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Brain metastases (BM) are common complications of advanced cancer, posing
significant diagnostic and therapeutic challenges for clinicians. Therefore, the
ability to accurately detect, segment, and classify brain metastases is crucial. This
review focuses on the application of artificial intelligence (Al) in brain metastasis
imaging analysis, including classical machine learning and deep learning techniques.
It also discusses the role of Al in brain metastasis detection and segmentation,
the differential diagnosis of brain metastases from primary brain tumors such
as glioblastoma, the identification of the source of brain metastases, and the
differentiation between radiation necrosis and recurrent tumors after radiotherapy.
Additionally, the advantages and limitations of various Al methods are discussed,
with a focus on recent advancements and future research directions. Al-driven
imaging analysis holds promise for improving the accuracy and efficiency of brain
metastasis diagnosis, thereby enhancing treatment plans and patient prognosis.

KEYWORDS

brain metastases, artificial intelligence, deep learning, machine learning, radiotherapy,
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1 Introduction

Brain metastases (BM) are one of the common and severe complications of advanced
malignant tumors, often indicating poor prognosis and posing a major challenge to clinical
tumor treatment (1). The incidence of brain metastases is high, with estimates suggesting that
up to one-third of cancer patients will develop brain metastases (2). With the aging of the
global population, advances in systemic treatment, and the widespread use of imaging
technologies such as magnetic resonance imaging (MRI), the detection and diagnosis rates of
BM have been increasing (3, 4). Among the primary tumors that lead to BM, lung cancer,
breast cancer, and melanoma are the most common. However, cases of brain metastasis from
gastrointestinal tumors, renal cell carcinoma, and gynecological cancers are also on the rise
(4, 5). Moreover, it is worth noting that brain metastases significantly impact patient prognosis
regardless of the primary tumor type. Taking breast cancer as an example, patients may survive
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for an average of up to 28 years, but once brain metastasis occurs, the
average survival time is reduced to about 10 months (6). Despite the
application of treatments such as monoclonal antibodies, tyrosine
kinase inhibitors (TKI), and antibody-drug conjugates (ADC), which
have improved overall survival (OS) to some extent, brain metastasis
remains a severe challenge in breast cancer treatment. Therefore, there
is an urgent need to develop timely and precise imaging detection,
segmentation, and classification technologies to detect and diagnose
brain metastases early, thus providing patients with more time for
treatment and improving prognosis.

First, precise detection and segmentation helps doctors accurately
assess tumor size, location, and number, providing accurate targeting
for local treatments such as surgery and radiotherapy. Achieving this
precise assessment relies on imaging technology support. MRI can
detect small lesions with high sensitivity and clearly display critical
tumor characteristics, making it the recognized main tool for
diagnosing BMs (4, 7, 8). However, computed tomography (CT)
scanning still maintains irreplaceable value in preliminary screening
of brain metastases, rapid assessment in emergency situations, and
special clinical scenarios such as medical institutions with limited
equipment conditions or patients with MRI contraindications (9, 10).
Based on these imaging technologies, precise treatment of brain
metastases can be effectively implemented. Stereotactic radiosurgery
(SRS) has become an important treatment modality for brain
metastases due to its ability to deliver highly focused radiation to
metastatic regions while minimizing damage to surrounding normal
brain tissue. The implementation of such precise treatments demands
extremely high accuracy in imaging detection and segmentation (11).
Nevertheless, traditional manual detection and segmentation methods
have obvious limitations. On one hand, manual detection and
segmentation processes are time-consuming and cumbersome (12);
on the other hand, target delineation is susceptible to observer
subjectivity, and differences between physicians may increase
uncertainty in radiotherapy planning (2). Therefore, the demand for
artificial intelligence-based automated detection and segmentation
technologies is increasingly urgent. Currently, many deep learning
algorithms have been applied to the detection and segmentation tasks
of brain metastasis images (13), aiming to improve management
efficiency and treatment outcomes for patients with multiple
metastases. Precise automated detection and segmentation not only
enhance the reliability and efficiency of treatment planning but also
establish an important foundation for subsequent fine-grained
analysis based on imaging features and the development of
personalized treatment strategies.

The classification of brain metastases faces several challenges,
such as nature determination, source identification, and treatment
response evaluation. The primary challenge is distinguishing brain
metastases from primary brain tumors, such as glioblastoma (GBM).
For patients previously diagnosed with malignant tumors, new brain
lesions require clarification on whether they are primary brain tumors
such as GBM or brain metastases from the primary cancer. GBM and
brain metastases demonstrate high radiological similarity, typically
presenting as rim-enhancing lesions with surrounding T2
hyperintensity (14), but their treatment strategies differ drastically,
making accurate preoperative differentiation crucial. For patients
presenting with brain lesions as their primary manifestation,
identifying the origin of brain metastases has significant clinical
implications. Brain metastases from different primary sites require
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distinct therapeutic approaches; differentiating between metastases
originating from lung cancer, breast cancer, melanoma, and other
sources helps guide the selection of personalized treatment protocols
such as targeted therapies for specific gene mutations and immune
checkpoint inhibitors (15). However, accurately determining the
origin of brain metastases poses numerous challenges when definitive
information about the primary lesion is lacking. While conventional
neuropathological examination serves as the gold standard, it carries
surgical risks as an invasive procedure, including hemorrhage,
infection, and neurological function impairment. Some patients
cannot tolerate such examinations due to poor physical condition or
deep-seated lesion location. Additionally, routine radiological
assessment, though non-invasive, makes it difficult to accurately
determine the origin of brain metastases based solely on manual
analysis. In clinical practice, 2-14% of patients present with brain
metastases as the initial manifestation without an identified primary
tumor (16). For some patients, the primary lesion remains unidentified
even until the terminal stage of disease. Failure to promptly and
accurately identify the origin leads to difficulties in treatment
selection, missing the optimal therapeutic window, and severely
affecting patient prognosis. Therefore, developing rapid, reliable, and
non-invasive methods for primary tumor identification based on
medical imaging, using artificial intelligence technology to assist
image analysis and reduce dependence on invasive examinations,
serves as an important complementary tool for clinical diagnosis, with
significant value for optimizing clinical decision-making processes
and improving patient treatment experiences. Beyond determining
the primary tumor type, patients with brain metastases who have
undergone radiotherapy require differentiation between post-
radiation radiation necrosis and recurrent tumors. Research indicates
that distinguishing between these two conditions using only MRI is
often challenging (17). Although differentiation can be achieved
through biopsy, stereotactic biopsy may lead to sampling bias in
lesions containing both tumor recurrence and radiation necrosis, and
biopsy carries procedure-related risks and cannot be regularly
repeated (18). More importantly, the treatment strategies for these two
conditions are fundamentally different—tumor recurrence requires
continued treatment, while radiation necrosis necessitates cessation
of radiotherapy and management of necrotic lesions, making accurate
differentiation decisive for treatment decisions. These differential
diagnostic tasks—whether distinguishing brain metastases from
primary brain tumors, tracing the origin of primary tumors, or
differentiating post-radiation necrosis from recurrent tumors—all face
challenges of overlapping radiological features and diagnostic
difficulties. Therefore, there is an urgent need to leverage artificial
intelligence technology to analyze big data from medical imaging,
improve diagnostic accuracy and efficiency, and provide stronger
support for clinical decision-making.

Through early precise imaging analysis and subsequent
development of personalized treatment strategies, there is potential to
maximize control of tumor progression and improve patient prognosis
(19). Therefore, this review focuses on recent advances in artificial
intelligence (AI) applications for brain metastasis imaging analysis,
encompassing deep learning-based lesion detection and segmentation,
differential diagnosis between brain metastases and primary brain
tumors, primary tumor origin identification, and differentiation
between post-radiation radiation necrosis and recurrent tumors. This
paper systematically elucidates the applications and advantages/
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limitations of classical machine learning methodologies and deep
learning algorithms across various tasks, while also projecting future
research directions in this field. The aim is to provide more effective
decision support for clinical practice and promote further
development of relevant artificial intelligence technologies (Figure 1).

2 Brain metastases image detection
and segmentation

In the field of artificial intelligence, tumor image detection and
segmentation represent two core tasks in medical image analysis.
Detection tasks aim to identify and localize tumor lesions within
images, typically outputting spatial position and bounding box
information of the lesions. Segmentation tasks further perform

10.3389/fneur.2025.1581422

pixel-level precise delineation of tumor regions, assigning category
labels to each pixel in the image, thereby achieving accurate tumor
contour delineation and regional quantification. These two
technologies provide clinicians with critical information such as
precise tumor localization, morphological feature analysis, and
volumetric measurements, playing important roles in diagnosis,
treatment planning, and therapeutic efficacy assessment.

However, the detection and segmentation of brain metastases
present unique clinical challenges. Brain metastases often manifest as
multiple small lesions, with individual lesions potentially measuring
only a few millimeters in diameter and exhibiting relatively low
contrast with surrounding brain tissue on MRI images (20). These
microscopic lesion characteristics make radiologists prone to missing
them during visual identification, particularly when images contain
noise and artifacts that further compromise accurate assessment. The
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scattered distribution and uncertain number of lesions additionally
increase the workload and risk of missed diagnoses in manual
detection (20-22). Meanwhile, the low contrast features also make it
difficult for physicians to precisely delineate lesion boundaries,
affecting the accuracy of subsequent treatment planning (20).

Under these specific clinical circumstances, although classical
machine learning methods such as threshold segmentation (23) and
region growing algorithms (24) possess advantages including strong
interpretability, low computational cost, and minimal hardware
requirements (25-27), they demonstrate significant technical
limitations when confronting the complex characteristics unique to
brain metastases, including small lesions, low contrast, and multifocal
distribution. These methods are relatively sensitive to image quality
and noise, and struggle to effectively capture the diversity of tumor
morphology and irregularity of boundaries (28, 29), thereby limiting
their widespread application in brain metastases detection
and segmentation.

