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Moyamoya disease (MMD), a chronic, progressive cerebrovascular disorder of 
unknown etiology, presents significant diagnostic and therapeutic challenges in 
clinical practice. Conventional diagnostic methods rely on physicians’ experience and 
have limitations in disease prediction, risk assessment, and treatment decisions. The 
advancement of artificial intelligence (AI) technologies has created new opportunities 
for research on MMD. This review summarizes recent advances in AI applications 
for MMD, including diagnosis, risk factor analysis, treatment planning, outcome 
evaluation, and basic research. Additionally, this review critically examines the 
limitations of current research on MMD and explores potential future directions, 
aiming to offer valuable insights and guidance on MMD.
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1 Introduction

Moyamoya disease (MMD) is a rare, chronic progressive cerebrovascular disorder 
characterized by the stenosis of the terminal segments of the internal carotid arteries, 
accompanied by the formation of a “puff-of-smoke” vascular network at the skull base (1, 2). 
MMD is prevalent in East Asian countries such as Japan and China, and its incidence is 
increasing (3). MMD tends to affect younger individuals, demonstrating a characteristic 
bimodal age distribution with incidence peaks around ages of 10 and 40 (4). Clinical 
presentations are diverse and may include transient ischemic attacks, ischemic stroke, 
hemorrhagic stroke, movement disorders, headaches, cognitive impairment, and seizures (5). 
The high incidence of stroke and early cognitive dysfunction observed in patients with MMD 
may pose significant risks and burdens. Specifically, stroke events can result in severe sequelae 
such as paralysis and aphasia, and may even be life-threatening. Without timely intervention, 
early cognitive impairment can progress to dementia, ultimately leading to a complete loss of 
independent living ability. Moreover, the high costs of treatment and rehabilitation, the need 
for long-term professional care, and the loss of patients’ working capacity impose significant 
financial and caregiving burdens on families.

The pathogenesis of MMD remains unclear. Current research suggests that its pathogenesis 
is multifactorial in origin, involving the interplay of genetic susceptibility, inflammatory and 
immune responses, and environmental influences (6). Evidence also indicates that vascular 
reconstructive surgery is an effective treatment, with timely intervention can substantially 
improve patient outcomes (7). Thus, early and accurate diagnosis and intervention are crucial 
for MMD patients.

Currently, the diagnosis of MMD relies primarily on imaging examinations. As the gold 
standard for MMD diagnosis, digital subtraction angiography (DSA) clearly demonstrates the 
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degree of intracranial vascular stenosis and the formation of abnormal 
collateral circulation. In addition to DSA, magnetic resonance imaging 
(MRI) and magnetic resonance angiography (MRA) also play 
significant roles in detecting the condition (8, 9). However, current 
technologies have notable limitations. Diagnosis often depends on the 
clinician’s experience, and complex cases may carry a risk of 
misdiagnosis or missed diagnosis (10, 11). Persistent challenges 
remain in disease prediction, risk stratification, and therapeutic 
decision-making.

In recent years, artificial intelligence (AI) technology has advanced 
rapidly. AI simulates human cognitive functions—including learning, 
reasoning, and decision-making—through computational algorithms, 
enabling systematic extraction of information from complex datasets, 
identification of associative relationships, and automation of 
sophisticated tasks traditionally requiring human intellectual 
involvement (12, 13). In medical applications, AI has been integrated 
across various aspects, including disease screening, diagnostic 
decision-making, and prognosis prediction (14, 15). Core AI 
technologies include machine learning (ML), deep learning (DL), 
natural language processing, and computer vision. Among these, ML 
and DL are most widely used in medical research. Machine learning, 
a subset of AI, allows systems to learn autonomously from data and 
improve through experience. Common ML models include K-Nearest 
Neighbors (KNN), Random Forest (RF), and Support Vector Machine 
(SVM) (16). Deep learning, a branch of ML, utilizes multi-layer neural 
networks to simulate the human decision-making processes and 
automatically learn complex data features (17). Prominent DL models 
include Convolutional Neural Networks (CNNs) and Recurrent 
Neural Networks (RNNs). Recently, researchers have increasingly 
applied AI to MMD studies. More article details can be  found in 
Table 1.

