrinkage and selection operator 
(LASSO), support vector machine (SVM), and the full logistic regression 
model without variable selection (Full).

Outcome Forward RF LASSO SVM Full

Discharge 

disposition

0.773 0.779 0.770 0.759 0.772

30-day 

readmission

0.656 0.609 0.655 0.546 0.638

TABLE 4 Logistic regression results for 30-day readmission.

Predictor Regression coef. p-value Marginal p-value

Intercept −3.310

Age 0.011 0.002 < 0.001

Significant other < 0.001 < 0.001

 No .

 Yes 0.035 0.716 0.470

 Missing −1.167 < 0.001 < 0.001

Alcohol 0.004 < 0.001

 No .

 Yes 0.054 0.571 0.772

 Missing −0.908 0.006 < 0.001

Insurance 0.064 < 0.001

 Medicare .

 Medicaid 0.008 0.963 < 0.001

 Commercial −0.379 0.024 < 0.001

 Self-pay/Other −0.152 0.441 < 0.001

Prior mental health diagnosis 0.062 < 0.001

 No .

 Yes 0.288 0.062 < 0.001

Prior inpatient stays < 0.001 < 0.001

 No .

 Yes 0.649 < 0.001 < 0.001

ICU admission 0.002 0.408

 No .

 Yes 0.296 0.002 0.408

Important predictors are selected by forward stepwise regression. A “.” in the regression coefficient indicates that the category is designated as the reference category for the corresponding 
predictor variable.
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discussions about post-acute care needs, and proactive communication 
with the patient and family regarding expectations and planning. 
Similarly, a high predicted risk of 30-day readmission could trigger 
targeted interventions. These might include comprehensive medication 
reconciliation, enhanced patient and caregiver education focused on 
warning signs, scheduling prompt post-discharge follow-up 
appointments, or coordinating with community-based services to 
ensure a smoother care transition. The current models utilize summary 
variables from the hospital stay (e.g., length of stay, min/max functional 
scores) and are thus most relevant for informing discharge planning as 
the patient stabilizes. While the tool can be used whenever these data 
points are available, dynamic, day-to-day prediction based on evolving 
patient status would represent a future development, potentially 
requiring different predictors and model structures.

Regarding the discharge disposition model, several factors were 
predictive of discharge to different settings. Not unexpectedly, older age 
was associated with a higher likelihood of discharge to IRF/SNF, 
Hospice/Died, or Other rather than home. Similarly, a history of prior 
inpatient stays and a longer length of stay were significantly associated 
with a higher likelihood of discharge to other settings instead of home. 
This is not surprising, as prior hospitalizations and extended stays 
likely indicate a more complex medical history and greater symptom 
severity, necessitating continued post-discharge care. The inclusion of 
both minimum and maximum functional scores (GCS, ADL, Mobility) 
by the stepwise selection process suggests that both the lowest point of 
function and the peak recovery achieved during hospitalization 
contribute unique predictive information for discharge disposition.

In contrast, identifying as Hispanic, having a significant other, 
being insured through Medicaid or Commercial insurance rather than 
Medicare, and having higher minimum GCS, maximum ADL, and 
minimum/maximum mobility scores were all significantly associated 
with a higher likelihood of being discharged home rather than to other 
settings. Factors reflecting less severe brain injury (GCS) and improved 
health and mobility (ADL and mobility) are logically related to a 
greater likelihood of home discharge. It is important to interpret the 
discharge disposition model outputs with nuance. The “Home” 
category was used as the reference in our multinomial logistic 
regression, a standard statistical approach, and its prediction does not 
inherently imply it is a “better” outcome than IRF/SNF for every 
individual. The most appropriate discharge setting is a complex clinical 
decision tailored to individual patient needs, functional status, and 
support systems. Our model aims to predict the observed discharge 
patterns within our healthcare system based on the available data, 
thereby providing insights into factors influencing these decisions and 
helping to anticipate post-acute care needs and resource utilization. 
The primary outcomes modeled were the discharge event itself and 
30-day readmission, not comparative long-term functional outcomes 
across different discharge settings, which would necessitate different 
study designs and outcome measures.

The association between identifying as Hispanic and discharge 
disposition may be  influenced by various factors, as discussed 
previously (50–54). Our findings regarding ethnicity’s association with 
discharge disposition, even within a cohort that was predominantly 
Caucasian, highlight the complex interplay of socio-cultural factors in 
healthcare decisions and outcomes. This underscores the need for 
future research to validate and potentially recalibrate such predictive 
models in more racially and ethnically diverse TBI populations to 
ensure their equitable applicability and to uncover population-specific 

predictors. Similarly, the presence of a significant other facilitating 
home discharge aligns with prior research (55), though the 
complexities noted (56) remain relevant.