To address these challenges, researchers have developed various
deep learning-based detection and segmentation methods, with
technological evolution progressing from early CNN local feature
extraction, to U-Net’s global-local information fusion, then to
DeepMedic’s specialized 3D processing, and more recently to the
intelligent development of adaptive frameworks. Deep learning
technology, leveraging its powerful feature learning capabilities and
effective utilization of large-scale data, has demonstrated significant
advantages in processing complex image features and achieving high-
precision segmentation, gradually becoming the mainstream
technology in this field. In light of this, this review will focus on the
applications of deep learning networks and their variants in brain
metastases image detection and segmentation.

2.1 Early convolutional neural networks
and variants

Convolutional neural networks (CNNs) were among the earliest
deep learning networks applied to brain metastases image detection
and segmentation (Figure 2). CNNs extract local features from images
through convolutional layers and utilize pooling layers to reduce
computational load while increasing feature robustness (30). Losch et
al. (31) pioneered the application of ConvNet to brain metastases
segmentation in 2015, achieving 82.8% sensitivity in detecting lesions
larger than 3 millimeters, laying the foundation for deep learning
applications in this field. However, early CNN methods exposed
significant technical limitations, including high false positive rates
(false positive rate of 0.05 per slice), insufficient segmentation
accuracy for small metastatic lesions, and deficiencies in feature
extraction, multi-scale information fusion, and contextual information
utilization. The fundamental cause of these problems lies in the fact
that traditional CNN feedforward structures lack global contextual
modeling capabilities, relying solely on local convolutions making it
difficult to accurately distinguish subtle differences between lesions
and normal brain tissue.

To overcome the limitations of traditional CNN architectures,
researchers have pursued technical improvements from different
perspectives. In terms of dimensional extension, the 2.5D GoogLeNet
CNN model proposed by Groevik et al. (12) attempted to strike a
balance between computational efficiency and feature capture
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capability, better capturing inter-slice features while avoiding the
computational burden of full 3D CNNs. However, this method still
exhibited performance limitations in false positive control and
multiple lesion detection. Regarding network architecture design, the
BMDS Net cascaded 3D fully convolutional network proposed by Xue
et al. (32) adopted a two-stage strategy of detection-localization
followed by segmentation, improving segmentation accuracy to some
extent while reducing computational complexity. Nevertheless, it still
faced challenges when handling tasks involving discrimination of
adjacent lesions or small-volume lesions. These early improvement
efforts demonstrated that simply increasing architectural complexity
cannot fundamentally resolve the core problems of CNNs in brain
metastases analysis.

Recognizing the significant impact of detection tasks on
segmentation performance, researchers began exploring CNN
methods specifically optimized for brain metastases detection. The
CropNet proposed by Dikici et al. (33) focused on the detection task
of small brain metastases (<15 mm), achieving accuracy levels
comparable to large lesion detection methods for small lesions
through sensitivity-constrained LoG candidate selection and targeted
data augmentation strategies. The important significance of this work
lies in demonstrating that precise lesion localization can effectively
assist subsequent segmentation tasks. Building on this understanding,
Qu etal. (34) further proposed the gated high-resolution CNN (GHR-
CNN), which achieved improvements in segmentation accuracy,
sensitivity, and generalization capability by maintaining high-
resolution features and introducing gating mechanisms, particularly
excelling in small lesion detection. This indicates that through
carefully designed network structures and training strategies, a single
segmentation network can also achieve good performance without
strictly relying on independent detection steps.

Although CNN methods have made preliminary progress in brain
metastases detection and segmentation tasks (Table 1), their inherent
technical limitations restrict further performance improvements.
Future CNN improvement directions should focus on collaborative
optimization of detection and segmentation tasks as well as targeted
network structure design. For example, architectures that fuse object
detection with instance segmentation, such as Mask R-CNN, provide
new technical approaches. However, the key lies in how to effectively
integrate detection information into the segmentation process and
how to design specialized network structures and training strategies
tailored to the specific characteristics of brain metastases.

2.2 U-Net and its variants

The limitations exposed by CNN methods in brain metastases
analysis prompted researchers to seek more advanced network
architectures. The U-Net architecture, through its encoder-decoder
structure and skip connection design, can effectively address the
deficiencies of CNNs in capturing global contextual information
(Figure 3). The U-Net architecture proposed by Ronneberger et al.
(35) in 2015, with its symmetric network design, enables the model to
capture both high-level semantic information and preserve low-level
detailed features, thus demonstrating good performance in both
detection and segmentation tasks of brain metastases.

In the early stages of U-Net application to brain metastases
analysis, researchers primarily enhanced the model’s feature extraction
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FIGURE 2

Early convolutional neural network architectures for image segmentation of brain metastases. (a) Typical architecture of a ConvNet. (b) Network
architecture of BMDS net. (c) The modified GooglLeNet architecture. (d) Network architecture of CropNet. (e) Structure of our deep-learning approach
faster R-CNN. (f) Network architecture of a gated high-resolution neural network. Referenced and reproduced with permission from Losch (31), Xue
etal. (32), Grovik et al. (12), Dikici et al. (33), Zhang et al. (122), and Qu et al. (34).

capabilities in detection and segmentation tasks through multimodal
MRI data fusion. Bousabarah et al. (20) proposed an ensemble
learning method based on multimodal 3D MRI data, combining three
network structures: cU-Net, moU-Net, and sU-Net, trained with
multimodal data including T1lc, T2, T2¢, and FLAIR, achieving good
results in detecting larger volume lesions (>0.06 mL). However,
multimodal fusion strategies still exhibited performance limitations
in small lesion detection. Addressing this issue, Cao et al. (21)
proposed an asymmetric UNet architecture (asym-UNet) from an
architectural design perspective, employing different-sized
convolutional kernels (3 x3 x 3 and 1x 1 x3) to simultaneously
process image features of small tumors and boundary information of
large metastases, achieving improved results in small lesion detection
tasks (diameter <10 mm). This work demonstrated that targeted
architectural modifications can more effectively address specific
technical challenges compared to simple data fusion.

With the development of 3D medical image processing

technology, researchers began exploring more refined optimization
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strategies to enhance U-Net performance in brain metastases
detection and segmentation tasks. Rudie et al. (22) systematically
evaluated the segmentation performance of 3D U-Net in large-scale
patient samples, providing benchmark data for the clinical application
of this architecture. Building on these foundational works, Chartrand
et al. (36) improved detection sensitivity for small brain metastases
(2.5-6 mm) to 90.9% by introducing volume-aware loss functions,
reducing false negative rates compared to traditional CNN models in
this size range. The comparative study by Yoo et al. (37) quantified the
performance differences between 2.5D and 3D architectures in
detection tasks: 3D U-Net demonstrated higher sensitivity in small
metastases detection, while 2.5D U-Net achieved higher detection
precision. To achieve balance among different performance metrics in
detection, researchers proposed weak learner fusion methods for 2.5D
and 3D network prediction features, which could reduce false positive
predictions for smaller lesions. The 3D non-local convolutional neural
network (NLMET) method by Liew et al. (38) pushed the technical
boundary of small lesion detection to 1 mm and maintained good
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TABLE 1 CNN-based architecture for brain metastasis segmentation.

10.3389/fneur.2025.1581422

Dataset size = Imaging Methodology Model Clinical Evaluation
and source modality validation outcomes metrics
methods predicted
Losch (2015) (31) | 490 patients, 3D MRI (Tlc) Multi-scale ConvNet Internal validation Segmentation Sensitivity: 82.8%
single-center study AFP: 7.7
Grovik et al. 156 patients, 25D MRI(T1, Tle, = GoogLeNet Internal validation Segmentation AUC: 0.98 +0.04
(2020) (12) single-center study = T2, FLAIR) Precision: 0.79 £+ 0.20
Recall: 0.53 +0.22
Dice score: 0.79 + 0.12
Xue et al. (2020) 1,652 patients, 3D MRI (T1) BMDS net Internal and external Detection and Recall: 0.96 + 0.03
(32) multicenter study validation segmentation Specificity:
0.99 £ 0.0002
Dice score: 0.85 + 0.08
Noguchi et al. 444 patients, 2D MRI (T1c¢) AlexNet, GoogLeNet Internal validation Detection AlexNet
(2020) (121) single-center study Accuracy: 50%
Recall: 28%
Specificity: 95%
GooglLeNet:
Accuracy: 45%
Recall: 27%
Specificity: 83%
Dikici et al. 158 patients, 3D MRI (Tlc) CropNet Internal validation Detection AFP: 9.12
(2020) (33) single-center study Sensitivity: 90%
Zhang et al. 121 patients, 3D MRI (T1c¢) Faster R-CNN Internal validation Detection AUC: 0.79
(2020) (122) single-center study Recall: 87.1%
Kottlors et al. 85 patients, single- = 2D MRI (T1c, BB) CNN Internal validation Detection Accuracy: 85.5%
(2021) (123) center study AUC: 0.87
Qu et al. (2023) 1,592 patients, 3D MRI (T1c) GHR-CNN Internal and external Detection and Recall: 85%
(34) multicenter study validation segmentation Dice score: 0.89
PPV:93%
AFP: 1.07
generalization performance across different datasets and  effective integration of emerging network architectures remain the

MRI sequences.