This review summarizes the advancements of AI in the diagnosis 
of MMD, prediction of risk factors, treatment planning, and basic 
research. It also highlights the limitations of current research in this 
field and provides recommendations and perspectives for future 
studies (Figure 1).

2 Applications of artificial intelligence 
in moyamoya disease

2.1 Applications of artificial intelligence in 
the diagnosis of moyamoya disease

Imaging examination is a primary method for the diagnosis of 
MMD. Compared to manual image interpretation, AI can detect 
subtle features (e.g., texture patterns, contrast, and coarseness) in 
images that are imperceptible to the human eye. It then uses 
algorithms to classify and predict based on these features, enabling 
rapid and accurate diagnosis (18). The application of AI models has 
improved the accuracy and efficiency of MMD detection. When 
integrated into clinical practice, these models have the potential to 
significantly reduce radiologists’ workload.

Kim et  al. (19) established a cohort comprising 345 MMD 
patients and 408 healthy controls, and trained a CNN-based binary 
classification model using plain skull images as input. The model 
demonstrated strong discriminative performance, achieving a 
diagnostic accuracy of 0.84 and an area under the receiver operating 

characteristic curve (AUROC) of 0.91 for MMD identification. 
Importantly, this study first demonstrated that deep learning can 
extract MMD-related features from plain skull images, which have 
traditionally been considered of limited diagnostic value, thereby 
challenging the conventional belief that plain radiographs are 
ineffective for detecting cerebrovascular abnormalities.

AI-based diagnostic models utilizing DSA have demonstrated 
distinct technical advantages in the accurate identification of 
MMD. Hao et al. (20) explored preprocessing optimization strategies 
for DSA images through noise removal, image enhancement, and 
normalization. These approaches substantially improved the 
diagnostic performance of the CNN model, with the AUC increasing 
from 0.78 to 0.98, highlighting the critical role of data preprocessing 
in enhancing model effectiveness. Although the study was limited 
by a small sample size (n = 80), its methodological innovation 
provides an important reference for future research. Lei et al. (21) 
utilized a large volume of high-quality raw data and developed an 
end-to-end learning framework based on a deep residual network 
(ResNet-152), integrating feature extraction and disease 
classification into a single step. The model extracted features and 
identified unilateral moyamoya-related vascular lesions directly 
from raw DSA images. It achieved an AUC of 0.99, with 
corresponding accuracy, sensitivity, and specificity of 0.97, 0.96, and 
0.98, respectively. However, the models used in the above studies 
were limited to the analysis of static images. DSA not only captures 
static morphological features of blood vessels but also reflects the 
dynamic contrast-filling process within the vasculature. To address 
this, Hu et al. (22) proposed a deep learning architecture combining 
3D CNN and Bidirectional Convolutional Gated Recurrent Unit 
(BiConvGRU). This model simultaneously analyzes the 
spatiotemporal features of DSA sequences, capturing both the 
spatial distribution of vascular structures and the temporal evolution 
patterns of contrast agent filling. This approach significantly 
enhances the detection performance for MMD.

Conventional MRI and MRA, as non-invasive imaging modalities, 
demonstrate significant clinical value in the screening and differential 
diagnosis of MMD (23). Recent advancements in deep learning-based 
medical image analysis have significantly progressed in this field. 
Akiyama et  al. (24) developed an automated method combining 
conventional T2-weighted imaging (T2WI) with the VGG16 model 
to differentiate MMD, atherosclerotic cerebrovascular disease, and 
normal vasculature. Their analysis focused on three anatomical 
levels—the basal cistern, basal ganglia, and centrum semiovale—
achieving classification accuracies of 0.93, 0.85, and 0.89, respectively. 
These results suggest that integrating conventional MRI sequences 
with deep learning techniques can effectively distinguish MMD from 
other cerebrovascular disorders, providing a cost-efficient strategy for 
early-stage screening. In the analysis of MRA images, Lu et al. (25) 
optimized five common deep learning classification networks based 
on CNN: DenseNet-121, ResNet-50, SENet-154, SE-ResNet-50, and 
SE-ResNeXt-50. Among these, the DenseNet-121 model demonstrated 
superior diagnostic performance for MMD, achieving a diagnostic 
accuracy of 0.86 and an AUC of 0.97. Notably, both studies employed 
Gradient-weighted Class Activation Mapping (Grad-CAM) for 
visualization. This technique generates localization maps by extracting 
the gradients of the target concept from the final convolutional layer, 
visually highlighting anatomical regions critical for diagnostic 
decisions (26). This technique not only enhances the interpretability 
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of deep learning models but also supports clinicians in understanding 
AI-based diagnostic decisions.

