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Brain metastases (BM) are common complications of advanced cancer, posing 
significant diagnostic and therapeutic challenges for clinicians. Therefore, the 
ability to accurately detect, segment, and classify brain metastases is crucial. This 
review focuses on the application of artificial intelligence (AI) in brain metastasis 
imaging analysis, including classical machine learning and deep learning techniques. 
It also discusses the role of AI in brain metastasis detection and segmentation, 
the differential diagnosis of brain metastases from primary brain tumors such 
as glioblastoma, the identification of the source of brain metastases, and the 
differentiation between radiation necrosis and recurrent tumors after radiotherapy. 
Additionally, the advantages and limitations of various AI methods are discussed, 
with a focus on recent advancements and future research directions. AI-driven 
imaging analysis holds promise for improving the accuracy and efficiency of brain 
metastasis diagnosis, thereby enhancing treatment plans and patient prognosis.
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1 Introduction

Brain metastases (BM) are one of the common and severe complications of advanced 
malignant tumors, often indicating poor prognosis and posing a major challenge to clinical 
tumor treatment (1). The incidence of brain metastases is high, with estimates suggesting that 
up to one-third of cancer patients will develop brain metastases (2). With the aging of the 
global population, advances in systemic treatment, and the widespread use of imaging 
technologies such as magnetic resonance imaging (MRI), the detection and diagnosis rates of 
BM have been increasing (3, 4). Among the primary tumors that lead to BM, lung cancer, 
breast cancer, and melanoma are the most common. However, cases of brain metastasis from 
gastrointestinal tumors, renal cell carcinoma, and gynecological cancers are also on the rise 
(4, 5). Moreover, it is worth noting that brain metastases significantly impact patient prognosis 
regardless of the primary tumor type. Taking breast cancer as an example, patients may survive 
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for an average of up to 28 years, but once brain metastasis occurs, the 
average survival time is reduced to about 10 months (6). Despite the 
application of treatments such as monoclonal antibodies, tyrosine 
kinase inhibitors (TKI), and antibody-drug conjugates (ADC), which 
have improved overall survival (OS) to some extent, brain metastasis 
remains a severe challenge in breast cancer treatment. Therefore, there 
is an urgent need to develop timely and precise imaging detection, 
segmentation, and classification technologies to detect and diagnose 
brain metastases early, thus providing patients with more time for 
treatment and improving prognosis.

First, precise detection and segmentation helps doctors accurately 
assess tumor size, location, and number, providing accurate targeting 
for local treatments such as surgery and radiotherapy. Achieving this 
precise assessment relies on imaging technology support. MRI can 
detect small lesions with high sensitivity and clearly display critical 
tumor characteristics, making it the recognized main tool for 
diagnosing BMs (4, 7, 8). However, computed tomography (CT) 
scanning still maintains irreplaceable value in preliminary screening 
of brain metastases, rapid assessment in emergency situations, and 
special clinical scenarios such as medical institutions with limited 
equipment conditions or patients with MRI contraindications (9, 10). 
Based on these imaging technologies, precise treatment of brain 
metastases can be effectively implemented. Stereotactic radiosurgery 
(SRS) has become an important treatment modality for brain 
metastases due to its ability to deliver highly focused radiation to 
metastatic regions while minimizing damage to surrounding normal 
brain tissue. The implementation of such precise treatments demands 
extremely high accuracy in imaging detection and segmentation (11). 
Nevertheless, traditional manual detection and segmentation methods 
have obvious limitations. On one hand, manual detection and 
segmentation processes are time-consuming and cumbersome (12); 
on the other hand, target delineation is susceptible to observer 
subjectivity, and differences between physicians may increase 
uncertainty in radiotherapy planning (2). Therefore, the demand for 
artificial intelligence-based automated detection and segmentation 
technologies is increasingly urgent. Currently, many deep learning 
algorithms have been applied to the detection and segmentation tasks 
of brain metastasis images (13), aiming to improve management 
efficiency and treatment outcomes for patients with multiple 
metastases. Precise automated detection and segmentation not only 
enhance the reliability and efficiency of treatment planning but also 
establish an important foundation for subsequent fine-grained 
analysis based on imaging features and the development of 
personalized treatment strategies.

The classification of brain metastases faces several challenges, 
such as nature determination, source identification, and treatment 
response evaluation. The primary challenge is distinguishing brain 
metastases from primary brain tumors, such as glioblastoma (GBM). 
For patients previously diagnosed with malignant tumors, new brain 
lesions require clarification on whether they are primary brain tumors 
such as GBM or brain metastases from the primary cancer. GBM and 
brain metastases demonstrate high radiological similarity, typically 
presenting as rim-enhancing lesions with surrounding T2 
hyperintensity (14), but their treatment strategies differ drastically, 
making accurate preoperative differentiation crucial. For patients 
presenting with brain lesions as their primary manifestation, 
identifying the origin of brain metastases has significant clinical 
implications. Brain metastases from different primary sites require 

distinct therapeutic approaches; differentiating between metastases 
originating from lung cancer, breast cancer, melanoma, and other 
sources helps guide the selection of personalized treatment protocols 
such as targeted therapies for specific gene mutations and immune 
checkpoint inhibitors (15). However, accurately determining the 
origin of brain metastases poses numerous challenges when definitive 
information about the primary lesion is lacking. While conventional 
neuropathological examination serves as the gold standard, it carries 
surgical risks as an invasive procedure, including hemorrhage, 
infection, and neurological function impairment. Some patients 
cannot tolerate such examinations due to poor physical condition or 
deep-seated lesion location. Additionally, routine radiological 
assessment, though non-invasive, makes it difficult to accurately 
determine the origin of brain metastases based solely on manual 
analysis. In clinical practice, 2–14% of patients present with brain 
metastases as the initial manifestation without an identified primary 
tumor (16). For some patients, the primary lesion remains unidentified 
even until the terminal stage of disease. Failure to promptly and 
accurately identify the origin leads to difficulties in treatment 
selection, missing the optimal therapeutic window, and severely 
affecting patient prognosis. Therefore, developing rapid, reliable, and 
non-invasive methods for primary tumor identification based on 
medical imaging, using artificial intelligence technology to assist 
image analysis and reduce dependence on invasive examinations, 
serves as an important complementary tool for clinical diagnosis, with 
significant value for optimizing clinical decision-making processes 
and improving patient treatment experiences. Beyond determining 
the primary tumor type, patients with brain metastases who have 
undergone radiotherapy require differentiation between post-
radiation radiation necrosis and recurrent tumors. Research indicates 
that distinguishing between these two conditions using only MRI is 
often challenging (17). Although differentiation can be  achieved 
through biopsy, stereotactic biopsy may lead to sampling bias in 
lesions containing both tumor recurrence and radiation necrosis, and 
biopsy carries procedure-related risks and cannot be  regularly 
repeated (18). More importantly, the treatment strategies for these two 
conditions are fundamentally different—tumor recurrence requires 
continued treatment, while radiation necrosis necessitates cessation 
of radiotherapy and management of necrotic lesions, making accurate 
differentiation decisive for treatment decisions. These differential 
diagnostic tasks—whether distinguishing brain metastases from 
primary brain tumors, tracing the origin of primary tumors, or 
differentiating post-radiation necrosis from recurrent tumors—all face 
challenges of overlapping radiological features and diagnostic 
difficulties. Therefore, there is an urgent need to leverage artificial 
intelligence technology to analyze big data from medical imaging, 
improve diagnostic accuracy and efficiency, and provide stronger 
support for clinical decision-making.

Through early precise imaging analysis and subsequent 
development of personalized treatment strategies, there is potential to 
maximize control of tumor progression and improve patient prognosis 
(19). Therefore, this review focuses on recent advances in artificial 
intelligence (AI) applications for brain metastasis imaging analysis, 
encompassing deep learning-based lesion detection and segmentation, 
differential diagnosis between brain metastases and primary brain 
tumors, primary tumor origin identification, and differentiation 
between post-radiation radiation necrosis and recurrent tumors. This 
paper systematically elucidates the applications and advantages/
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limitations of classical machine learning methodologies and deep 
learning algorithms across various tasks, while also projecting future 
research directions in this field. The aim is to provide more effective 
decision support for clinical practice and promote further 
development of relevant artificial intelligence technologies (Figure 1).