In recent years, the application of adaptive deep learning
frameworks such as nnU-Net in brain metastases detection and
segmentation tasks marks a new stage in the technological
development of this field. Unlike traditional fixed architectural
designs, these frameworks can automatically adjust network structures
and training parameters according to dataset characteristics. Pfliiger
et al. (39) applied nnU-Net to brain metastases detection tasks,
achieving detection of contrast-enhancing tumors and non-enhancing
FLAIR signal abnormal regions without manual adjustment of volume
threshold parameters. In their 2025 research work, Yoo et al. (13)
achieved 0.904 sensitivity in brain metastases detection tasks while
maintaining low false positive rates (0.65+ 1.17) by introducing
tumor volume-adaptive 3D patch adaptive data sampling (ADS) and
adaptive Dice loss (ADL). These results indicate that adaptive
frameworks capable of automatically adjusting according to data
characteristics have performance advantages over manually designed
fixed architectures.

Although U-Net-based brain metastases detection and
segmentation technologies have achieved substantial progress
(Table 2), further improvement in small lesion detection accuracy and

Frontiers in Neurology

main technical challenges currently faced. In small lesion detection
optimization, future research can explore targeted loss function
designs, such as focal loss (40) and OHEM (41) methods that can
effectively handle class imbalance problems and improve detection
sensitivity for small lesions. In feature extraction and fusion strategies,
multi-scale feature extraction, attention mechanisms, and
Transformer-based fusion methods are expected to further improve
small lesion recognition capabilities. Additionally, improvement of
evaluation metrics is also of significant importance; for example,
similarity distance (SimD) (42) can not only consider position and
shape similarity but also automatically adapt to evaluation
requirements for different-sized objects in different datasets. In
network architecture innovation, the successful performance of
emerging architectures like Transformers in natural language
processing and computer vision fields has drawn considerable
attention to their application potential in brain metastases analysis.
For example, the nnU-NetFormer (43) method, which integrates
transformer modules into the deep structure of the nnU-Net
framework, can effectively extract local and global features of lesion
regions in multimodal MR images, although current performance

validation of such networks mainly focuses on brain tumor image
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al. (100), Pfluger et al. (39), Yoo et al. (37), and Liew et al. (38).

U-Net architecture for image segmentation of brain metastases. (a) Typical architecture of a 2D U-Net. (b) Network architecture of nnU-Net. (c) Typical
architecture of a 2.5D U-Net. (d) Typical architecture of a 3D U-Net. (e), Structure of NLMET. Referenced and reproduced with permission from Yoo et

segmentation tasks. Meanwhile, new training strategies such as self-
supervised learning and semi-supervised learning may also provide
new solutions for improving model performance and data utilization
efficiency, aiming to enhance model generalization capability and
clinical applicability while maintaining high accuracy.

2.3 DeepMedic and its variants

While U-Net technology continues to evolve, researchers are also
exploring other architectural solutions specifically designed for 3D
medical image segmentation (Figure 4). DeepMedic, as a CNN
architecture specifically designed for 3D medical image segmentation
tasks, was proposed by Kamnitsas et al. (44) in 2016. Unlike U-Net,
which uses 2D CNNs and captures context and precise localization
through contracting and symmetric expanding paths, DeepMedic
employs a dual-path architecture that can simultaneously process
input images at multiple scales, thereby better combining local and
larger contextual information. This design enables DeepMedic to fully
utilize volumetric data, capturing richer spatial information for more
accurate segmentation of brain metastases. Additionally, DeepMedic
employs a dense training scheme to effectively handle 3D medical
scans and address class imbalance in the data, which contrasts with
U-Net’s method of combining feature maps from contracting paths
with expanding paths via skip connections to preserve high-resolution
information. Another notable feature of DeepMedic is its use of a 3D
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fully connected conditional random field (CRF) for post-processing
to remove false positives, further enhancing segmentation accuracy.
Currently, DeepMedic has achieved state-of-the-art performance on
multiple datasets, providing a new and effective tool for brain
metastasis segmentation.

The emergence of DeepMedic attracted significant attention from
researchers, leading to improvements and applications. Liu et al. (45)
proposed En-DeepMedic, which adds extra sub-paths to capture more
multi-scale features and utilizes GPU platforms to enhance
computational efficiency, further improving segmentation accuracy,
particularly for small lesions. Charron et al. (2) applied DeepMedic to
segment brain metastases using multi-sequence MRI data (T1, T2,
FLAIR), extending its application scope. Hu et al. (46) combined 3D
U-Net with DeepMedic to process integrated MRI and CT images and
proposed a volume-aware Dice loss to optimize segmentation by
utilizing lesion size information, aiming to further improve small
lesion detection. Jiinger et al. (47) trained DeepMedic using data from
heterogeneous scanners from different vendors and research centers,
improving the model’s generalization and robustness, making it more
applicable to clinical scenarios.

To further optimize DeepMedic’s performance, researchers have
continually explored new methods and strategies. Huang et al. (11)
introduced the volume-level sensitivity-specificity (VSS) loss function
to balance sensitivity and specificity, addressing the difficulty
DeepMedic had in reconciling these two aspects and further
enhancing segmentation accuracy. Kikuchi et al. (48) combined
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TABLE 2 U-Net based architecture for brain metastasis segmentation.

Dataset size
and source

Imaging
modality

Methodology

Model
validation
methods

Clinical
outcomes
predicted

10.3389/fneur.2025.1581422

Evaluation
metrics

Bousabarah et al. 509 patients, 3D MRI (T1¢, T2, cU-Net, moU-Net, sU-Net Internal validation Segmentation Recall: 0.82

(2020) (20) single-center study = T2c, FLAIR) Precision: 0.83
Dice score: 0.74

Cao et al. (2021) 195 patients, 3D MRI (T1c) asym-UNet Internal validation Segmentation Dice score: 0.84

21) single-center study False positive: 0.24

Rudie et al. (2021) | 413 patients, 3D MRI (T1, T1 ¢) 3D U-Net Internal validation Segmentation Dice score: 0.75

(22) single-center study Recall: 70.0%

Yoo et al. (2021) 442 patients, 3D MRI (T1c) 2.5D U-Net, 3D U-Net, Internal validation Detection and Recall: 74%

(37) single-center study weak learner fusion, 3D segmentation False positive/scan:
FCOS 0.53
Precision: 75%
Nomura et al. 470 patients, CT, 3D MRI (T1c) 3D U-Net Internal validation Segmentation Dice score:
(2021) (94) single-center study 0.727 £0.115

(2022) (39)

multicenter study

FLAIR, T1 sub)

validation

Cho et al. (2021) 194 patients, 3D MRI (T1c) 3D U-Net, 2D U-Net Internal and external Detection and 1. Time test set 1
(124) multicenter study validation segmentation Recall: 75.1%.
Dice score: 0.69 + 0.22
2. Geography test set
Recall: 87.7%
Dice score: 0.68 + 0.20
Dice score: 0.68 + 0.20
3. Time test set 2
Recall: 94.7%
Dice score: 0.82 + 0.20
3. Time test set 2
Dice score: 0.82 + 0.20
Yin et al. (2022) 1,250 patients, 3D MRI (T1c) BMD Internal and external | Detection Recall: 93.2%
(99) multicenter study validation False positive: 0.38
Park et al. (2021) 282 patients, 3D MRI (BB, GRE) 3D U-Net Internal validation Detection and Recall: 93.1%
(125) single-center study segmentation Dice score: 0.822
Yoo et al. (2022) 65 patients, single- = 3D MRI (T1c) 2D U-Net Internal validation Detection and Recall: 97%
(100) center study segmentation Dice score: 75%
Liang et al. (2022) 407 patients, 3D MRI (T1¢, T2- 3D DCNNs Internal and external Detection and Dice score: 0.73
(95) multicenter study FLAIR) validation segmentation Recall: 0.91
Bouget et al. 3,908 patients, 3D MRI (T1c, AGU-Net Internal and external = Segmentation Precision:
(2022) (126) multicenter study FLAIR) validation 97.63 + 00.77%
Dice score:
87.73 £ 18.94%
Recall: 97.46 + 01.38%
Pfliiger et al. 338 patients, 3D MRI (T1, Tlc, nnUNet Internal and external Detection L-DICE

Internal test set: 0.78
External test set: 0.79
L-Recall

Internal test set: 0.81
External test set: 0.85

(2022) (36)

single-center study

segmentation

Ziyaee et al. 1,051 patients, 3D MRI (T1c) BM-Net + WB-Net Internal validation Detection and Recall: 88.4%

(2022) (98) single-center study segmentation PPV:90.1%
Dice: 82.2%

Chartrand et al. 530 patients, 3D MRI (Tlc) U-Net Internal validation Detection and Recall: 90.9%

Dice score: 0.73
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TABLE 2 (Continued)

10.3389/fneur.2025.1581422

Dataset size  Imaging Methodology Model Clinical Evaluation
and source modality validation outcomes metrics
methods predicted
Lee et al. (2023) 2,149 patients, 3D MRI (T1c, T2) Dual-pathway CNN Internal validation Segmentation Dice score: 0.84
(127) single-center study
Lietal. (2023) 649 patients, 3D MRI (T1, Tlc, Two-stage deep learning Internal validation Detection and Recall: 90%
(128) single-center study = difference between model segmentation Precision: 56%
T1and Tlc) Dice score: 81%
Liew et al. (2023) 677 patients, 3D MRI (T1, Tlc, NLMET Internal and external Detection BrainMetShare
(38) multicenter study T1-FLAIR) validation Recall: 0.811
Local dataset
Recall: 0.74
BrATS dataset
Recall: 0.723
Guo et al. (2025) 2,298 patients, 3D MRI (T1c) Extended nnUNet, ADS, Internal and external Detection and Recall: 0.904
(23) multicenter study ADL validation segmentation Dice score: 0.758
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FIGURE 4
DeepMedic architecture for image segmentation of brain metastases. (a) Typical architecture of DeepMedic. (b) Commonly used structure of 3D U-Net
integrated with DeepMedic. (c) Structure of DeepMedic+. (d), Typical architecture of En-DeepMedic. Referenced and reproduced with permission from
Kamnitsas et al. (44), Hu et al. (46), Huang et al. (11), and Liu et al. (45).