In addition to imaging examinations, AI has also been widely 
integrated with diverse diagnostic techniques for the assessment of 
MMD. Based on the mechanism that involvement of the internal 
carotid artery siphon segment in MMD can lead to secondary 
abnormalities in central retinal artery perfusion (27), Hong et al. (28) 
innovatively combined retinal vascular morphological assessment 
with AI technology to develop a diagnostic system based on the 
ResNeXt50 model. By capturing subtle morphological changes in 
retinal vessels, the model enabled automated staging of MMD, 
achieving an AUC of 0.94. This study was the first to validate the 

feasibility of retinal examination as a noninvasive grading tool, 
opening a new dimension for dynamic disease monitoring. Near-
infrared spectroscopy (NIRS) enables dynamic monitoring of changes 
in oxyhemoglobin concentration within brain tissue, providing an 
effective means of assessing cerebral hemodynamics and oxygen 
metabolism in MMD patients. Researchers employed three 
algorithms—SVM, RF, and extreme gradient boosting (XGBoost)—to 
construct MMD screening models based on NIRS monitoring signals 
of varying durations. The study found that when based on 20-min 
monitoring data, the SVM, RF, and XGBoost models achieved 
accuracies of 0.87, 0.85, and 0.85, respectively. Notably, even when the 
signal acquisition time was reduced to 5 min, the models maintained 

TABLE 1 Applications of artificial intelligence in moyamoya disease.

References Application Methodology Multi center Data size Data type

Kim et al. (19) Diagnosis CNN Yes 753 Skull radiograph

Hao et al. (20) Diagnosis CNN No 80 DSA

Lei et al. (21) Diagnosis risk factors ResNet-152; MV-CNN No 960 DSA

Hu et al. (22) Diagnosis 3D CNN No 630 DSA

Akiyama et al. (24) Diagnosis and differential diagnosis VGG16 No 210 T2WI

Lu et al. (25) Diagnosis and differential diagnosis DenseNet121, ResNet50, SENet154, 

SEResNet50, SEResNext50

No 660 TOF-MRA

Hong et al. (28) Diagnosis ResNeXt50 No 1,683 Retinal photographs

Gao et al. (29) Diagnosis SVM, RF, XGBoost No 128 Cerebral oxygen 

saturation signals

Yin et al. (32) Risk factors ResNet18 No 116 MRA

Sato et al. (33) Risk factors RF, gradient boosting, No 301 DSA

Chen et al. (35) Risk factors XGBoost, MLR, SVM, RF, NB No 790 Clinical data

Chen et al. (34) Risk factors LR, SVM, CatBoost, RF, LGBM No 945 Clinical data

Tompkinset al (39) Risk factors ANNSoft, LS, RF, SVM, DT No 1,202 T1WI

Weng et al. (40) Risk factors SR Yes 187 18F-FDG PET

Lei et al. (41) Risk factors SR, FC No 105 rs-fMRI

Zhang et al. (44) Treatment 3D CA-ResNet; 3D VGG; 3D ResNet; 

3D SE-ResNet

No 100 TOF-MRA

Xu et al. (45) Treatment P3D ResNet No 406 DSA

Hou et al. (46) Treatment DLRS Yes 235 rs-fMRI

Wang et al. (47) Treatment SVM No 39 Hypergraph of rs-fMRI

Wang et al. (48) Treatment ML No 118 MRI

Li et al. (49) Treatment Delta-radiomics models No 53 DSA,CTP

Sangwon et al. (50) Treatment RF, LR, XGBoost No 39 Hemodynamic parameter

Gao et al. (54) Treatment CPM No 32 Resting-state functional 

connectivity

Fuse et al. (57) Treatment SVM, RF, LGBM Yes 512 Perioperative clinical data

Weng et al. (58) Basic research NN, AdaBoost, RR, kNN, NB Yes 288 Serum Metabolic 