2 Brain metastases image detection 
and segmentation

In the field of artificial intelligence, tumor image detection and 
segmentation represent two core tasks in medical image analysis. 
Detection tasks aim to identify and localize tumor lesions within 
images, typically outputting spatial position and bounding box 
information of the lesions. Segmentation tasks further perform 

pixel-level precise delineation of tumor regions, assigning category 
labels to each pixel in the image, thereby achieving accurate tumor 
contour delineation and regional quantification. These two 
technologies provide clinicians with critical information such as 
precise tumor localization, morphological feature analysis, and 
volumetric measurements, playing important roles in diagnosis, 
treatment planning, and therapeutic efficacy assessment.

However, the detection and segmentation of brain metastases 
present unique clinical challenges. Brain metastases often manifest as 
multiple small lesions, with individual lesions potentially measuring 
only a few millimeters in diameter and exhibiting relatively low 
contrast with surrounding brain tissue on MRI images (20). These 
microscopic lesion characteristics make radiologists prone to missing 
them during visual identification, particularly when images contain 
noise and artifacts that further compromise accurate assessment. The 

FIGURE 1

Overview of the main aspects of this review. Referenced and reproduced with permission from Becker et al. (26), Fang et al. (130), Liang et al. (95), 
Kumar et al. (131), Prasad et al. (129), Hu et al. (46), Park et al. (66), Shi et al. (75), and Larroza et al. (85).
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scattered distribution and uncertain number of lesions additionally 
increase the workload and risk of missed diagnoses in manual 
detection (20–22). Meanwhile, the low contrast features also make it 
difficult for physicians to precisely delineate lesion boundaries, 
affecting the accuracy of subsequent treatment planning (20).

Under these specific clinical circumstances, although classical 
machine learning methods such as threshold segmentation (23) and 
region growing algorithms (24) possess advantages including strong 
interpretability, low computational cost, and minimal hardware 
requirements (25–27), they demonstrate significant technical 
limitations when confronting the complex characteristics unique to 
brain metastases, including small lesions, low contrast, and multifocal 
distribution. These methods are relatively sensitive to image quality 
and noise, and struggle to effectively capture the diversity of tumor 
morphology and irregularity of boundaries (28, 29), thereby limiting 
their widespread application in brain metastases detection 
and segmentation.

To address these challenges, researchers have developed various 
deep learning-based detection and segmentation methods, with 
technological evolution progressing from early CNN local feature 
extraction, to U-Net’s global–local information fusion, then to 
DeepMedic’s specialized 3D processing, and more recently to the 
intelligent development of adaptive frameworks. Deep learning 
technology, leveraging its powerful feature learning capabilities and 
effective utilization of large-scale data, has demonstrated significant 
advantages in processing complex image features and achieving high-
precision segmentation, gradually becoming the mainstream 
technology in this field. In light of this, this review will focus on the 
applications of deep learning networks and their variants in brain 
metastases image detection and segmentation.

2.1 Early convolutional neural networks 
and variants

Convolutional neural networks (CNNs) were among the earliest 
deep learning networks applied to brain metastases image detection 
and segmentation (Figure 2). CNNs extract local features from images 
through convolutional layers and utilize pooling layers to reduce 
computational load while increasing feature robustness (30). Losch et 
al. (31) pioneered the application of ConvNet to brain metastases 
segmentation in 2015, achieving 82.8% sensitivity in detecting lesions 
larger than 3 millimeters, laying the foundation for deep learning 
applications in this field. However, early CNN methods exposed 
significant technical limitations, including high false positive rates 
(false positive rate of 0.05 per slice), insufficient segmentation 
accuracy for small metastatic lesions, and deficiencies in feature 
extraction, multi-scale information fusion, and contextual information 
utilization. The fundamental cause of these problems lies in the fact 
that traditional CNN feedforward structures lack global contextual 
modeling capabilities, relying solely on local convolutions making it 
difficult to accurately distinguish subtle differences between lesions 
and normal brain tissue.

To overcome the limitations of traditional CNN architectures, 
researchers have pursued technical improvements from different 
perspectives. In terms of dimensional extension, the 2.5D GoogLeNet 
CNN model proposed by Grøvik et  al. (12) attempted to strike a 
balance between computational efficiency and feature capture 

capability, better capturing inter-slice features while avoiding the 
computational burden of full 3D CNNs. However, this method still 
exhibited performance limitations in false positive control and 
multiple lesion detection. Regarding network architecture design, the 
BMDS Net cascaded 3D fully convolutional network proposed by Xue 
et  al. (32) adopted a two-stage strategy of detection-localization 
followed by segmentation, improving segmentation accuracy to some 
extent while reducing computational complexity. Nevertheless, it still 
faced challenges when handling tasks involving discrimination of 
adjacent lesions or small-volume lesions. These early improvement 
efforts demonstrated that simply increasing architectural complexity 
cannot fundamentally resolve the core problems of CNNs in brain 
metastases analysis.

Recognizing the significant impact of detection tasks on 
segmentation performance, researchers began exploring CNN 
methods specifically optimized for brain metastases detection. The 
CropNet proposed by Dikici et al. (33) focused on the detection task 
of small brain metastases (≤15 mm), achieving accuracy levels 
comparable to large lesion detection methods for small lesions 
through sensitivity-constrained LoG candidate selection and targeted 
data augmentation strategies. The important significance of this work 
lies in demonstrating that precise lesion localization can effectively 
assist subsequent segmentation tasks. Building on this understanding, 
Qu et al. (34) further proposed the gated high-resolution CNN (GHR-
CNN), which achieved improvements in segmentation accuracy, 
sensitivity, and generalization capability by maintaining high-
resolution features and introducing gating mechanisms, particularly 
excelling in small lesion detection. This indicates that through 
carefully designed network structures and training strategies, a single 
segmentation network can also achieve good performance without 
strictly relying on independent detection steps.

Although CNN methods have made preliminary progress in brain 
metastases detection and segmentation tasks (Table 1), their inherent 
technical limitations restrict further performance improvements. 
Future CNN improvement directions should focus on collaborative 
optimization of detection and segmentation tasks as well as targeted 
network structure design. For example, architectures that fuse object 
detection with instance segmentation, such as Mask R-CNN, provide 
new technical approaches. However, the key lies in how to effectively 
integrate detection information into the segmentation process and 
how to design specialized network structures and training strategies 
tailored to the specific characteristics of brain metastases.

2.2 U-Net and its variants

The limitations exposed by CNN methods in brain metastases 
analysis prompted researchers to seek more advanced network 
architectures. The U-Net architecture, through its encoder-decoder 
structure and skip connection design, can effectively address the 
deficiencies of CNNs in capturing global contextual information 
(Figure 3). The U-Net architecture proposed by Ronneberger et al. 
(35) in 2015, with its symmetric network design, enables the model to 
capture both high-level semantic information and preserve low-level 
detailed features, thus demonstrating good performance in both 
detection and segmentation tasks of brain metastases.

In the early stages of U-Net application to brain metastases 
analysis, researchers primarily enhanced the model’s feature extraction 
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capabilities in detection and segmentation tasks through multimodal 
MRI data fusion. Bousabarah et  al. (20) proposed an ensemble 
learning method based on multimodal 3D MRI data, combining three 
network structures: cU-Net, moU-Net, and sU-Net, trained with 
multimodal data including T1c, T2, T2c, and FLAIR, achieving good 
results in detecting larger volume lesions (>0.06 mL). However, 
multimodal fusion strategies still exhibited performance limitations 
in small lesion detection. Addressing this issue, Cao et  al. (21) 
proposed an asymmetric UNet architecture (asym-UNet) from an 
architectural design perspective, employing different-sized 
convolutional kernels (3 × 3 × 3 and 1 × 1 × 3) to simultaneously 
process image features of small tumors and boundary information of 
large metastases, achieving improved results in small lesion detection 
tasks (diameter <10 mm). This work demonstrated that targeted 
architectural modifications can more effectively address specific 
technical challenges compared to simple data fusion.