DeepMedic with black and white blood images from the
simultaneously acquired VISIBLE sequence, further improving
detection sensitivity and reducing false positive rates, thus providing

Although DeepMedic and its improved versions have achieved
good results in brain metastases segmentation (Table 3), existing
technologies still have room for improvement in edge texture

a more reliable basis for the accurate diagnosis of brain metastases. recognition of multiple lesions. To address this issue, multi-scale
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TABLE 3 DeepMedic-based architecture for brain metastasis segmentation.

Dataset size

Imaging

Methodology

and source modality

10.3389/fneur.2025.1581422

Model
validation
methods

Evaluation
metrics

Clinical
outcomes
predicted

Kamnitsas et al.

(2016) (44)

335 patients, 3D MRI (FLAIR,
T1, Tlc, T2, DWI,

PD)

DeepMedic

multicenter study

Internal and external Dice score: 84.7%

Precision: 85.0%

Segmentation
validation

Sensitivity: 87.6%

Liu et al. (2017)

(45) multicenter study

514 patients, 3D MRI (T1c) En-DeepMedic

Internal and external Segmentation BRATS dataset

validation Tumor core Dice
score: 0.75 + 0.07
Enhanced tumor Dice
score: 0.81 + 0.04
AUC: 0.99

Clinical dataset
Tumor core Dice
score: 0.67 +0.03

AUC: 0.98 +0.01

Charron et al.

(2018) (2)

182 patients, 3D MRI(T1c,

T2-FLAIR, T1)

DeepMedic

single-center study

Internal validation Detection and Recall: 93%

segmentation Dice score: 0.77

Hu et al. (2019) 341 patients, 3D MRI, CT

(46) single-center study

3D U-Net + DeepMedic

Internal validation Detection and Dice score: 0.740
Precision: 0.779

Recall: 0.803

segmentation

Jiinger et al.

(2021) (47)

98 patients, single- = 3D MRI (T1, T2, T1

¢, FLAIR)

3D DeepMedic

center study

Internal validation Detection and Recall: 85.1%

segmentation Dice score: 0.72

Precision: 68.7%

Park et al. (2022)
(125)

176 patients, 3D MRI (T1c¢) DeepMedic+

single-center study

Internal validation Detection and DeepMedic + JVSS
(a = 0.995)

Recall: 0.932

segmentation

Precision: 0.621
Dice score: 0.808

DeepMedic + JVSS
(a=0.5)

Recall: 0.842
Precision: 0.996
Dice score: 0.760

Kikuchi et al.
(2022) (48)

84 patients, single- | 3D MRI (VISIBLE) DeepMedic

center study

Internal validation Detection Recall: 91.7%

feature extraction and edge detection mechanisms can be integrated
into the DeepMedic network architecture. Multi-scale feature
extraction can enhance the model’s perception capability for lesions
of different sizes, while edge detection can effectively capture edge
texture information of lesions. The combination of these two
approaches is expected to improve the accuracy of brain metastases
image recognition.

In terms of multi-scale feature extraction, inception modules
or feature pyramid networks (FPN) can be introduced into the
encoder part of DeepMedic. Inception modules effectively capture
multi-scale information from images by using convolutional
kernels of different sizes in parallel (such as 1 x 1,3 x 3,5 x5,
etc.), and have achieved good results in various image recognition
tasks (49). FPN achieves effective fusion of features at different
scales by constructing multi-level feature pyramids. For edge
detection, an independent edge detection branch can be added

Frontiers in Neurology

after the output layer of DeepMedic, employing classical methods
such as Sobel operators or Canny operators. The Sobel operator
identifies edges by calculating the gradient of each pixel in the
image in both horizontal and vertical directions, while the Canny
operator is a more complex edge detection algorithm that can
more accurately detect image edges and has the advantage of noise
interference resistance through multi-level filtering and threshold
processing (50). This improvement strategy can effectively extract
edge information from segmentation results, thereby better
identifying edge texture features of lesions and providing more
reliable technical support for precise diagnosis and treatment of
brain metastases.

Reviewing the development trajectory of CNN, U-Net, and
DeepMedic architectures, the technological evolution logic of deep
learning in the field of brain metastases analysis becomes clearly
apparent. CNNs excel in local feature extraction but lack global
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contextual modeling capabilities, which directly resulted in high
false positive rates in small lesion detection for early methods
(such as the false positive rate of 0.05 per slice reported by Losch
(31)). U-Net effectively addressed this limitation through its
encoder-decoder structure and skip connection mechanisms. Its
symmetric network design can both capture high-level semantic
information and preserve low-level detailed features, thus generally
outperforming early CNN methods in segmentation accuracy.
DeepMedic adopts a dual-pathway design to simultaneously
process inputs at different scales (44), possessing natural
advantages when handling 3D volumetric data, although its
computational complexity is relatively high.

From a performance perspective, U-Net-based adaptive
frameworks demonstrate optimal application effectiveness,
particularly the latest nnU-Net variants achieving over 90% sensitivity
in detection tasks and Dice coefficients above 0.8 in segmentation
tasks (13). However, this performance advantage comes at the cost of
sacrificing interpretability, while the simple structure of CNNs makes
feature visualization relatively straightforward, and DeepMedic’s dual-
pathway design allows for separate analysis of contributions at
different scales, providing certain advantages in interpretability.
Regarding generalization ability, DeepMedic and nnU-Net perform
relatively well, with the former showing good consistency across
multi-center data (47) and the latter improving cross-dataset
generalization ability through adaptive mechanisms (39).

Therefore, technology selection in clinical applications should
be based on specific requirements: nnU-Net or improved 3D U-Net
is reccommended for high-precision scenarios, lightweight CNNs or
2.5D U-Net for real-time applications, DeepMedic or domain-
adaptive U-Net should be prioritized for multi-center deployment,
while scenarios requiring interpretability should employ CNNs
combined with visualization techniques. Future research directions
should focus on exploring effective integration of emerging
architectures such as Transformers with existing frameworks, as well
as designing composite loss functions optimized for small lesions,
aiming to enhance model interpretability and generalization ability
while maintaining high accuracy.

10.3389/fneur.2025.1581422

3 Brain metastases image
classification tasks

3.1 Image-based differentiation between
brain metastases and glioblastoma

Brain metastases (BM) and glioblastoma (GBM) represent the
most common malignant brain tumors in adults. For patients with
pre-existing malignancies in other sites, accurate differentiation
between brain metastases and primary glioblastoma when cerebral
lesions appear holds significant clinical importance (51). Brain
metastases demonstrate high similarity to glioblastoma multiforme on
conventional MRI, with both potentially exhibiting rim enhancement
with surrounding T2 hyperintensity, ring enhancement, and
intratumoral necrosis (51, 52). These similar morphological
presentations make accurate differentiation based solely on
conventional imaging challenging (53). However, compared to
glioblastoma multiforme, brain metastases typically feature more well-
defined margins and a more spherical shape. Additionally, the
peritumoral region of brain metastases primarily manifests as vasogenic
edema, whereas glioblastoma multiforme peritumoral areas often show
tumor cell infiltration with irregular shape and invasive growth
characteristics (51, 52). Accurate differentiation based on these feature
distinctions is crucial for treatment strategy formulation, as brain
metastasis patients may receive systemic therapy targeting the primary
tumor and local treatments such as SRS, while glioblastoma multiforme
requires comprehensive treatment including maximal safe resection
followed by molecular classification and concurrent chemoradiotherapy
(51, 54). Evidently, accurate diagnosis not only avoids unnecessary
invasive examinations and reduces patient risk but also improves
diagnostic efficiency and provides a basis for timely treatment. In
recent years, with the rapid development of imaging technologies and
artificial intelligence, researchers have continuously explored new
imaging methods and analytical techniques to improve the preoperative
differential diagnostic accuracy between GBM and BM (Figure 5).

Radiomics, an emerging imaging analysis technique, provides
powerful tools for the differential diagnosis of GBM and BM

(a)Typical BM from lung carcinoma

(b)Typical GBM

FIGURE 5

permission from Parvaze et al. (58).

Brain metastases and glioblastoma images. (a) Typical BM from lung carcinoma. (b) Typical glioblastoma (GBM). Referenced and reproduced with

Frontiers in Neurology

11

frontiersin.org


https://doi.org/10.3389/fneur.2025.1581422
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org

Hu et al.

(Supplementary Table S1). By extracting a large number of quantitative
features from medical images, such as first-order statistics, histogram
features, and texture features (e.g., absolute gradient, gray-level
co-occurrence matrix, gray-level run-length matrix, gray-level size
zone matrix, and neighborhood gray-difference matrix), radiomics
can effectively mine diagnostic information hidden in imaging data,
thus improving the accuracy of distinguishing between GBM and BM.