Fingerprints

Xu et al. (59) Basic research SVM-RFE, RF, LASSO Yes 266 Genes

Han et al. (60) Basic research SVM-RFE, LASSO Yes - Genes

CNN, Convolutional Neural Network; MV-CNN, multi-view conventional neural network algorithm; 3D CNN,3D convolutional neural network; SVM, Support Vector Machine; SVM-RFE, 
support vector machine-recursive feature elimination; RF, Random Forest; LASSO, least absolute shrinkage and selection operator; NN, Neural Network; AdaBoost, Adaptive Boosting; RR, 
Ridge Regression; KNN, K-Nearest Neighbor; NB, Naive Bayes; MLP, Multilayer Perceptron; LR, Logistic Regression; LGBM, Light Gradient Boosting Machine; ANNSoft, Artificial Neural 
Network; LS, Least Squares Prediction using Bootstrap Aggregation; DT, Decision Tree; SR, Sparse Representation; FC, Functional Connectivity; P3D ResNet, Pseudo-Three-Dimensional 
Residual Network; DLRS, deep-learning resting-state; ML, Machine Learning; CPM, connectome-based predictive modeling.
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high accuracy levels of 0.88, 0.88, and 0.84, respectively (29). These 
findings indicate that algorithmic optimization can overcome the 
traditional reliance of NIRS technology on prolonged monitoring. By 
shortening the detection duration without compromising diagnostic 
performance, the practical value of NIRS in rapid MMD screening 
scenarios is significantly enhanced.

2.2 Applications of artificial intelligence in 
predicting the risk of adverse events in 
moyamoya disease

MMD presents a complex clinical course, primarily characterized 
by ischemic and hemorrhagic stroke events, as well as cognitive 
impairment (30). In this field, AI can integrate multimodal clinical 
and imaging data to systematically identify risk factors strongly 
associated with adverse events and develop predictive models. These 
models have the potential to assist clinicians in making timely 
therapeutic decisions and improving patient outcomes.

2.2.1 Analysis of risk factors for stroke
Stroke is one of the most common clinical manifestations of 

MMD, characterized by high recurrence and disability rates, with 
severe cases posing life-threatening risks (2, 31). The occurrence of 
MMD-related stroke involves multiple risk factors, and early 
identification along with precise intervention is crucial for improving 
patient outcomes.

Lei et  al. (21) developed a multi-view convolutional neural 
network (MV-CNN-C) model that integrated demographic factors, 

such as age, sex, and hemorrhagic risk factors (e.g., hypertension, 
smoking), along with DSA imaging features of MMD patients. The 
model achieved 0.90 accuracy in predicting unilateral hemorrhage 
risk. AI enhances risk prediction performance by combining imaging 
features with clinical data. Yin et al. (32) constructed a ResNet18 
model based on transfer learning to perform quantitative analysis of 
MRA images at the basal cistern, basal ganglia, and centrum 
semiovale. The study identified the basal cistern (accuracy 93.3%) 
and basal ganglia (accuracy 91.5%) as key regions for distinguishing 
hemorrhagic MMD. Through Grad-CAM visualization, the model 
highlighted abnormal structures within the deep white matter and 
periventricular collateral vessels, indicating that hemodynamic 
disturbances in these regions are key triggers of hemorrhagic events. 
Notably, the periventricular anastomotic (PA) network, a 
compensatory pathological feature of MMD, is significantly 
associated with future hemorrhagic events due to the formation of 
aneurysms within this vascular network. A previous study (33) 
employed Gradient Boosting and RF models to identify three major 
risk factors for PA aneurysm: PA score, initial modified Rankin Scale 
(mRS) score, and age. These findings provide a foundation for 
clinical monitoring and potential interventions aimed at reducing 
the risk of hemorrhagic stroke. Chen et al. (34) utilized XGBoost, 
logistic regression (LR), and SVM models to systematically identify 
independent risk factors for hemorrhagic stroke in MMD, including 
advanced Suzuki stage, presence of aneurysms, rural residence, 
frequent hospitalization history, and age at onset. Furthermore, LR, 
SVM, CatBoost, RF, and LightGBM models were employed to 
predict stroke recurrence in adult MMD patients. The analysis 
revealed that advanced Suzuki stages, younger age (18–44 years), 

FIGURE 1

Summary of the main aspects of this review.
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absence of surgical treatment, and the presence of aneurysms were 
closely associated with stroke recurrence (35). Compared with 
traditional statistical methods, the machine learning models 
employed by Chen et  al. can automatically detect and leverage 
interaction effects and nonlinear relationships among relevant 
factors (17, 36), offering greater adaptability and flexibility. As a 
result, the predictive performance of these models is more objective, 
accurate, and reliable.