With the development of 3D medical image processing 
technology, researchers began exploring more refined optimization 

strategies to enhance U-Net performance in brain metastases 
detection and segmentation tasks. Rudie et  al. (22) systematically 
evaluated the segmentation performance of 3D U-Net in large-scale 
patient samples, providing benchmark data for the clinical application 
of this architecture. Building on these foundational works, Chartrand 
et al. (36) improved detection sensitivity for small brain metastases 
(2.5–6 mm) to 90.9% by introducing volume-aware loss functions, 
reducing false negative rates compared to traditional CNN models in 
this size range. The comparative study by Yoo et al. (37) quantified the 
performance differences between 2.5D and 3D architectures in 
detection tasks: 3D U-Net demonstrated higher sensitivity in small 
metastases detection, while 2.5D U-Net achieved higher detection 
precision. To achieve balance among different performance metrics in 
detection, researchers proposed weak learner fusion methods for 2.5D 
and 3D network prediction features, which could reduce false positive 
predictions for smaller lesions. The 3D non-local convolutional neural 
network (NLMET) method by Liew et al. (38) pushed the technical 
boundary of small lesion detection to 1 mm and maintained good 

FIGURE 2

Early convolutional neural network architectures for image segmentation of brain metastases. (a) Typical architecture of a ConvNet. (b) Network 
architecture of BMDS net. (c) The modified GoogLeNet architecture. (d) Network architecture of CropNet. (e) Structure of our deep-learning approach 
faster R-CNN. (f) Network architecture of a gated high-resolution neural network. Referenced and reproduced with permission from Losch (31), Xue 
et al. (32), Grøvik et al. (12), Dikici et al. (33), Zhang et al. (122), and Qu et al. (34).
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generalization performance across different datasets and 
MRI sequences.

In recent years, the application of adaptive deep learning 
frameworks such as nnU-Net in brain metastases detection and 
segmentation tasks marks a new stage in the technological 
development of this field. Unlike traditional fixed architectural 
designs, these frameworks can automatically adjust network structures 
and training parameters according to dataset characteristics. Pflüger 
et  al. (39) applied nnU-Net to brain metastases detection tasks, 
achieving detection of contrast-enhancing tumors and non-enhancing 
FLAIR signal abnormal regions without manual adjustment of volume 
threshold parameters. In their 2025 research work, Yoo et al. (13) 
achieved 0.904 sensitivity in brain metastases detection tasks while 
maintaining low false positive rates (0.65 ± 1.17) by introducing 
tumor volume-adaptive 3D patch adaptive data sampling (ADS) and 
adaptive Dice loss (ADL). These results indicate that adaptive 
frameworks capable of automatically adjusting according to data 
characteristics have performance advantages over manually designed 
fixed architectures.

Although U-Net-based brain metastases detection and 
segmentation technologies have achieved substantial progress 
(Table 2), further improvement in small lesion detection accuracy and 

effective integration of emerging network architectures remain the 
main technical challenges currently faced. In small lesion detection 
optimization, future research can explore targeted loss function 
designs, such as focal loss (40) and OHEM (41) methods that can 
effectively handle class imbalance problems and improve detection 
sensitivity for small lesions. In feature extraction and fusion strategies, 
multi-scale feature extraction, attention mechanisms, and 
Transformer-based fusion methods are expected to further improve 
small lesion recognition capabilities. Additionally, improvement of 
evaluation metrics is also of significant importance; for example, 
similarity distance (SimD) (42) can not only consider position and 
shape similarity but also automatically adapt to evaluation 
requirements for different-sized objects in different datasets. In 
network architecture innovation, the successful performance of 
emerging architectures like Transformers in natural language 
processing and computer vision fields has drawn considerable 
attention to their application potential in brain metastases analysis. 
For example, the nnU-NetFormer (43) method, which integrates 
transformer modules into the deep structure of the nnU-Net 
framework, can effectively extract local and global features of lesion 
regions in multimodal MR images, although current performance 
validation of such networks mainly focuses on brain tumor image 

TABLE 1  CNN-based architecture for brain metastasis segmentation.

Author 
(year)

Dataset size 
and source

Imaging 
modality

Methodology Model 
validation 
methods

Clinical 
outcomes 
predicted

Evaluation 
metrics

Losch (2015) (31) 490 patients, 

single-center study

3D MRI (T1c) Multi-scale ConvNet Internal validation Segmentation Sensitivity: 82.8%

AFP: 7.7

Grøvik et al. 

(2020) (12)

156 patients, 

single-center study

2.5D MRI (T1, T1c, 

T2, FLAIR)

GoogLeNet Internal validation Segmentation AUC: 0.98 ± 0.04

Precision: 0.79 ± 0.20

Recall: 0.53 ± 0.22

Dice score: 0.79 ± 0.12

Xue et al. (2020) 

(32)

1,652 patients, 

multicenter study

3D MRI (T1) BMDS net Internal and external 

validation

Detection and 

segmentation

Recall: 0.96 ± 0.03

Specificity: 

0.99 ± 0.0002

Dice score: 0.85 ± 0.08

Noguchi et al. 

(2020) (121)

444 patients, 

single-center study

2D MRI (T1c) AlexNet, GoogLeNet Internal validation Detection AlexNet

Accuracy: 50%

Recall: 28%

Specificity: 95%

GoogLeNet:

Accuracy: 45%

Recall: 27%

Specificity: 83%

Dikici et al. 

(2020) (33)

158 patients, 

single-center study

3D MRI (T1c) CropNet Internal validation Detection AFP: 9.12

Sensitivity: 90%

Zhang et al. 

(2020) (122)

121 patients, 

single-center study

3D MRI (T1c) Faster R-CNN Internal validation Detection AUC: 0.79

Recall: 87.1%

Kottlors et al. 

(2021) (123)

85 patients, single-

center study

2D MRI (T1c, BB) CNN Internal validation Detection Accuracy: 85.5%

AUC: 0.87

Qu et al. (2023) 

(34)

1,592 patients, 

multicenter study

3D MRI (T1c) GHR-CNN Internal and external 

validation

Detection and 

segmentation

Recall: 85%

Dice score: 0.89

PPV: 93%

AFP: 1.07
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segmentation tasks. Meanwhile, new training strategies such as self-
supervised learning and semi-supervised learning may also provide 
new solutions for improving model performance and data utilization 
efficiency, aiming to enhance model generalization capability and 
clinical applicability while maintaining high accuracy.

2.3 DeepMedic and its variants

While U-Net technology continues to evolve, researchers are also 
exploring other architectural solutions specifically designed for 3D 
medical image segmentation (Figure  4). DeepMedic, as a CNN 
architecture specifically designed for 3D medical image segmentation 
tasks, was proposed by Kamnitsas et al. (44) in 2016. Unlike U-Net, 
which uses 2D CNNs and captures context and precise localization 
through contracting and symmetric expanding paths, DeepMedic 
employs a dual-path architecture that can simultaneously process 
input images at multiple scales, thereby better combining local and 
larger contextual information. This design enables DeepMedic to fully 
utilize volumetric data, capturing richer spatial information for more 
accurate segmentation of brain metastases. Additionally, DeepMedic 
employs a dense training scheme to effectively handle 3D medical 
scans and address class imbalance in the data, which contrasts with 
U-Net’s method of combining feature maps from contracting paths 
with expanding paths via skip connections to preserve high-resolution 
information. Another notable feature of DeepMedic is its use of a 3D 

fully connected conditional random field (CRF) for post-processing 
to remove false positives, further enhancing segmentation accuracy. 
Currently, DeepMedic has achieved state-of-the-art performance on 
multiple datasets, providing a new and effective tool for brain 
metastasis segmentation.

The emergence of DeepMedic attracted significant attention from 
researchers, leading to improvements and applications. Liu et al. (45) 
proposed En-DeepMedic, which adds extra sub-paths to capture more 
multi-scale features and utilizes GPU platforms to enhance 
computational efficiency, further improving segmentation accuracy, 
particularly for small lesions. Charron et al. (2) applied DeepMedic to 
segment brain metastases using multi-sequence MRI data (T1, T2, 
FLAIR), extending its application scope. Hu et al. (46) combined 3D 
U-Net with DeepMedic to process integrated MRI and CT images and 
proposed a volume-aware Dice loss to optimize segmentation by 
utilizing lesion size information, aiming to further improve small 
lesion detection. Jünger et al. (47) trained DeepMedic using data from 
heterogeneous scanners from different vendors and research centers, 
improving the model’s generalization and robustness, making it more 
applicable to clinical scenarios.