In terms of 30-day readmission, factors such as older age, insurance 
status, prior mental health diagnosis, previous inpatient stays, and ICU 
admission were associated with a higher risk. Readmission after acute 
care for TBI is not merely an indicator of care quality or a source of 
financial strain for patients and healthcare systems (57, 58); it often 
signals unresolved medical issues or the emergence of TBI-related 
complications such as post-traumatic seizures, persistent headaches, 
or neurological decline. Such early readmissions can negatively impact 
long-term functional recovery, increase overall morbidity, and are 
associated with a higher risk of mortality (13, 57, 59–61). While our 
model identified factors like prior inpatient stays and ICU admission 
as significant predictors or proxies for greater medical complexity and 
severity, specific TBI sequelae (e.g., seizure disorders, persistent 
headaches) or detailed mechanisms of injury were not available as 
discrete variables for inclusion in this particular dataset. Future 
iterations of predictive models could be enhanced by incorporating 
such granular clinical information where feasible, potentially 
improving predictive accuracy for TBI-specific adverse events.

Many of our findings regarding individual predictors are consistent 
with previous studies (9, 12, 18). However, our study expands upon 
prior research by leveraging EHR data from a large multi-hospital health 
system, which capture a broader range of predictors simultaneously. 
This allows us to develop a more comprehensive predictive model using 
interpretable statistical methods that perform comparably to more 
complex machine learning techniques in this context.

Several directions can be  pursued to further validate and 
generalize the current study. First, applying the proposed method to 
other sources of EHR data can help assess the robustness of the 
conclusions. Second, the method remains applicable even when 
predictions are made at different time points, with candidate 
predictors added or dropped based on data availability. Third, 
developing a flexible software infrastructure that can adapt to varying 
EHR structures and automate the construction of the prediction tool 
across different datasets would enhance its scalability and usability. 
Fourth, incorporating unstructured EHR data could make the 
predictive model more comprehensive (62). Fifth, expanding the tool 
to include other relevant outcomes would further increase its clinical 
utility. Lastly, evaluating the feasibility and impact of integrating the 
prediction tool into clinical workflows is a critical next step.

The principles and methodologies central to this study, which 
include the systematic leveraging of comprehensive EHR data, the 
application of robust statistical predictive modeling, and the 
development of user-friendly decision-support tools, hold considerable 
potential for broader application in TBI care worldwide. While specific 
predictor variables and their weights will undoubtedly vary across 
different healthcare systems, patient demographics, and cultural 
contexts, the foundational approach of transforming routinely collected 
clinical data into actionable, personalized insights can empower 
clinicians globally. This can lead to more efficient resource allocation, 
timely interventions for at-risk patients, and ultimately, contribute to 
improving TBI care pathways and outcomes. Future international 
collaborations could focus on standardizing key TBI-related data 
elements within EHRs and sharing best practices for the development, 
validation, and ethical implementation of such predictive tools across 
diverse settings.
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5 Limitations

This study has several strengths, including a large sample size 
from a multi-hospital system, the use of real-world EHR data, 
rigorous statistical methodology, and the development of a user-
friendly app. However, certain limitations should be acknowledged. 
As a retrospective cohort study, there is potential for selection bias 
and unmeasured confounding (63). Therefore, the findings should 
be  interpreted as associations that do not necessarily represent 
causal relationships. The study cohort, while large, was 
predominantly Caucasian (78.47% White). This may limit the 
generalizability of the specific model coefficients to TBI populations 
with different racial and ethnic compositions. Future validation and 
calibration in more diverse cohorts are essential. Certain factors 
potentially pertinent to TBI outcomes, such as the detailed 
mechanism of injury or the presence of specific post-TBI 
complications (e.g., seizures, neurobehavioral symptoms not 
captured by broader mental health diagnoses), were not available as 
discrete, structured variables in our dataset for model inclusion. 
Their absence might affect the model’s comprehensiveness (11, 13). 
The GCS scores utilized (minimum and maximum during 
hospitalization) differ from the initial ED GCS often reported in 
acute TBI prognostic studies. While these scores reflect a patient’s 
trajectory during admission and are relevant for discharge planning, 
they may capture different aspects of neurological status than a 
one-time ED assessment. Missing data, a common challenge in EHR 
analyses, were handled by excluding records with missing values in 
continuous variables and creating a “Missing” category for 
categorical variables with missingness. However, the impact of 
missing data on the findings requires further investigation, as 
nonignorable missingness may introduce bias. For example, 
underserved groups may be more susceptible to missing data due to 
fragmented care or language barriers (64). Additionally, the 
“Missing” category in several categorical variables, including 
ethnicity, significant other status, ED visits, and alcohol use, was 
significantly associated with discharge disposition and 30-day 
readmission (Tables 3, 4). Given the inherent ambiguity of the 
“Missing” category, it is unclear whether it reflects specific patient 
characteristics, underlying conditions, or reporting trends at certain 
facilities. As a result, findings related to this category should 
be interpreted with caution. Moreover, while ethnicity was found to 
be significantly associated with discharge disposition, race was not 
identified as an important predictor for either outcome. This may 
be due to the small number of participants identifying as a race other 
than White or Missing (Table 1). Lastly, the models developed in this 
study estimate the likelihood of various discharge dispositions and 
the chance of 30-day readmission based on the patterns in the EHR 
data. These predictions reflect overall trends and should be used in 
conjunction with clinical judgment, not to replace clinical judgment 
and holistic patient assessment, ensuring that all patients receive 
individualized care based on their comprehensive needs.
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