2.2.2 Cognitive impairment risk factor analysis
Patients with MMD may exhibit cognitive decline in the early 

stages of the disease (2, 37). This phenomenon is strongly associated 
with progressive neurostructural and functional alterations that 
substantially impair quality of life. Based on multimodal imaging, 
AI can integrate multidimensional information from structural, 
metabolic, and functional networks, offering an innovative solution 
for predicting the risk of cognitive impairment. At the structural 
level, cortical thickness alterations in MMD correlate with memory 
and executive function deficits (38). Tompkins et al. (39) utilized 
machine learning models such as SVM and RF to quantitatively 
identify cortical thickness differences between MMD patients and 
healthy controls based on structural T1-weighted MRI. This study 
confirmed that AI can predict the risk of cognitive decline through 
structural feature analysis. In addition to structural features, 
researchers have further revealed the impact of metabolic and 
functional network dynamics on cognitive impairment. One study 
implemented a sparse representation classifier based on 18F-FDG 
PET to reveal specific cerebral metabolic patterns in patients with 
cognitive impairment. This method utilized an adaptive feature 
filter to select key features (quantifying importance through 
absolute values of representation coefficients), combined 
orthogonalization for redundancy removal with structural 
preservation constraints to optimize sample architecture, and 
performs classification prediction via reconstruction residual 
minimization. The approach significantly improves the sensitivity 
and specificity of abnormal metabolic pattern recognition, 
providing novel perspectives for early risk prediction (40). Another 
investigation (41) constructed a dynamic functional connectivity 
(FC) network integrated with sparse representation classifiers to 
analyze functional magnetic resonance imaging (fMRI) data, 
enabling early detection of vascular cognitive impairment (VCI) 
and identification of clinically significant risk factors associated 
with VCI pathogenesis. The integration of multimodal imaging and 
AI enables comprehensive risk assessment of cognitive impairment 
through multilevel analyses spanning structural, metabolic, and 
dynamic network dimensions, providing critical evidence for early 
clinical intervention.

2.3 Application of artificial intelligence in 
the treatment of moyamoya disease

As the pathogenesis of MMD remains unclear, no drugs are 
currently available to reverse the pathological progression of the 
disease. At present, cerebral revascularization surgery is considered 
the primary effective treatment for MMD (42, 43). The integration of 
AI in MMD not only provides decision support for surgical strategy 
planning but also enables systematic evaluation of postoperative 

efficacy and prediction of adverse event risks, providing innovative 
directions for precision therapy.

2.3.1 Pre-treatment assessment
Precise preoperative evaluation is a crucial element in developing 

individualized surgical strategies for cerebral revascularization. AI 
facilitates comprehensive pre-treatment assessment through the 
analysis of multimodal data. In vascular structure evaluation, Zhang 
et al. (44) developed a three-dimensional coordinate attention residual 
network (3D CA-ResNet) deep learning model. This architecture 
extends network depth through a modified 3D ResNet framework 
while integrating an enhanced 3D coordinate attention (CA) module 
into the non-identity branches of residual blocks. The CA module 
specifically addresses accuracy degradation during training caused by 
increased network depth. When applied to detect vascular stenosis 
regions in time-of-flight magnetic resonance angiography (TOF-
MRA) images of MMD patients, the model achieved an AUC of 0.94, 
providing critical guidance for precise surgical target selection. To 
further determine the optimal timing for surgical intervention, Xu 
et al. (45) proposed a pseudo-three-dimensional residual network 
(P3D), which enabled automated classification of MMD disease 
progression stages and established a quantitative framework for 
dynamically assessing intervention timing. For cerebral hemodynamic 
assessment, researchers developed a deep learning network capable of 
generating cerebral hemodynamic functional maps based on resting-
state functional MRI (rs-fMRI). The model enabled reproducible 
mapping of cerebrovascular reactivity (CVR) and bolus arrival time 
(BAT). This achieved a comprehensive evaluation of hemodynamics 
in patients with MMD (46). In addition, traditional surgical 
evaluations often overlook neuropsychological factors. Wang et al. 
(47) innovatively proposed a subtype classification of MMD based on 
cognitive and emotional features—high depression–high anxiety–low 
cognition, low depression–low anxiety–high cognition, and low 
depression–low anxiety–low cognition. They developed an SVM 
model that accurately classified these three subtypes using hypergraph 
features derived from rs-fMRI. This model enables the incorporation 
of neuropsychological impairment into the surgical risk assessment 
framework for MMD, providing a multidimensional and quantitative 
basis for treatment decision-making.