To further optimize DeepMedic’s performance, researchers have 
continually explored new methods and strategies. Huang et al. (11) 
introduced the volume-level sensitivity-specificity (VSS) loss function 
to balance sensitivity and specificity, addressing the difficulty 
DeepMedic had in reconciling these two aspects and further 
enhancing segmentation accuracy. Kikuchi et  al. (48) combined 

FIGURE 3

U-Net architecture for image segmentation of brain metastases. (a) Typical architecture of a 2D U-Net. (b) Network architecture of nnU-Net. (c) Typical 
architecture of a 2.5D U-Net. (d) Typical architecture of a 3D U-Net. (e), Structure of NLMET. Referenced and reproduced with permission from Yoo et 
al. (100), Pflüger et al. (39), Yoo et al. (37), and Liew et al. (38).
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TABLE 2  U-Net based architecture for brain metastasis segmentation.

Author 
(year)

Dataset size 
and source

Imaging 
modality

Methodology Model 
validation 
methods

Clinical 
outcomes 
predicted

Evaluation 
metrics

Bousabarah et al. 

(2020) (20)

509 patients, 

single-center study

3D MRI (T1c, T2, 

T2c, FLAIR)

cU-Net, moU-Net, sU-Net Internal validation Segmentation Recall: 0.82

Precision: 0.83

Dice score: 0.74

Cao et al. (2021) 

(21)

195 patients, 

single-center study

3D MRI (T1c) asym-UNet Internal validation Segmentation Dice score: 0.84

False positive: 0.24

Rudie et al. (2021) 

(22)

413 patients, 

single-center study

3D MRI (T1, T1 c) 3D U-Net Internal validation Segmentation Dice score: 0.75

Recall: 70.0%

Yoo et al. (2021) 

(37)

442 patients, 

single-center study

3D MRI (T1c) 2.5D U-Net, 3D U-Net, 

weak learner fusion, 3D 

FCOS

Internal validation Detection and 

segmentation

Recall: 74%

False positive/scan: 

0.53

Precision: 75%

Nomura et al. 

(2021) (94)

470 patients, 

single-center study

CT, 3D MRI (T1c) 3D U-Net Internal validation Segmentation Dice score: 

0.727 ± 0.115

Cho et al. (2021) 

(124)

194 patients, 

multicenter study

3D MRI (T1c) 3D U-Net, 2D U-Net Internal and external 

validation

Detection and 

segmentation

1. Time test set 1

Recall: 75.1%.

Dice score: 0.69 ± 0.22

2. Geography test set

Recall: 87.7%

Dice score: 0.68 ± 0.20

Dice score: 0.68 ± 0.20

3. Time test set 2

Recall: 94.7%

Dice score: 0.82 ± 0.20

3. Time test set 2

Dice score: 0.82 ± 0.20

Yin et al. (2022) 

(99)

1,250 patients, 

multicenter study

3D MRI (T1c) BMD Internal and external 

validation

Detection Recall: 93.2%

False positive: 0.38

Park et al. (2021) 

(125)

282 patients, 

single-center study

3D MRI (BB, GRE) 3D U-Net Internal validation Detection and 

segmentation

Recall: 93.1%

Dice score: 0.822

Yoo et al. (2022) 

(100)

65 patients, single-

center study

3D MRI (T1c) 2D U-Net Internal validation Detection and 

segmentation

Recall: 97%

Dice score: 75%

Liang et al. (2022) 

(95)

407 patients, 

multicenter study

3D MRI (T1c, T2-

FLAIR)

3D DCNNs Internal and external 

validation

Detection and 

segmentation

Dice score: 0.73

Recall: 0.91

Bouget et al. 

(2022) (126)

3,908 patients, 

multicenter study

3D MRI (T1c, 

FLAIR)

AGU-Net Internal and external 

validation

Segmentation Precision: 

97.63 ± 00.77%

Dice score: 

87.73 ± 18.94%

Recall: 97.46 ± 01.38%

Pflüger et al. 

(2022) (39)

338 patients, 

multicenter study

3D MRI (T1, T1c, 

FLAIR, T1 sub)

nnUNet Internal and external 

validation

Detection L-DICE

Internal test set: 0.78

External test set: 0.79

L-Recall

Internal test set: 0.81

External test set: 0.85

Ziyaee et al. 

(2022) (98)

1,051 patients, 

single-center study

3D MRI (T1c) BM-Net + WB-Net Internal validation Detection and 

segmentation

Recall: 88.4%

PPV: 90.1%

Dice: 82.2%

Chartrand et al. 

(2022) (36)

530 patients, 

single-center study

3D MRI (T1c) U-Net Internal validation Detection and 

segmentation

Recall: 90.9%

Dice score: 0.73

(Continued)
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DeepMedic with black and white blood images from the 
simultaneously acquired VISIBLE sequence, further improving 
detection sensitivity and reducing false positive rates, thus providing 
a more reliable basis for the accurate diagnosis of brain metastases.

Although DeepMedic and its improved versions have achieved 
good results in brain metastases segmentation (Table  3), existing 
technologies still have room for improvement in edge texture 
recognition of multiple lesions. To address this issue, multi-scale 

TABLE 2  (Continued)

Author 
(year)

Dataset size 
and source

Imaging 
modality

Methodology Model 
validation 
methods

Clinical 
outcomes 
predicted

Evaluation 
metrics

Lee et al. (2023) 

(127)

2,149 patients, 

single-center study

3D MRI (T1c, T2) Dual-pathway CNN Internal validation Segmentation Dice score: 0.84

Li et al. (2023) 

(128)

649 patients, 

single-center study

3D MRI (T1, T1c, 

difference between 

T1 and T1c)

Two-stage deep learning 

model

Internal validation Detection and 

segmentation

Recall: 90%

Precision: 56%

Dice score: 81%

Liew et al. (2023) 

(38)

677 patients, 

multicenter study

3D MRI (T1, T1c, 

T1-FLAIR)

NLMET Internal and external 

validation

Detection BrainMetShare

Recall: 0.811

Local dataset

Recall: 0.74

BrATS dataset

Recall: 0.723

Guo et al. (2025) 

(23)

2,298 patients, 

multicenter study

3D MRI (T1c) Extended nnUNet, ADS, 

ADL

Internal and external 

validation

Detection and 

segmentation

Recall: 0.904

Dice score: 0.758

FIGURE 4

DeepMedic architecture for image segmentation of brain metastases. (a) Typical architecture of DeepMedic. (b) Commonly used structure of 3D U-Net 
integrated with DeepMedic. (c) Structure of DeepMedic+. (d), Typical architecture of En-DeepMedic. Referenced and reproduced with permission from 
Kamnitsas et al. (44), Hu et al. (46), Huang et al. (11), and Liu et al. (45).
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feature extraction and edge detection mechanisms can be integrated 
into the DeepMedic network architecture. Multi-scale feature 
extraction can enhance the model’s perception capability for lesions 
of different sizes, while edge detection can effectively capture edge 
texture information of lesions. The combination of these two 
approaches is expected to improve the accuracy of brain metastases 
image recognition.

In terms of multi-scale feature extraction, inception modules 
or feature pyramid networks (FPN) can be introduced into the 
encoder part of DeepMedic. Inception modules effectively capture 
multi-scale information from images by using convolutional 
kernels of different sizes in parallel (such as 1 × 1, 3 × 3, 5 × 5, 
etc.), and have achieved good results in various image recognition 
tasks (49). FPN achieves effective fusion of features at different 
scales by constructing multi-level feature pyramids. For edge 
detection, an independent edge detection branch can be added 

after the output layer of DeepMedic, employing classical methods 
such as Sobel operators or Canny operators. The Sobel operator 
identifies edges by calculating the gradient of each pixel in the 
image in both horizontal and vertical directions, while the Canny 
operator is a more complex edge detection algorithm that can 
more accurately detect image edges and has the advantage of noise 
interference resistance through multi-level filtering and threshold 
processing (50). This improvement strategy can effectively extract 
edge information from segmentation results, thereby better 
identifying edge texture features of lesions and providing more 
reliable technical support for precise diagnosis and treatment of 
brain metastases.