Researchers such as Qian et al. (53), Artzi et al. (54), and Priya et al.
(52) have extracted radiomic features and used various machine learning
classifiers, including support vector machines (SVM) and random
forests, to build differential diagnosis models for GBM and BM,
achieving high diagnostic accuracy. Some researchers have begun to
explore radiomics models based on multiparametric MRI to obtain more
comprehensive tumor information. Liu et al. (55) extracted radiomic
features from T2-weighted and contrast-enhanced T1-weighted images
and built a tree-based pipeline optimization tool (TPOT) model to
differentiate GBM from BM. The results showed that the model,
incorporating both MRI sequences, achieved the best predictive
performance. Bijari et al. (56) extracted hidden features from four 3D
MRI sequences (T1, T2, T1c, FLAIR) and generated accurate features
highly correlated with model accuracy. By using logistic regression
combined with multidimensional discrete wavelet transformation, a
multitask learning model was implemented to distinguish GBM from
BM. Huang et al. (57) treated the 1,106 features extracted from each
sequence (T1, T2, T1c) as three separate tasks, using a logistic loss
function as a data fitting term to build a feature selection classification
model for GBM and BM classification. Parvaze et al. (58) extracted 93
radiomic features from multiparametric MRI (FLAIR, T1c, T1) and used
random forests to differentiate GBM from BM. Joo et al. (59) extracted
radiomic features from T1, T2, T2 FLAIR, and T1c images and developed
an integrated machine learning model based on LASSO feature selection
and Adaboost, SVC classifiers for multiclass classification of glioblastoma,
lymphoma, and metastases. Gao et al. (60) showed that extracting
diffusion kurtosis imaging (DKI) parameters and conventional MRI
sequence radiomic features, combined with various machine learning
algorithms, could effectively differentiate GBM from SBM. The
multi-DKI parameter model demonstrated the best diagnostic
performance compared to single DKI parameter and conventional MRI
models. These studies show that multitask learning strategies can
effectively utilize complementary information between different MRI
sequences, thus improving diagnostic efficiency and accuracy. Chen et al.
(61) developed a diagnostic model combining texture features from the
entire tumor area and the 10 mm tumor-brain interface area, using
ANOVAILR, KWILR, RELIEF4NB, and RFE5NB algorithms to
differentiate GBM from isolated brain metastasis (BM). In summary;,
radiomics provides an objective and accurate approach for the differential
diagnosis of GBM and BM by extracting and analyzing multidimensional
imaging features and using machine learning algorithms to construct
predictive models, with promising clinical applications.

Convolutional neural networks (CNN), as an optimized deep
learning technique, also show significant advantages in distinguishing
GBM from BM (Supplementary Table S2). CNN models, with their
unique structure, can automatically extract and learn multi-level
features from imaging data that are difficult for traditional imaging
analysis methods to extract and quantify (51, 62), such as tumor
boundary clarity, features of internal necrotic areas, and infiltration of
surrounding tissue. Then, through end-to-end training, the feature
extraction and classification process is gradually optimized, effectively
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capturing subtle differences between GBM and BM and improving
diagnostic accuracy. This end-to-end training mechanism allows
CNN s to gradually learn abstract features from raw images, ranging
from low-level features like edges and textures in shallow convolutional
layers to more complex patterns like tumor shape, structure, and
spatial distribution in deeper layers.

Bae et al. (51) and Shin et al. (63) respectively built differential
diagnosis models for GBM and BM using deep neural networks (DNN)
and ResNet-50, achieving diagnostic performance superior to that of
junior neuroradiologists. This suggests that deep learning models can
reach or even exceed human experts’ performance in some cases. To
better utilize imaging information, researchers have developed
classification models based on 3D CNNs. Chakrabarty et al. (62)
developed a 3D CNN algorithm for classifying six common brain
tumors, including GBM and BM, and achieved good classification
results on T1-weighted MRI scans. The 3D CNN effectively captures the
spatial information of tumors, improving diagnostic performance. In
addition, multiparametric MRI is widely used in deep learning models.
Yan et al. (64) used a 3D ResNet-18 algorithm and multiparametric MRI
(DWI and conventional MRI) to construct a differential diagnosis
model for GBM and BM, finding that the model combining DWT and
conventional MRI had a higher AUC than single MRI sequence models,
indicating that multimodal imaging data provide richer diagnostic
information. Xiong et al. (65) used the GoogLeNet model and
preoperative multiplanar T1-weighted enhanced (T1CE) MRI images
to automatically differentiate high-grade gliomas (HGG) from solitary
brain metastasis (SBM). The model achieved an average accuracy of
92.78% in distinguishing HGG from SBM, with over 90% accuracy even
when distinguishing using only the tumor core or edema region. To
further enhance clinical reliability, Park et al. (66) proposed a deep
ensemble network based on DenseNet121, processing multiparametric
MRI images to differentiate GBM and BM. This model not only provides
accurate diagnostic results but also offers predictions of uncertainty and
interpretability, enhancing clinicians’ trust in the model. In summary;,
deep learning methods, by automatically learning and analyzing
complex imaging features, provide new and effective tools for the
differential diagnosis of GBM and BM, advancing precision medicine.

Although the combination of imaging technology and AI has
made significant progress in the differential diagnosis of GBM and
BM, further research is needed to overcome existing challenges.
Future studies should develop interpretable deep learning models,
such as using heatmaps and Grad-CAM methods to explain model
predictions, improving their clinical application value. Additionally,
the development of automated tools, such as fully automated image
segmentation and feature extraction tools, can enhance research
efficiency and model robustness (55, 59, 60). In conclusion, future
research needs breakthroughs in expanding sample sizes, integrating
multimodal imaging data, exploring more detailed tumor sub-region
analysis, combining clinical information, and enhancing model
interpretability, to ultimately achieve accurate differential diagnosis of
GBM and BM, providing better decision support tools for clinicians.

3.2 Classification of brain metastases
sources

Accurate identification of brain metastases origin holds significant
importance in clinical practice, as brain metastases from different
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primary sites exhibit marked differences in treatment responsiveness
and prognosis. For example, brain metastases from small cell lung
cancer (SCLC) and non-small cell lung cancer (NSCLC) are suitable
for chemosensitivity therapy and surgery combined with targeted
therapy, respectively (67), while brain metastases from breast cancer
and melanoma may be more amenable to corresponding molecular
targeted therapies or immunotherapies (68). These differences in
treatment options directly impact patient survival benefits. However,
in the absence of definitive primary lesion information, traditional
tissue biopsy, although capable of determining the primary site, not
only carries surgical risks and increases patient suffering but also
proves intolerable for some patients due to factors such as poor
physical condition or lesion location. Furthermore, when facing
different pathological subtypes from the same organ, such as
distinguishing between SCLC and NSCLC for refined classification,
pathological biopsy alone often cannot provide sufficiently
comprehensive information. Additional auxiliary methods such as
immunohistochemical staining, molecular pathological detection, or
genetic testing are typically required to clarify specific typing (67).
Failure to promptly and accurately identify the origin leads to
difficulties in treatment selection, affecting the optimal therapeutic
window. Therefore, developing non-invasive imaging-based methods
for brain metastases origin identification, using artificial intelligence

10.3389/fneur.2025.1581422

technology to assist image analysis as an important complementary
tool for clinical diagnosis, providing rapid and reliable auxiliary
diagnostic information for clinical practice, holds significant value for
optimizing treatment decisions and improving patient prognosis.

However, traditional imaging diagnostic methods often struggle
to accurately identify the source of brain metastases (Figure 6).
Nonetheless, studies have shown that deep learning and machine
learning methods can successfully classify the source of brain
metastases (Supplementary Tables S3, S4). Image texture and
radiomics analysis can extract subtle features from medical images
that are difficult for the human eye to recognize, such as the
uniformity, roughness, and directionality of the tumor’s internal gray-
level distribution. These features are closely related to the tumor’s
pathological characteristics, gene expression, and biological behavior,
making them useful for distinguishing brain metastases originating
from different primary tumors.

Classical machine learning methods have played an important
role in the recognition of the primary source of brain metastases.
Numerous studies have used machine learning methods to analyze
texture features extracted from MRI or CT images in order to
differentiate brain metastases originating from various primary
tumors. Ortiz-Ramon et al. (16, 69, 70) conducted a series of studies
exploring the impact of different texture features, classification

(A)LC originated brain metastasis

Ea

(a)adenocarcinoma

(b)squamous cell carcinoma

(c)small cell lung carcinoma

N

(B)BC originated
brain metastasis

(C)melanoma originated
brain metastasis

(D)Other originated brain metastasis

FIGURE 6

Ramon et al. (16), and Shi et al. (75).

Images of brain metastases of different origins. (A) Lung carcinoma originated brain metastasis. The subtypes of brain metastases that arise from lung
carcinoma include: (a) Adenocarcinoma. (b) Squamous cell carcinoma. (c) Small cell lung carcinoma. (B) Breast cancer originated brain metastasis.
(C) Melanoma originated brain metastasis. (D), Other originated brain metastasis. Referenced and reproduced with permission from Tulum (68), Ortiz-
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models, and image modalities on brain metastasis classification. Early
research (69) used 3D texture features and compared five classifiers:
naive Bayes (NB), k-nearest neighbors (k-NN), multilayer perceptrons
(MLP), random forests (RF), and linear kernel support vector
machines (SVM). The study found that the NB classifier performed
the best (AUC = 0.947 + 0.067). Further research (70) focused on 2D
texture features and used SVM and k-NN classifiers for evaluation.
The results showed that the SVM classifier, combined with two gray-
level co-occurrence matrix features, achieved a higher AUC
(0.953 £ 0.061). In a subsequent study (16), they compared 2D and 3D
texture features and found that 3D texture features were more
advantageous in distinguishing brain metastases from different
primary tumors. Using 3D texture features with 32 gray levels and a
random forest classifier, they achieved an AUC of 0.873 + 0.064.
Béresova et al. (71) used texture analysis techniques [local binary
pattern (LBP) and gray-level co-occurrence matrix (GLCM)] to
extract image features and applied discriminant function analysis
(DFA) to differentiate brain metastases from lung cancer and breast
cancer. They compared texture features from contrast-enhanced
T1-weighted images and LBP images and found that LBP image
texture features were more effective in distinguishing lung cancer and
breast cancer brain metastases, achieving an accuracy of 72.4%.