2.3.2 Treatment effect evaluation and prognosis 
prediction

By integrating imaging features, intraoperative parameters, and 
clinical data, AI enables a multidimensional evaluation of surgical 
outcomes in MMD, including hemodynamic improvement, collateral 
circulation formation, anastomotic patency, and cognitive function 
recovery. Wang et al. (48) developed the T1ML model based on MRI 
imaging features of patients who underwent STA–MCA bypass, 
enabling noninvasive and accurate identification of postoperative 
collateral vessel formation, with an accuracy of up to 0.80. Li et al. (49) 
quantitatively evaluated cerebral hemodynamic changes before and 
after revascularization in MMD patients using CT perfusion and 
constructed a delta-radiomics model based on changes in the time-to-
drain (TTD) parameter to identify postoperative collateral vessel 
formation, which provided a comprehensive assessment of surgical 
outcomes. In parallel, researchers have further evaluated intraoperative 
hemodynamic characteristics. Using three ML models (RF, LR, and 
XGBoost), they predicted postoperative anastomosis patency by 
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analyzing real-time intraoperative blood flow velocity and volume 
features obtained via FLOW 800 technology, thereby offering surgeons 
with real-time decision support (50). Multiple studies have 
demonstrated that early surgical intervention improves cognitive 
impairment in patients with MMD (51–53). Therefore, cognitive 
function changes constitute a critical component of postoperative 
outcome evaluation. Connectome-based predictive modeling (CPM) 
was employed by Gao et al. (54) to analyze preoperative resting-state 
functional connectivity features and predict the degree of 
improvement in information processing speed after surgery, offering 
a novel perspective for evaluating postoperative cognitive recovery.

Although surgical intervention effectively reduces the risk of 
cerebrovascular events and improves long-term prognosis in 
MMD patients, postoperative complications such as cerebral 
infarction remain a major challenge affecting treatment outcomes 
(55, 56). Fuse et  al. (57) applied machine learning models, 
including SVM, RF, and Light Gradient Boosting Machine 
(LGBM), to analyze perioperative clinical data and predict the 
incidence of postoperative cerebral infarction. To enhance model 
interpretability, the study incorporated SHAP (Shapley Additive 
Explanations) analysis, a technique grounded in Shapley value 
theory from game theory, which quantifies the contribution of 
each feature in individual cases to reveal the decision-making 
logic of the AI model. SHAP analysis identified pentachlorobenzene 
ether, PCA, infarction at the surgical site, and the presence of 
infarction as risk factors for postoperative cerebral infarction. 
These findings may help optimize perioperative management and 
guide postoperative care, thereby improving long-term prognosis 
and quality of life in patients with MMD.