Reviewing the development trajectory of CNN, U-Net, and 
DeepMedic architectures, the technological evolution logic of deep 
learning in the field of brain metastases analysis becomes clearly 
apparent. CNNs excel in local feature extraction but lack global 

TABLE 3  DeepMedic-based architecture for brain metastasis segmentation.

Author 
(year)

Dataset size 
and source

Imaging 
modality

Methodology Model 
validation 
methods

Clinical 
outcomes 
predicted

Evaluation 
metrics

Kamnitsas et al. 

(2016) (44)

335 patients, 

multicenter study

3D MRI (FLAIR, 

T1, T1c, T2, DWI, 

PD)

DeepMedic Internal and external 

validation

Segmentation Dice score: 84.7%

Precision: 85.0%

Sensitivity: 87.6%

Liu et al. (2017) 

(45)

514 patients, 

multicenter study

3D MRI (T1c) En-DeepMedic Internal and external 

validation

Segmentation BRATS dataset

Tumor core Dice 

score: 0.75 ± 0.07

Enhanced tumor Dice 

score: 0.81 ± 0.04

AUC: 0.99

Clinical dataset

Tumor core Dice 

score: 0.67 ± 0.03

AUC: 0.98 ± 0.01

Charron et al. 

(2018) (2)

182 patients, 

single-center study

3D MRI (T1 c, 

T2-FLAIR, T1)

DeepMedic Internal validation Detection and 

segmentation

Recall: 93%

Dice score: 0.77

Hu et al. (2019) 

(46)

341 patients, 

single-center study

3D MRI, CT 3D U-Net + DeepMedic Internal validation Detection and 

segmentation

Dice score: 0.740

Precision: 0.779

Recall: 0.803

Jünger et al. 

(2021) (47)

98 patients, single-

center study

3D MRI (T1, T2, T1 

c, FLAIR)

3D DeepMedic Internal validation Detection and 

segmentation

Recall: 85.1%

Dice score: 0.72

Precision: 68.7%

Park et al. (2022) 

(125)

176 patients, 

single-center study

3D MRI (T1c) DeepMedic+ Internal validation Detection and 

segmentation

DeepMedic + JVSS 

(α = 0.995)

Recall: 0.932

Precision: 0.621

Dice score: 0.808

DeepMedic + JVSS 

(α = 0.5)

Recall: 0.842

Precision: 0.996

Dice score: 0.760

Kikuchi et al. 

(2022) (48)

84 patients, single-

center study

3D MRI (VISIBLE) DeepMedic Internal validation Detection Recall: 91.7%
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contextual modeling capabilities, which directly resulted in high 
false positive rates in small lesion detection for early methods 
(such as the false positive rate of 0.05 per slice reported by Losch 
(31)). U-Net effectively addressed this limitation through its 
encoder-decoder structure and skip connection mechanisms. Its 
symmetric network design can both capture high-level semantic 
information and preserve low-level detailed features, thus generally 
outperforming early CNN methods in segmentation accuracy. 
DeepMedic adopts a dual-pathway design to simultaneously 
process inputs at different scales (44), possessing natural 
advantages when handling 3D volumetric data, although its 
computational complexity is relatively high.

From a performance perspective, U-Net-based adaptive 
frameworks demonstrate optimal application effectiveness, 
particularly the latest nnU-Net variants achieving over 90% sensitivity 
in detection tasks and Dice coefficients above 0.8 in segmentation 
tasks (13). However, this performance advantage comes at the cost of 
sacrificing interpretability, while the simple structure of CNNs makes 
feature visualization relatively straightforward, and DeepMedic’s dual-
pathway design allows for separate analysis of contributions at 
different scales, providing certain advantages in interpretability. 
Regarding generalization ability, DeepMedic and nnU-Net perform 
relatively well, with the former showing good consistency across 
multi-center data (47) and the latter improving cross-dataset 
generalization ability through adaptive mechanisms (39).

Therefore, technology selection in clinical applications should 
be based on specific requirements: nnU-Net or improved 3D U-Net 
is recommended for high-precision scenarios, lightweight CNNs or 
2.5D U-Net for real-time applications, DeepMedic or domain-
adaptive U-Net should be prioritized for multi-center deployment, 
while scenarios requiring interpretability should employ CNNs 
combined with visualization techniques. Future research directions 
should focus on exploring effective integration of emerging 
architectures such as Transformers with existing frameworks, as well 
as designing composite loss functions optimized for small lesions, 
aiming to enhance model interpretability and generalization ability 
while maintaining high accuracy.

3 Brain metastases image 
classification tasks

3.1 Image-based differentiation between 
brain metastases and glioblastoma

Brain metastases (BM) and glioblastoma (GBM) represent the 
most common malignant brain tumors in adults. For patients with 
pre-existing malignancies in other sites, accurate differentiation 
between brain metastases and primary glioblastoma when cerebral 
lesions appear holds significant clinical importance (51). Brain 
metastases demonstrate high similarity to glioblastoma multiforme on 
conventional MRI, with both potentially exhibiting rim enhancement 
with surrounding T2 hyperintensity, ring enhancement, and 
intratumoral necrosis (51, 52). These similar morphological 
presentations make accurate differentiation based solely on 
conventional imaging challenging (53). However, compared to 
glioblastoma multiforme, brain metastases typically feature more well-
defined margins and a more spherical shape. Additionally, the 
peritumoral region of brain metastases primarily manifests as vasogenic 
edema, whereas glioblastoma multiforme peritumoral areas often show 
tumor cell infiltration with irregular shape and invasive growth 
characteristics (51, 52). Accurate differentiation based on these feature 
distinctions is crucial for treatment strategy formulation, as brain 
metastasis patients may receive systemic therapy targeting the primary 
tumor and local treatments such as SRS, while glioblastoma multiforme 
requires comprehensive treatment including maximal safe resection 
followed by molecular classification and concurrent chemoradiotherapy 
(51, 54). Evidently, accurate diagnosis not only avoids unnecessary 
invasive examinations and reduces patient risk but also improves 
diagnostic efficiency and provides a basis for timely treatment. In 
recent years, with the rapid development of imaging technologies and 
artificial intelligence, researchers have continuously explored new 
imaging methods and analytical techniques to improve the preoperative 
differential diagnostic accuracy between GBM and BM (Figure 5).

Radiomics, an emerging imaging analysis technique, provides 
powerful tools for the differential diagnosis of GBM and BM 

FIGURE 5

Brain metastases and glioblastoma images. (a) Typical BM from lung carcinoma. (b) Typical glioblastoma (GBM). Referenced and reproduced with 
permission from Parvaze et al. (58).
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(Supplementary Table S1). By extracting a large number of quantitative 
features from medical images, such as first-order statistics, histogram 
features, and texture features (e.g., absolute gradient, gray-level 
co-occurrence matrix, gray-level run-length matrix, gray-level size 
zone matrix, and neighborhood gray-difference matrix), radiomics 
can effectively mine diagnostic information hidden in imaging data, 
thus improving the accuracy of distinguishing between GBM and BM.