Kniep et al. (72) combined radiomics features with clinical data
and used random forests to predict five different types of metastatic
tumors, achieving AUC values ranging from 0.64 to 0.82. Zhang et al.
(73) used radiomic features from brain CT images, combined with age
and gender information, and applied binary logistic regression and
SVM models to differentiate brain metastases from primary lung
adenocarcinoma and squamous carcinoma, with AUC values of 0.828
and 0.769, respectively. Cao et al. (74) constructed and evaluated
logistic regression and SVM models using selected radiomic features
from individual CT, MRI, and combined images. The model showed
the highest accuracy in differentiating brain metastases from lung
cancer and breast cancer origins, with AUC values of 0.771 and 0.805,
respectively. Tulum (68) combined traditional machine learning
(SVM and MLP based on radiomics) and deep learning
(EfficientNet-b0 and ResNet-50) to differentiate different subtypes of
lung cancer brain metastases from MRI images. Although traditional
machine learning methods performed well with small datasets, deep
learning methods, through transfer learning, demonstrated higher
classification performance on small datasets. Shi et al. (75) expanded
the application range of radiomics by using LASSO regression to select
multi-region radiomics features and then using logistic regression to
differentiate brain metastases from lung adenocarcinoma and breast
cancer origins. They also predicted epidermal growth factor receptor
(EGFR) mutations and human epidermal growth factor receptor 2
(HER?2) status, providing new insights for personalized treatment of
brain metastasis patients. Mahmoodifar et al. (76) focused on the
spatial distribution features of brain metastases. They used principal
component analysis (PCA) to reduce the dimensionality of the spatial
coordinates of brain metastases and combined age, target volume, and
gender information with random forests, SVM, and TabNet deep
learning models to differentiate brain metastases from five different
primary cancer types. The SVM algorithm achieved an accuracy of
97%, and the TabNet model reached 96%.

These studies demonstrate that texture and radiomic features
extracted from MRI or CT images, combined with appropriate
machine learning models (68, 77), can effectively differentiate brain
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metastases from different primary tumors and predict relevant
molecular marker statuses (75), providing new tools and strategies for
the diagnosis, differential diagnosis, and personalized treatment of
brain metastases. Compared to traditional machine learning methods,
convolutional neural network-based deep learning models can
automatically learn complex features in images without manual design
or extraction of texture features, thus improving classification
efficiency. For example, CNN models like EfficientNet (67, 68) and
ResNet (68, 78-80) have achieved remarkable results in differentiating
brain metastases from small cell lung cancer and non-small cell lung
cancer, with accuracies reaching over 90%. Additionally, the
application of 3D residual networks (3D-ResNet), combined with
attention mechanisms, has further enhanced the model’s ability to
capture key information, thus improving classification accuracy. For
example, in a study (78), the use of a 3D-ResNet model for analyzing
multi-sequence MRI data successfully increased the classification
accuracy of small cell lung cancer versus non-small cell lung cancer
brain metastasis from 85 to 92%.

3.3 Classification of radiation necrosis and
tumor recurrence

Radiation necrosis (RN) represents a significant late complication
of SRS, with an incidence rate of 2.5-24%, predominantly occurring
within 2 years post-treatment (81-83). When brain metastasis patients
demonstrate new enhancing lesions on MRI after SRS treatment,
differentiation between radiation necrosis and recurrent brain
metastases becomes essential (Figure 7). Patients with radiation
necrosis should avoid further radiotherapy to prevent exacerbation of
necrosis, selecting non-invasive pharmacological treatment based on
symptom severity or, when necessary, undergoing craniotomy to
remove necrotic tissue. Conversely, tumor recurrence requires
continued aggressive anti-tumor therapy, with options including
repeated stereotactic radiosurgery or surgical resection. However,
existing research indicates that conventional MRI alone typically
cannot reliably distinguish between post-radiation radiation necrosis
and recurrent tumors (84), presenting a challenge for clinical decision-
making. Although biopsy with histopathological evaluation remains
the gold standard for differential diagnosis, stereotactic biopsy may
encounter sampling bias in mixed lesions containing both post-
radiation radiation necrosis and recurrent tumors, making it difficult
to obtain representative tissue samples (83). Furthermore, tissue
biopsy not only carries inherent surgical risks, including complications
such as hemorrhage, infection, and neurological function impairment,
but also cannot be repeatedly performed as a routine monitoring
method, significantly limiting its application value in dynamic
assessment. Therefore, developing cost-effective non-invasive imaging
diagnostic methods with high sensitivity and specificity holds
significant clinical value for accurately differentiating between post-
radiation radiation necrosis and recurrent tumors, as well as guiding
individualized treatment decisions.

After brain tumor patients receive radiotherapy, new enhanced
lesions often appear on magnetic resonance imaging (MRI), which
could be either tumor recurrence or benign radiation necrosis. These
two conditions often appear similar in imaging features (Figure 7),
making differentiation a challenging task. Accurate differentiation is
crucial for formulating subsequent treatment plans and improving
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FIGURE 7

Tumor progression images and radio-necrosis images. (A) Typical tumor progression. (B) Typical radiation necrosis. Referenced and reproduced with

permission from Kim et al. (87).

patient prognosis. Traditional MRI sequences, such as T1-weighted
imaging, T2-weighted imaging, and fluid-attenuated inversion
recovery (FLAIR), form the basis for differential diagnosis. By
observing the signal characteristics of lesions across different
sequences, such as T1/T2 signal differences and lesion morphology,
an initial judgment can be made regarding the nature of the lesion.
However, these traditional MRI sequences often suffer from low
sensitivity, making it difficult to reliably differentiate between tumor
recurrence and radiation necrosis on their own (84). To improve
diagnostic accuracy, various advanced artificial intelligence (AI)
techniques have been introduced into clinical practice in recent years
(Supplementary Table S5).

Larroza et al. (85) extracted 179 texture features, used recursive
feature elimination with support vector machines (SVM) to select 10
important features, and then built a classification model with an SVM
classifier. The results showed that the model achieved an area under
the curve (AUC) of 0.94 + 0.07 on the test set, demonstrating the
potential of image texture-based analysis for distinguishing brain
metastasis and radiation necrosis. Radiomics analysis has started to
focus on the extraction and application of texture features in
multiparametric MRI (such as T1c, T2, FLAIR, etc.) (86). For example,
Tiwari et al. (86) utilized radiomic features extracted from
multiparametric MRI and applied an SVM classifier to differentiate
brain radiation necrosis and recurrent brain tumors, with FLAIR
sequence achieving the highest AUC of 0.79. This suggests that
combining multimodal imaging information can further improve
diagnostic accuracy. Furthermore, Kim et al. (87) extracted radiomic
features from magnetic susceptibility-weighted imaging and dynamic
susceptibility contrast-enhanced perfusion imaging, and used logistic
regression models to identify the best predictive factors for
distinguishing recurrence and radiation necrosis. Their selected two
predictive factors achieved 71.9% sensitivity, 100% specificity, and
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82.3% accuracy. Yoon et al. (88) used volumetric weighted voxel-based
multiparametric clustering to analyze parameters such as ADC, nCBV,
and TAUC, achieving an AUC of 0.942-0.946. Zhang et al. (89)
extracted 285 radiomic features from T1, T1 enhanced, T2, and
FLAIR sequences, and used the RUSBoost ensemble classifier to
construct a model with a prediction accuracy of 73.2%. Peng et al. (90)
employed 3D texture analysis and a random forest classifier, achieving
higher classification accuracy (AUC >0.9). Their study found that 3D
texture features were more suitable for differentiating brain metastases
from lung cancer compared to breast cancer and melanoma, and
random forests performed better with fewer features. This study also
provided a potential non-invasive diagnostic tool for brain metastasis
patients of unknown primary origin. Chen et al. (91) extracted
multiparametric radiomics features and used random forest
algorithms to construct a classification model, achieving an AUC of
0.77 in the training cohort and 0.71 in the validation cohort. Salari
et al. (92) extracted radiomic features from MR contrast-enhanced
T1-weighted images and used random forest algorithms, achieving an
AUC of 0.910 + 0.047. Basree et al. (17) analyzed radiomic features
from T1 enhanced, T2, and FLAIR sequences and used logistic
regression models for prediction, achieving an AUC of 0.76 + 0.13.
Zhao et al. (93) extracted image features from 3D MRI scans, collected
7 clinical and 7 genomic features, and fused them using position
encoding in a heavy ball neural ordinary differential equations
(HBNODE) model to predict radiation necrosis or recurrence after
SRS for BM, achieving an ROC AUC of 0.88 + 0.04, sensitivity of
0.79 + 0.02, specificity of 0.89 + 0.01, and accuracy of 0.84 + 0.01.
Although deep learning has made significant progress in medical
image analysis, it has not yet been widely applied to directly
differentiate radiation necrosis from recurrent tumors after
radiotherapy. Current research primarily focuses on extracting
radiomic features from images and constructing classifiers using

frontiersin.org


https://doi.org/10.3389/fneur.2025.1581422
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org

Hu et al.

classical machine learning methods. There is currently a lack of studies
using deep learning methods, such as convolutional neural networks
(CNNs), to distinguish between radiation necrosis and tumor
recurrence after radiotherapy. This may be closely related to the
dependence of deep learning models on large annotated datasets.
Since cases of radiation necrosis and recurrence are relatively few,
there is a shortage of training samples, which is one of the major
factors limiting the performance of deep learning models.
Furthermore, the problem of data imbalance exacerbates this
challenge. Radiation necrosis cases are often far fewer than recurrence
cases, leading to model bias towards the majority class during training,
which weakens the model’s ability to recognize the minority class. This
imbalance is particularly pronounced in tasks that require high
precision to distinguish between two similar pathological states,
significantly affecting the model’s classification performance. At the
same time, acquiring high-quality annotations is also challenging.
Annotating medical images requires in-depth expertise and relies on
annotators’ extensive clinical experience. However, subjective
differences between different doctors and inconsistencies in
annotations by the same doctor at different time points can introduce
noise into the data, adversely affecting the model’s training outcomes.
These factors together limit the widespread application of deep
learning in distinguishing radiation necrosis from recurrent tumors.
However, deep learning algorithms have the ability to
automatically learn complex features from medical images, eliminating
the need for manual feature extraction. In practical applications, deep
learning models shorten diagnostic cycles and improve efficiency
through fully automated processes. Additionally, deep learning
models exhibit strong adaptability and robustness, being able to
handle imaging data from different modalities and resolutions. This
demonstrates the vast potential for deep learning in distinguishing
radiation necrosis from recurrent tumors. Despite challenges such as
limited data availability, data distribution imbalance, and difficulty in
acquiring high-quality annotations, targeted and effective solutions
are gradually emerging through further research and practical
exploration. Regarding sample size expansion, data augmentation
techniques (20, 94, 95) can generate new samples with similar
distributions to the original data by performing transformations such
as rotation, scaling, and cropping, effectively expanding the training
dataset. To address the data imbalance issue, resampling techniques
such as random oversampling, undersampling, and the SMOTE
(synthetic minority over-sampling technique) algorithm (96) can
adjust the sample proportion of different categories in the dataset,
enabling the model to focus more on the minority class samples
during training and improving its recognition ability for the minority
class. Additionally, to solve the high-quality annotation issue,
establishing standardized annotation processes and multi-expert
consensus mechanisms is key. By setting detailed annotation
guidelines and conducting cross-validation and annotation review
with multiple experienced medical experts, the subjective differences
and inconsistencies during annotation can be effectively minimized,
thereby improving the quality and reliability of annotated data.