2.4 Applications of artificial intelligence in 
the basic research of moyamoya disease

In the field of basic research on MMD, AI is driving progress 
across multiple dimensions, including the elucidation of disease 
mechanisms, the discovery of biomarkers, and the innovation of 
therapeutic strategies. Weng et  al. (58) applied various machine 
learning algorithms, including neural networks (NN) and adaptive 
boosting (AdaBoost), to analyze serum metabolic fingerprints from 
144 MMD patients and 144 healthy individuals, achieving accurate 
differentiation between the two groups (AUC = 0.95, 95% CI: 0.911–
1.000). Furthermore, they employed the Integrated Gradients (IG) 
method to quantify the contribution of metabolic signals to model 
predictions. By combining fold change (FC) analysis and t-tests, six 
key metabolites associated with MMD were identified, providing a 
novel metabolism-based approach for the noninvasive diagnosis of 
MMD. At the genetic level, Xu et  al. (59) identified 266 key 
MMD-related genes using weighted gene co-expression network 
analysis (WGCNA), followed by KEGG and GO enrichment analyses 
to construct a protein–protein interaction (PPI) network. Three 
machine learning algorithms, including support vector machine-
recursive feature elimination (SVM-RFE), RF, and LASSO, were 
subsequently applied for cross-validation, resulting in the 
identification of four high-confidence diagnostic biomarkers (ACAN, 
FREM1, TOP2A, UCHL1). These genes were found to be functionally 
associated with specific immune cell subpopulations. Moreover, 
another study integrated MMD-related data from the Gene Expression 

Omnibus (GEO) and GeneCards databases to systematically identify 
key genes involved in the oxidative phosphorylation (OXPHOS) 
pathway. Using LR and SVM-RFE algorithms, four core genes most 
strongly associated with MMD pathogenesis (CSK, NARS2, PTPN6, 
SMAD2) were selected from the OXPHOS gene set. Gene Set 
Enrichment Analysis (GSEA) provided insights into immune cell 
infiltration and the vascular microenvironment related to these genes, 
ultimately establishing a connection between the four key OXPHOS-
related genes and the pathogenesis of MMD (60). Collectively, 
AI-driven identification of MMD genetic biomarkers not only 
provides novel targets for early diagnosis but also enables therapeutic 
strategies targeting immune microenvironment modulation.

3 Limitations and future perspectives

3.1 Limitations

Recent studies demonstrate that AI demonstrates significant potential 
in the diagnosis, risk factor analysis, and treatment evaluation of 
MMD. However, there are still several limitations in this area. Current AI 
model development requires large-scale, high-quality data. However, 
MMD is a rare disease with low incidence, and the integration of 
multicenter data remains challenging. As a result, the diagnostic accuracy 
of current models falls short of clinical requirements. Furthermore, 
research on AI applications in MMD is predominantly based on single-
center studies. Variability in data formats, imaging equipment, and 
diagnostic standards across medical institutions limits the generalizability 
of AI models. The high computational demands of current AI systems are 
often impractical in many clinical settings. In addition, the lack of clearly 
defined regulations regarding patient privacy protection and medical 
liability further complicates clinical implementation. These challenges 
collectively pose significant barriers to the widespread adoption of AI in 
MMD clinical practice. While some AI models have demonstrated strong 
predictive performance, they often lack transparency in their algorithms 
and decision-making processes, resulting in limited interpretability. 
Consequently, clinicians may question the reliability of model predictions 
and hesitate to apply them in real-world medical decision-making.

3.2 Future perspectives

In the future, the application of AI in the field of MMD holds 
significant potential for further development. By establishing multi-
center collaborations and integrating MMD case data across different 
regions, disease stages, and types of complications, it is possible to 
effectively address challenges such as limited sample size, high data 
heterogeneity, and inconsistent data quality. Multimodal data research 
that integrates imaging, genomics, and clinical information can further 
enhance AI models, enabling a more comprehensive evaluation of the 
pathophysiological mechanisms, clinical manifestations, and risk 
factors associated with MMD. To address the limited interpretability of 
current AI models and algorithms, it is necessary to develop more 
transparent models, incorporating visualization techniques such as 
Grad-CAM and SHAP to elucidate the decision-making process and 
the underlying rationale. This will enhance the transparency of AI 
models, facilitating their adoption in clinical practice. With the 
continuous advancement of the technology, AI can serve as a powerful 
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tool for the diagnosis and treatment of MMD, enabling early diagnosis 
and timely treatment of MMD patients, thus significantly improving 
the prognosis of MMD patients.

4 Conclusion

This article reviews recent developments in the application of AI 
in the diagnosis and differential diagnosis, risk factor analysis, 
treatment, and basic research of MMD, highlighting the potential of 
AI in this field. Although significant challenges remain, the continuous 
advancement of AI technology and deeper exploration in the field are 
expected to revolutionize clinical practices in the diagnosis and 
treatment of MMD, offering patients more accurate and effective 
medical care.
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