Researchers such as Qian et al. (53), Artzi et al. (54), and Priya et al. 
(52) have extracted radiomic features and used various machine learning 
classifiers, including support vector machines (SVM) and random 
forests, to build differential diagnosis models for GBM and BM, 
achieving high diagnostic accuracy. Some researchers have begun to 
explore radiomics models based on multiparametric MRI to obtain more 
comprehensive tumor information. Liu et al. (55) extracted radiomic 
features from T2-weighted and contrast-enhanced T1-weighted images 
and built a tree-based pipeline optimization tool (TPOT) model to 
differentiate GBM from BM. The results showed that the model, 
incorporating both MRI sequences, achieved the best predictive 
performance. Bijari et al. (56) extracted hidden features from four 3D 
MRI sequences (T1, T2, T1c, FLAIR) and generated accurate features 
highly correlated with model accuracy. By using logistic regression 
combined with multidimensional discrete wavelet transformation, a 
multitask learning model was implemented to distinguish GBM from 
BM. Huang et al. (57) treated the 1,106 features extracted from each 
sequence (T1, T2, T1c) as three separate tasks, using a logistic loss 
function as a data fitting term to build a feature selection classification 
model for GBM and BM classification. Parvaze et al. (58) extracted 93 
radiomic features from multiparametric MRI (FLAIR, T1c, T1) and used 
random forests to differentiate GBM from BM. Joo et al. (59) extracted 
radiomic features from T1, T2, T2 FLAIR, and T1c images and developed 
an integrated machine learning model based on LASSO feature selection 
and Adaboost, SVC classifiers for multiclass classification of glioblastoma, 
lymphoma, and metastases. Gao et  al. (60) showed that extracting 
diffusion kurtosis imaging (DKI) parameters and conventional MRI 
sequence radiomic features, combined with various machine learning 
algorithms, could effectively differentiate GBM from SBM. The 
multi-DKI parameter model demonstrated the best diagnostic 
performance compared to single DKI parameter and conventional MRI 
models. These studies show that multitask learning strategies can 
effectively utilize complementary information between different MRI 
sequences, thus improving diagnostic efficiency and accuracy. Chen et al. 
(61) developed a diagnostic model combining texture features from the 
entire tumor area and the 10 mm tumor-brain interface area, using 
ANOVA1LR, KW1LR, RELIEF4NB, and RFE5NB algorithms to 
differentiate GBM from isolated brain metastasis (BM). In summary, 
radiomics provides an objective and accurate approach for the differential 
diagnosis of GBM and BM by extracting and analyzing multidimensional 
imaging features and using machine learning algorithms to construct 
predictive models, with promising clinical applications.

Convolutional neural networks (CNN), as an optimized deep 
learning technique, also show significant advantages in distinguishing 
GBM from BM (Supplementary Table S2). CNN models, with their 
unique structure, can automatically extract and learn multi-level 
features from imaging data that are difficult for traditional imaging 
analysis methods to extract and quantify (51, 62), such as tumor 
boundary clarity, features of internal necrotic areas, and infiltration of 
surrounding tissue. Then, through end-to-end training, the feature 
extraction and classification process is gradually optimized, effectively 

capturing subtle differences between GBM and BM and improving 
diagnostic accuracy. This end-to-end training mechanism allows 
CNNs to gradually learn abstract features from raw images, ranging 
from low-level features like edges and textures in shallow convolutional 
layers to more complex patterns like tumor shape, structure, and 
spatial distribution in deeper layers.

Bae et al. (51) and Shin et al. (63) respectively built differential 
diagnosis models for GBM and BM using deep neural networks (DNN) 
and ResNet-50, achieving diagnostic performance superior to that of 
junior neuroradiologists. This suggests that deep learning models can 
reach or even exceed human experts’ performance in some cases. To 
better utilize imaging information, researchers have developed 
classification models based on 3D CNNs. Chakrabarty et  al. (62) 
developed a 3D CNN algorithm for classifying six common brain 
tumors, including GBM and BM, and achieved good classification 
results on T1-weighted MRI scans. The 3D CNN effectively captures the 
spatial information of tumors, improving diagnostic performance. In 
addition, multiparametric MRI is widely used in deep learning models. 
Yan et al. (64) used a 3D ResNet-18 algorithm and multiparametric MRI 
(DWI and conventional MRI) to construct a differential diagnosis 
model for GBM and BM, finding that the model combining DWI and 
conventional MRI had a higher AUC than single MRI sequence models, 
indicating that multimodal imaging data provide richer diagnostic 
information. Xiong et  al. (65) used the GoogLeNet model and 
preoperative multiplanar T1-weighted enhanced (T1CE) MRI images 
to automatically differentiate high-grade gliomas (HGG) from solitary 
brain metastasis (SBM). The model achieved an average accuracy of 
92.78% in distinguishing HGG from SBM, with over 90% accuracy even 
when distinguishing using only the tumor core or edema region. To 
further enhance clinical reliability, Park et al. (66) proposed a deep 
ensemble network based on DenseNet121, processing multiparametric 
MRI images to differentiate GBM and BM. This model not only provides 
accurate diagnostic results but also offers predictions of uncertainty and 
interpretability, enhancing clinicians’ trust in the model. In summary, 
deep learning methods, by automatically learning and analyzing 
complex imaging features, provide new and effective tools for the 
differential diagnosis of GBM and BM, advancing precision medicine.

Although the combination of imaging technology and AI has 
made significant progress in the differential diagnosis of GBM and 
BM, further research is needed to overcome existing challenges. 
Future studies should develop interpretable deep learning models, 
such as using heatmaps and Grad-CAM methods to explain model 
predictions, improving their clinical application value. Additionally, 
the development of automated tools, such as fully automated image 
segmentation and feature extraction tools, can enhance research 
efficiency and model robustness (55, 59, 60). In conclusion, future 
research needs breakthroughs in expanding sample sizes, integrating 
multimodal imaging data, exploring more detailed tumor sub-region 
analysis, combining clinical information, and enhancing model 
interpretability, to ultimately achieve accurate differential diagnosis of 
GBM and BM, providing better decision support tools for clinicians.

3.2 Classification of brain metastases 
sources

Accurate identification of brain metastases origin holds significant 
importance in clinical practice, as brain metastases from different 
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primary sites exhibit marked differences in treatment responsiveness 
and prognosis. For example, brain metastases from small cell lung 
cancer (SCLC) and non-small cell lung cancer (NSCLC) are suitable 
for chemosensitivity therapy and surgery combined with targeted 
therapy, respectively (67), while brain metastases from breast cancer 
and melanoma may be more amenable to corresponding molecular 
targeted therapies or immunotherapies (68). These differences in 
treatment options directly impact patient survival benefits. However, 
in the absence of definitive primary lesion information, traditional 
tissue biopsy, although capable of determining the primary site, not 
only carries surgical risks and increases patient suffering but also 
proves intolerable for some patients due to factors such as poor 
physical condition or lesion location. Furthermore, when facing 
different pathological subtypes from the same organ, such as 
distinguishing between SCLC and NSCLC for refined classification, 
pathological biopsy alone often cannot provide sufficiently 
comprehensive information. Additional auxiliary methods such as 
immunohistochemical staining, molecular pathological detection, or 
genetic testing are typically required to clarify specific typing (67). 
Failure to promptly and accurately identify the origin leads to 
difficulties in treatment selection, affecting the optimal therapeutic 
window. Therefore, developing non-invasive imaging-based methods 
for brain metastases origin identification, using artificial intelligence 

technology to assist image analysis as an important complementary 
tool for clinical diagnosis, providing rapid and reliable auxiliary 
diagnostic information for clinical practice, holds significant value for 
optimizing treatment decisions and improving patient prognosis.

However, traditional imaging diagnostic methods often struggle 
to accurately identify the source of brain metastases (Figure  6). 
Nonetheless, studies have shown that deep learning and machine 
learning methods can successfully classify the source of brain 
metastases (Supplementary Tables S3, S4). Image texture and 
radiomics analysis can extract subtle features from medical images 
that are difficult for the human eye to recognize, such as the 
uniformity, roughness, and directionality of the tumor’s internal gray-
level distribution. These features are closely related to the tumor’s 
pathological characteristics, gene expression, and biological behavior, 
making them useful for distinguishing brain metastases originating 
from different primary tumors.