4 Challenges and future directions

In brain metastasis research, the application of machine learning
has made significant progress, but there are still challenges in tasks
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such as detection, segmentation and classification, including issues
such as small sample sizes, insufficient model generalization ability,
and multimodal data integration. To address these challenges,
researchers have actively explored various solutions. For instance, to
overcome data limitations, techniques such as data augmentation (20,
94, 95), dense overlapping stitching (95), and transfer learning (67, 68)
have been widely used. To improve model generalization ability,
researchers have focused on domain generalization (38, 94), multi-
center dataset training (97), and adaptive network architectures (13,
39, 98). Methods such as multi-channel input and feature fusion (99)
have been used to integrate complementary information from
multimodal MRI images. For specific tasks, researchers have also
developed corresponding strategies. For example, in brain metastasis
segmentation, methods such as asymmetric structures (21), multi-
scale feature fusion (99), improved loss functions (36), and overlapping
patch techniques (100) have been used to improve the sensitivity of
small lesion detection. In the differentiation between GBM and BM,
brain metastasis and radiation necrosis, researchers have not only
focused on integrating multimodal imaging data (51, 54, 55, 60, 63,
84, 87, 101), but have also explored more detailed tumor sub-region
analysis (14, 54, 58, 60, 61, 65) and integration of clinical information
(57, 59, 102) to improve diagnostic accuracy.

However, current research still has several limitations
(Supplementary Table S6). For example, although CT images play a
key role in the early screening of brain metastasis, most current studies
focus on MRI images, neglecting the potential applications of CT
images in brain metastasis segmentation and classification tasks.
Additionally, most of the existing studies have small sample sizes and
lack multi-center validation, which limits the model’s generalization
ability and clinical application value. Furthermore, the interpretability
of deep learning models still needs improvement, and enhancing the
transparency and trustworthiness of models will help integrate them
more effectively into clinical workflows.

4.1 The gap between CT and MRI in brain
metastasis image analysis

Deep learning has made significant progress in brain metastasis
MRI image analysis, but incorporating CT images into the analysis
pipeline holds important clinical significance and research value. First,
CT examinations are more widespread and economical, especially in
developing countries and primary healthcare settings, making CT a
more accessible diagnostic tool. It is also more patient-friendly for
individuals who are immobile or unable to tolerate long MRI scans.
Additionally, CT images serve as the standard imaging basis for
radiotherapy planning. Integrating CT images into brain metastasis
segmentation and classification tasks can better assist in delineating
radiotherapy target areas and dose calculation, improving the
precision and safety of radiotherapy.

Although CT images are less commonly used in brain metastasis
image segmentation and classification, some studies have explored
this. In brain metastasis image segmentation, Wang et al. (103)
constructed an improved U-Net architecture with a position attention
module (PAM) to automatically segment the gross tumor volume
(GTV) from CT simulation images of brain metastasis patients. This
model demonstrated excellent performance in external independent
validation sets, though its generalization ability needs further
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validation. Wang et al. (104) further innovated by combining GAN,
Mask R-CNN, and CRF optimization to construct a deep learning
model for automatic segmentation of GTV in brain metastasis from
CT simulation images. The model demonstrated good generalization
ability on both internal and external validation datasets, providing an
effective technical approach for brain metastasis image segmentation.
However, despite advances in CT image segmentation technology in
brain metastasis diagnosis, its performance still lags behind MRI and
requires further optimization.

In brain metastasis image classification, existing research has
attempted to use CT radiomics features and deep learning models. For
example, Li et al. (105) used CT radiomics features from lung cancer
patients to predict brain metastasis, achieving good diagnostic
performance (AUC = 0.81). Zhang et al. (106) constructed a stacked
ensemble model for classifying tumor volume (GTV), brainstem, and
normal brain tissue in brain metastasis CT images, outperforming
individual base models (AUC = 0.928, 0.932, and 0.942, respectively).
Gong et al. (107) proposed a deep learning model combined with CT
radiomics features to predict the risk of brain metastasis in non-small
cell lung cancer patients within 3 years. Their ensemble learning
model showed good predictive efficacy on both training and validation
sets (AUC between 0.85-0.91). While CT images have been applied in
brain metastasis classification, the lower image clarity and resolution
compared to MRI make it more challenging to distinguish brain
metastasis from normal tissue in CT images. As a result, models
trained on CT images typically perform worse in feature extraction,
classification accuracy, and generalization ability compared to models
trained on MRI images, limiting the depth and breadth of research in
brain metastasis CT image classification. However, globally, especially
in developing countries and primary healthcare settings, CT remains
an important diagnostic tool due to its higher prevalence, lower cost,
ease of access, and greater convenience for patients unable to tolerate
long MRI scans. Therefore, CT continues to play a crucial role in brain
metastasis diagnosis and related research, prompting researchers to
address the limitations of CT images and improve the performance of
models based on CT images.

In future research, considering the differences between CT and
MRI in imaging principles and clinical application advantages, and
recognizing that they cannot replace each other, it may be valuable to
combine both modalities to more comprehensively assess brain
metastasis characteristics. Exploring deep learning models based on
fused CT and MRI images, such as developing automatic brain
metastasis segmentation models or classification models, could
improve segmentation and classification accuracy, leading to more
precise treatment planning.

4.2 The conflict between Al model
generalization and patient privacy
protection

Deep learning models show great potential in the diagnosis and
treatment of brain metastasis, offering innovative solutions and
breakthrough possibilities in this field. However, a key factor limiting
the widespread clinical application of deep learning models is the lack
of sufficient external validation. This issue leads to insufficient model
generalization, making it difficult for the models to adapt to the
complex and dynamic clinical scenarios.
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Insufficient model generalization is a common issue in medical
imaging research. In brain metastasis segmentation research, some
studies lack external validation on independent test sets, rely only on
single-center data, or lack multi-center data for external validation.
Some studies also use multimodal MRI data and cascaded networks,
but with small training datasets from single institutions, making it
difficult to adapt to different hospital scanning technologies and
hardware differences, limiting the generalization ability of the models
and potentially leading to performance degradation in real-world
applications. Similar issues arise in the differential diagnosis of GBM
and BM, identification of brain metastasis sources, and the
differentiation of radiation necrosis and tumor recurrence post-
radiotherapy. Many studies lack external dataset validation, making it
difficult to ensure the models’ effectiveness in diverse environments.
Some studies also suffer from small sample sizes and focus only on
limited tumor types, resulting in poor model generalization ability.
Furthermore, some studies also face the combined challenges of small
sample sizes, lack of external independent validation, and pathology
diagnosis verification, reducing the reliability of the results and
severely limiting the model’s generalization ability, making it difficult
to apply in broader clinical settings. The limitations in model
generalization performance are not challenges unique to brain
metastasis segmentation tasks. The medical image analysis field has
addressed similar issues through establishing large-scale clinical
validation datasets via multi-institutional collaborations, while
simultaneously utilizing these standardized datasets to provide unified
accuracy assessment metrics (such as sensitivity, specificity, Dice
coefficient, etc.), thereby enabling direct performance comparison and
objective evaluation between different algorithms. The primary brain
tumor segmentation validation framework represented by the brain
tumor segmentation (BRATS) challenge has thoroughly validated the
effectiveness of this multi-center data-driven approach in enhancing
algorithm clinical translation capabilities, providing a successful
paradigm that can be referenced for brain metastasis image analysis
tasks (18).

To promote the clinical application of machine learning
technologies in brain metastasis segmentation and classification,
validation is needed on larger, more diverse clinical datasets to assess
the models’ reliability and effectiveness. However, constructing large-
scale, diverse brain metastasis datasets also presents challenges,
especially in head and neck imaging data. Unlike imaging data from
other parts of the body, head and neck images contain a significant
amount of facial information, which is highly identifiable and
reconstructible, and direct public use could lead to patient privacy
breaches. Therefore, when building public datasets, strict
anonymization processes, such as face blurring or de-identification,
are necessary to ensure patient privacy. This is one of the reasons why
head and neck tumor imaging data in public databases like TCIA are
difficult to share openly.