Classical machine learning methods have played an important 
role in the recognition of the primary source of brain metastases. 
Numerous studies have used machine learning methods to analyze 
texture features extracted from MRI or CT images in order to 
differentiate brain metastases originating from various primary 
tumors. Ortiz-Ramón et al. (16, 69, 70) conducted a series of studies 
exploring the impact of different texture features, classification 

FIGURE 6

Images of brain metastases of different origins. (A) Lung carcinoma originated brain metastasis. The subtypes of brain metastases that arise from lung 
carcinoma include: (a) Adenocarcinoma. (b) Squamous cell carcinoma. (c) Small cell lung carcinoma. (B) Breast cancer originated brain metastasis. 
(C) Melanoma originated brain metastasis. (D), Other originated brain metastasis. Referenced and reproduced with permission from Tulum (68), Ortiz-
Ramón et al. (16), and Shi et al. (75).
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models, and image modalities on brain metastasis classification. Early 
research (69) used 3D texture features and compared five classifiers: 
naive Bayes (NB), k-nearest neighbors (k-NN), multilayer perceptrons 
(MLP), random forests (RF), and linear kernel support vector 
machines (SVM). The study found that the NB classifier performed 
the best (AUC = 0.947 ± 0.067). Further research (70) focused on 2D 
texture features and used SVM and k-NN classifiers for evaluation. 
The results showed that the SVM classifier, combined with two gray-
level co-occurrence matrix features, achieved a higher AUC 
(0.953 ± 0.061). In a subsequent study (16), they compared 2D and 3D 
texture features and found that 3D texture features were more 
advantageous in distinguishing brain metastases from different 
primary tumors. Using 3D texture features with 32 gray levels and a 
random forest classifier, they achieved an AUC of 0.873 ± 0.064. 
Béresová et al. (71) used texture analysis techniques [local binary 
pattern (LBP) and gray-level co-occurrence matrix (GLCM)] to 
extract image features and applied discriminant function analysis 
(DFA) to differentiate brain metastases from lung cancer and breast 
cancer. They compared texture features from contrast-enhanced 
T1-weighted images and LBP images and found that LBP image 
texture features were more effective in distinguishing lung cancer and 
breast cancer brain metastases, achieving an accuracy of 72.4%.

Kniep et al. (72) combined radiomics features with clinical data 
and used random forests to predict five different types of metastatic 
tumors, achieving AUC values ranging from 0.64 to 0.82. Zhang et al. 
(73) used radiomic features from brain CT images, combined with age 
and gender information, and applied binary logistic regression and 
SVM models to differentiate brain metastases from primary lung 
adenocarcinoma and squamous carcinoma, with AUC values of 0.828 
and 0.769, respectively. Cao et  al. (74) constructed and evaluated 
logistic regression and SVM models using selected radiomic features 
from individual CT, MRI, and combined images. The model showed 
the highest accuracy in differentiating brain metastases from lung 
cancer and breast cancer origins, with AUC values of 0.771 and 0.805, 
respectively. Tulum (68) combined traditional machine learning 
(SVM and MLP based on radiomics) and deep learning 
(EfficientNet-b0 and ResNet-50) to differentiate different subtypes of 
lung cancer brain metastases from MRI images. Although traditional 
machine learning methods performed well with small datasets, deep 
learning methods, through transfer learning, demonstrated higher 
classification performance on small datasets. Shi et al. (75) expanded 
the application range of radiomics by using LASSO regression to select 
multi-region radiomics features and then using logistic regression to 
differentiate brain metastases from lung adenocarcinoma and breast 
cancer origins. They also predicted epidermal growth factor receptor 
(EGFR) mutations and human epidermal growth factor receptor 2 
(HER2) status, providing new insights for personalized treatment of 
brain metastasis patients. Mahmoodifar et al. (76) focused on the 
spatial distribution features of brain metastases. They used principal 
component analysis (PCA) to reduce the dimensionality of the spatial 
coordinates of brain metastases and combined age, target volume, and 
gender information with random forests, SVM, and TabNet deep 
learning models to differentiate brain metastases from five different 
primary cancer types. The SVM algorithm achieved an accuracy of 
97%, and the TabNet model reached 96%.

These studies demonstrate that texture and radiomic features 
extracted from MRI or CT images, combined with appropriate 
machine learning models (68, 77), can effectively differentiate brain 

metastases from different primary tumors and predict relevant 
molecular marker statuses (75), providing new tools and strategies for 
the diagnosis, differential diagnosis, and personalized treatment of 
brain metastases. Compared to traditional machine learning methods, 
convolutional neural network-based deep learning models can 
automatically learn complex features in images without manual design 
or extraction of texture features, thus improving classification 
efficiency. For example, CNN models like EfficientNet (67, 68) and 
ResNet (68, 78–80) have achieved remarkable results in differentiating 
brain metastases from small cell lung cancer and non-small cell lung 
cancer, with accuracies reaching over 90%. Additionally, the 
application of 3D residual networks (3D-ResNet), combined with 
attention mechanisms, has further enhanced the model’s ability to 
capture key information, thus improving classification accuracy. For 
example, in a study (78), the use of a 3D-ResNet model for analyzing 
multi-sequence MRI data successfully increased the classification 
accuracy of small cell lung cancer versus non-small cell lung cancer 
brain metastasis from 85 to 92%.

3.3 Classification of radiation necrosis and 
tumor recurrence

Radiation necrosis (RN) represents a significant late complication 
of SRS, with an incidence rate of 2.5–24%, predominantly occurring 
within 2 years post-treatment (81–83). When brain metastasis patients 
demonstrate new enhancing lesions on MRI after SRS treatment, 
differentiation between radiation necrosis and recurrent brain 
metastases becomes essential (Figure  7). Patients with radiation 
necrosis should avoid further radiotherapy to prevent exacerbation of 
necrosis, selecting non-invasive pharmacological treatment based on 
symptom severity or, when necessary, undergoing craniotomy to 
remove necrotic tissue. Conversely, tumor recurrence requires 
continued aggressive anti-tumor therapy, with options including 
repeated stereotactic radiosurgery or surgical resection. However, 
existing research indicates that conventional MRI alone typically 
cannot reliably distinguish between post-radiation radiation necrosis 
and recurrent tumors (84), presenting a challenge for clinical decision-
making. Although biopsy with histopathological evaluation remains 
the gold standard for differential diagnosis, stereotactic biopsy may 
encounter sampling bias in mixed lesions containing both post-
radiation radiation necrosis and recurrent tumors, making it difficult 
to obtain representative tissue samples (83). Furthermore, tissue 
biopsy not only carries inherent surgical risks, including complications 
such as hemorrhage, infection, and neurological function impairment, 
but also cannot be  repeatedly performed as a routine monitoring 
method, significantly limiting its application value in dynamic 
assessment. Therefore, developing cost-effective non-invasive imaging 
diagnostic methods with high sensitivity and specificity holds 
significant clinical value for accurately differentiating between post-
radiation radiation necrosis and recurrent tumors, as well as guiding 
individualized treatment decisions.

After brain tumor patients receive radiotherapy, new enhanced 
lesions often appear on magnetic resonance imaging (MRI), which 
could be either tumor recurrence or benign radiation necrosis. These 
two conditions often appear similar in imaging features (Figure 7), 
making differentiation a challenging task. Accurate differentiation is 
crucial for formulating subsequent treatment plans and improving 
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patient prognosis. Traditional MRI sequences, such as T1-weighted 
imaging, T2-weighted imaging, and fluid-attenuated inversion 
recovery (FLAIR), form the basis for differential diagnosis. By 
observing the signal characteristics of lesions across different 
sequences, such as T1/T2 signal differences and lesion morphology, 
an initial judgment can be made regarding the nature of the lesion. 
However, these traditional MRI sequences often suffer from low 
sensitivity, making it difficult to reliably differentiate between tumor 
recurrence and radiation necrosis on their own (84). To improve 
diagnostic accuracy, various advanced artificial intelligence (AI) 
techniques have been introduced into clinical practice in recent years 
(Supplementary Table S5).