However, while strict anonymization can address privacy
concerns to some extent, the variability of data from different
hospitals introduces new challenges. Differences in scanners,
imaging parameters, and patient populations at different hospitals
can make generalization ability even more crucial for clinical
To
adaptation/domain generalization techniques (108) can be used to

applications. improve model generalization, domain

overcome distribution differences between datasets, for example,
by learning common features across domains or regularizing the
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model to enhance its robustness to different data distributions.
Additionally, federated learning techniques (109) can be used to
train models on multi-center data while protecting patient privacy.
For example, Jiménez-Sanchez et al. (110) proposed a federated
learning method combining curriculum learning and unsupervised
domain adaptation, which achieved significant results in
classification performance (AUC 0.79, PR-AUC 0.82, far
surpassing traditional methods) and domain adaptation in breast
cancer classification. Feng et al. (111) built a robust federated
learning model (RFLM) using multi-center preoperative CT
imaging data of gastric cancer patients, outperforming clinical
models and other federated learning algorithms in predicting
post-surgery recurrence risk. Federated learning methods,
including horizontal, vertical, and federated transfer learning, can
be selected based on specific situations. Horizontal federated
learning is suitable for cases where participants have similar
features but different samples, such as brain metastasis patient data
from different hospitals. Vertical federated learning is suitable
when participants have the same samples but different features,
such as data from different departments within the same hospital.
Federated transfer learning is applicable when participants have
both different Additionally, data
heterogeneity, communication efficiency, and privacy concerns

samples and features.
must be considered. Techniques such as differential privacy and
homomorphic encryption can further enhance privacy protection
in federated learning.

For brain metastasis diagnosis and treatment, federated learning
can be used to integrate data from multiple medical institutions,
thereby training deep learning models with better generalization
ability. For example, a federated learning network involving multiple
hospitals can be built to collaboratively train a brain metastasis
segmentation model using each hospital’s imaging data, without
sharing raw patient image data, effectively protecting patient privacy.

However, despite federated learning demonstrating enormous
potential at the technical level, it still faces complex administrative
coordination and policy regulation challenges in practical applications,
which perhaps explains why most current large-scale medical imaging
databases tend to adopt the traditional model of multi-source
anonymized data integration. In the future, federated learning
technology needs continuous optimization in algorithm robustness,
privacy protection mechanisms, and heterogeneous data processing
capabilities to better adapt to the practical requirements of complex
medical image analysis tasks such as brain metastases.

4.3 Al model interpretability and clinical
trust challenges

Although deep learning models have achieved excellent
performance in brain metastases detection, segmentation, and
classification tasks, their “black box” characteristics severely constrain
clinical translation applications. Al interpretability challenges in brain
metastases diagnosis are particularly prominent, as clinicians need to
understand how Al distinguishes microscopic lesions smaller than
3mm from vascular artifacts, the basis for determining lesion
boundaries, and the prioritization logic in cases with multiple lesions.
This lack of decision transparency directly affects physicians’ trust in
Al systems, becoming a critical barrier to clinical adoption.
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Current interpretability methods exhibit obvious limitations in
brain metastases applications. Although Adnan et al. (112) employed
Grad-CAM technology to visualize model attention regions, with
their NASNet large model achieving 92.98% accuracy while providing
clear localization, the interpretation granularity is coarse and difficult
to meet precise diagnostic requirements. Chen et al. (113) used SHAP
methods to analyze 10 mm brain-tumor interface features, with their
logistic regression model achieving an AUC of 0.808 and quantifying
feature contribution values, but the computational complexity of high-
dimensional image processing limits real-time applications. The
integrated gradients method by Sayres et al. (114) improved physician
sensitivity from 79.4 to 88.7%, yet simultaneously exposed the double-
edged effect of interpretability—potentially increasing misdiagnosis
risk for patients without lesions. These studies indicate that existing
interpretability techniques lack optimization design specifically for
brain metastases tasks.

The impact of interpretability deficiency has transcended the
technical level, becoming a significant barrier for Al systems to obtain
regulatory approval, hospital procurement decisions, and clinical
workflow integration. In clinical practice, radiologists’ acceptance of
AJ recommendations highly depends on their understanding of
decision logic, particularly when handling complex cases or
formulating treatment plans. Current brain metastases Al research
generally treats interpretability as an additional feature rather than a
core requirement, leading to a disconnect between technological
development and clinical needs.

Future brain metastases Al systems should construct multi-level,
personalized interpretability frameworks. At the technical level,
comprehensive solutions integrating LIME local interpretation,
Grad-CAM global visualization, and uncertainty estimation are
needed, incorporating brain anatomical prior knowledge and
radiomics semantic features. At the clinical level, stratified
interpretation interfaces should be designed for physicians with
different experience levels, providing detailed educational explanations
for residents and key feature summaries for senior physicians. At the
system level, standardized metrics for interpretability evaluation and
multi-center validation mechanisms need to be established to ensure
clinical effectiveness and safety of interpretation methods. More
importantly, deep integration of interpretable AI with clinical decision
support systems should be promoted, constructing a fully transparent
diagnostic and treatment system from image analysis to treatment
recommendations, truly achieving collaborative development between
AT technology and clinical practice.

4.4 Lack of clinical practice translation and
reader studies

Although deep learning models have shown significant potential
in the diagnosis and treatment of brain metastases, their clinical
translation still faces numerous challenges. For instance, while the
U-Net architecture and its improved models have achieved small-scale
clinical applications in brain metastasis image segmentation, they still
face significant limitations in terms of precision for small lesion
detection and generalization ability, particularly when adapting to
different scanning devices and MRI sequences (20, 21). These
technical limitations severely restrict large-scale clinical translation
and application. Similarly, in brain metastasis image classification
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tasks, machine learning-based models for the differentiation of
glioblastoma (GBM) and brain metastasis (BM) show high diagnostic
accuracy in internal validation, but their clinical application remains
significantly limited. The main reason is that these models are often
based on single-center retrospective studies, lacking multi-center
external validation, leading to concerns about their reliability across
different medical institutions and patient populations (51, 53, 54).
Furthermore, while studies combining radiomics and machine
learning have made some progress in differentiating brain metastasis
subtypes, the lack of standardized feature selection and model
optimization processes has resulted in poor reproducibility and
consistency between studies, severely affecting the clinical deployment
value of these models (69, 70, 96).

To better serve clinical practice, Al research should establish a
standardized validation process system comprising three levels:
technical validation, clinical validation, and implementation
validation. The technical validation phase should adopt multi-
dimensional assessment metrics including Dice coefficient, sensitivity,
specificity, and Hausdorft distance, while introducing clinical
relevance evaluation. Clinical validation requires designing
prospective multi-center randomized controlled reading studies (110),
objectively evaluating the impact of Al systems on diagnostic accuracy,
reading time, and clinical decision-making by randomly assigning
radiologists of different experience levels to Al-assisted groups and
control groups. The key is to establish unified MRI scanning parameter
standardization protocols, including technical specifications such as
contrast agent injection timing for T1c sequences and slice thickness
settings, as well as image quality control standards, ensuring
consistency and comparability of multi-center research data.

To achieve genuine clinical application of Al systems, key issues
such as technical integration and regulatory compliance must
be addressed. In PACS system integration, interface design based on
DICOM standards should be adopted, developing structured report
formats compliant with DICOM-SR standards to achieve seamless
storage and retrieval of AI analysis results in PACS (115). Through
asynchronous processing modes and automatic triggering
mechanisms, the system should be capable of automatically processing
newly uploaded brain MRI examinations without affecting normal
hospital workflow. In regulatory compliance, quality management
systems meeting the requirements of regulatory agencies such as FDA
and NMPA must be established, including complete software lifecycle
management, risk control measures, and continuous performance
monitoring mechanisms. Al system performance dashboards should
be established to monitor key indicators such as processing time and
accuracy in real-time, automatically alerting and initiating emergency
responses when performance deviates from preset thresholds.
Additionally, improving clinical physicians’ acceptance is equally
critical. Training programs should be designed for medical personnel
at different levels, helping clinicians understand the advantages and
limitations of AI systems through case analysis and practical exercises,
and establishing user feedback collection mechanisms to continuously
optimize system functionality.

In reader studies, existing research exhibits obvious inadequacies.
Although studies indicate that deep learning-assisted systems (BMSS)
can significantly improve the accuracy and efficiency of brain
metastases delineation, particularly with more pronounced effects for
less experienced residents (116), these studies are mostly limited to
single-center small-sample data, resulting in lack of generalizability.
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Compared to fields such as breast cancer detection and lung cancer
detection (117, 118), reader studies for Al in brain metastases
segmentation and classification tasks are relatively lacking. Current
research focuses more on technical-level algorithm optimization and
performance improvement, with less involvement in evaluating
radiologists’ performance when using Al tools in actual clinical
practice. Future research should pay more attention to radiologists’
performance when using Al-assisted systems, particularly the
differences among physicians of different experience levels when using
Al tools. It is recommended to design multi-center, multi-level reader
studies to evaluate Al tool performance in different clinical scenarios
and explore their potential value in training young physicians, better
guiding the practical application of Al in clinical settings.

5 Conclusion

Artificial intelligence technologies, including classical machine
learning and deep learning, have shown enormous potential in the
diagnosis and treatment of brain metastases. From precise tumor
segmentation to complex classification tasks, Al technologies provide
new tools to improve diagnostic accuracy and efficiency. Deep
learning models such as U-Net and DeepMedic have achieved
significant results in brain metastasis detection and segmentation
tasks, while machine learning and deep learning methods have also
been successfully applied to differentiate brain metastases from
glioblastoma, identify primary sources of brain metastases, and
distinguish radiation necrosis from tumor recurrence post-
radiotherapy. Although AI has made promising progress in brain
metastasis image analysis, further research is still needed to overcome
existing challenges, such as improving model interpretability and
generalization ability, building large-scale high-quality clinical
datasets, developing user-friendly software tools, and conducting
rigorous clinical trials. With continued technological advancements
and deeper clinical application, AI technologies are expected to make
greater contributions to the precision diagnosis and prognosis
improvement of brain metastases.
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