Larroza et al. (85) extracted 179 texture features, used recursive 
feature elimination with support vector machines (SVM) to select 10 
important features, and then built a classification model with an SVM 
classifier. The results showed that the model achieved an area under 
the curve (AUC) of 0.94 ± 0.07 on the test set, demonstrating the 
potential of image texture-based analysis for distinguishing brain 
metastasis and radiation necrosis. Radiomics analysis has started to 
focus on the extraction and application of texture features in 
multiparametric MRI (such as T1c, T2, FLAIR, etc.) (86). For example, 
Tiwari et  al. (86) utilized radiomic features extracted from 
multiparametric MRI and applied an SVM classifier to differentiate 
brain radiation necrosis and recurrent brain tumors, with FLAIR 
sequence achieving the highest AUC of 0.79. This suggests that 
combining multimodal imaging information can further improve 
diagnostic accuracy. Furthermore, Kim et al. (87) extracted radiomic 
features from magnetic susceptibility-weighted imaging and dynamic 
susceptibility contrast-enhanced perfusion imaging, and used logistic 
regression models to identify the best predictive factors for 
distinguishing recurrence and radiation necrosis. Their selected two 
predictive factors achieved 71.9% sensitivity, 100% specificity, and 

82.3% accuracy. Yoon et al. (88) used volumetric weighted voxel-based 
multiparametric clustering to analyze parameters such as ADC, nCBV, 
and IAUC, achieving an AUC of 0.942–0.946. Zhang et  al. (89) 
extracted 285 radiomic features from T1, T1 enhanced, T2, and 
FLAIR sequences, and used the RUSBoost ensemble classifier to 
construct a model with a prediction accuracy of 73.2%. Peng et al. (90) 
employed 3D texture analysis and a random forest classifier, achieving 
higher classification accuracy (AUC >0.9). Their study found that 3D 
texture features were more suitable for differentiating brain metastases 
from lung cancer compared to breast cancer and melanoma, and 
random forests performed better with fewer features. This study also 
provided a potential non-invasive diagnostic tool for brain metastasis 
patients of unknown primary origin. Chen et  al. (91) extracted 
multiparametric radiomics features and used random forest 
algorithms to construct a classification model, achieving an AUC of 
0.77 in the training cohort and 0.71 in the validation cohort. Salari 
et al. (92) extracted radiomic features from MR contrast-enhanced 
T1-weighted images and used random forest algorithms, achieving an 
AUC of 0.910 ± 0.047. Basree et al. (17) analyzed radiomic features 
from T1 enhanced, T2, and FLAIR sequences and used logistic 
regression models for prediction, achieving an AUC of 0.76 ± 0.13. 
Zhao et al. (93) extracted image features from 3D MRI scans, collected 
7 clinical and 7 genomic features, and fused them using position 
encoding in a heavy ball neural ordinary differential equations 
(HBNODE) model to predict radiation necrosis or recurrence after 
SRS for BM, achieving an ROC AUC of 0.88 ± 0.04, sensitivity of 
0.79 ± 0.02, specificity of 0.89 ± 0.01, and accuracy of 0.84 ± 0.01.

Although deep learning has made significant progress in medical 
image analysis, it has not yet been widely applied to directly 
differentiate radiation necrosis from recurrent tumors after 
radiotherapy. Current research primarily focuses on extracting 
radiomic features from images and constructing classifiers using 

FIGURE 7

Tumor progression images and radio-necrosis images. (A) Typical tumor progression. (B) Typical radiation necrosis. Referenced and reproduced with 
permission from Kim et al. (87).
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classical machine learning methods. There is currently a lack of studies 
using deep learning methods, such as convolutional neural networks 
(CNNs), to distinguish between radiation necrosis and tumor 
recurrence after radiotherapy. This may be  closely related to the 
dependence of deep learning models on large annotated datasets. 
Since cases of radiation necrosis and recurrence are relatively few, 
there is a shortage of training samples, which is one of the major 
factors limiting the performance of deep learning models. 
Furthermore, the problem of data imbalance exacerbates this 
challenge. Radiation necrosis cases are often far fewer than recurrence 
cases, leading to model bias towards the majority class during training, 
which weakens the model’s ability to recognize the minority class. This 
imbalance is particularly pronounced in tasks that require high 
precision to distinguish between two similar pathological states, 
significantly affecting the model’s classification performance. At the 
same time, acquiring high-quality annotations is also challenging. 
Annotating medical images requires in-depth expertise and relies on 
annotators’ extensive clinical experience. However, subjective 
differences between different doctors and inconsistencies in 
annotations by the same doctor at different time points can introduce 
noise into the data, adversely affecting the model’s training outcomes. 
These factors together limit the widespread application of deep 
learning in distinguishing radiation necrosis from recurrent tumors.

However, deep learning algorithms have the ability to 
automatically learn complex features from medical images, eliminating 
the need for manual feature extraction. In practical applications, deep 
learning models shorten diagnostic cycles and improve efficiency 
through fully automated processes. Additionally, deep learning 
models exhibit strong adaptability and robustness, being able to 
handle imaging data from different modalities and resolutions. This 
demonstrates the vast potential for deep learning in distinguishing 
radiation necrosis from recurrent tumors. Despite challenges such as 
limited data availability, data distribution imbalance, and difficulty in 
acquiring high-quality annotations, targeted and effective solutions 
are gradually emerging through further research and practical 
exploration. Regarding sample size expansion, data augmentation 
techniques (20, 94, 95) can generate new samples with similar 
distributions to the original data by performing transformations such 
as rotation, scaling, and cropping, effectively expanding the training 
dataset. To address the data imbalance issue, resampling techniques 
such as random oversampling, undersampling, and the SMOTE 
(synthetic minority over-sampling technique) algorithm (96) can 
adjust the sample proportion of different categories in the dataset, 
enabling the model to focus more on the minority class samples 
during training and improving its recognition ability for the minority 
class. Additionally, to solve the high-quality annotation issue, 
establishing standardized annotation processes and multi-expert 
consensus mechanisms is key. By setting detailed annotation 
guidelines and conducting cross-validation and annotation review 
with multiple experienced medical experts, the subjective differences 
and inconsistencies during annotation can be effectively minimized, 
thereby improving the quality and reliability of annotated data.

4 Challenges and future directions

In brain metastasis research, the application of machine learning 
has made significant progress, but there are still challenges in tasks 

such as detection, segmentation and classification, including issues 
such as small sample sizes, insufficient model generalization ability, 
and multimodal data integration. To address these challenges, 
researchers have actively explored various solutions. For instance, to 
overcome data limitations, techniques such as data augmentation (20, 
94, 95), dense overlapping stitching (95), and transfer learning (67, 68) 
have been widely used. To improve model generalization ability, 
researchers have focused on domain generalization (38, 94), multi-
center dataset training (97), and adaptive network architectures (13, 
39, 98). Methods such as multi-channel input and feature fusion (99) 
have been used to integrate complementary information from 
multimodal MRI images. For specific tasks, researchers have also 
developed corresponding strategies. For example, in brain metastasis 
segmentation, methods such as asymmetric structures (21), multi-
scale feature fusion (99), improved loss functions (36), and overlapping 
patch techniques (100) have been used to improve the sensitivity of 
small lesion detection. In the differentiation between GBM and BM, 
brain metastasis and radiation necrosis, researchers have not only 
focused on integrating multimodal imaging data (51, 54, 55, 60, 63, 
84, 87, 101), but have also explored more detailed tumor sub-region 
analysis (14, 54, 58, 60, 61, 65) and integration of clinical information 
(57, 59, 102) to improve diagnostic accuracy.

However, current research still has several limitations 
(Supplementary Table S6). For example, although CT images play a 
key role in the early screening of brain metastasis, most current studies 
focus on MRI images, neglecting the potential applications of CT 
images in brain metastasis segmentation and classification tasks. 
Additionally, most of the existing studies have small sample sizes and 
lack multi-center validation, which limits the model’s generalization 
ability and clinical application value. Furthermore, the interpretability 
of deep learning models still needs improvement, and enhancing the 
transparency and trustworthiness of models will help integrate them 
more effectively into clinical workflows.

4.1 The gap between CT and MRI in brain 
metastasis image analysis

Deep learning has made significant progress in brain metastasis 
MRI image analysis, but incorporating CT images into the analysis 
pipeline holds important clinical significance and research value. First, 
CT examinations are more widespread and economical, especially in 
developing countries and primary healthcare settings, making CT a 
more accessible diagnostic tool. It is also more patient-friendly for 
individuals who are immobile or unable to tolerate long MRI scans. 
Additionally, CT images serve as the standard imaging basis for 
radiotherapy planning. Integrating CT images into brain metastasis 
segmentation and classification tasks can better assist in delineating 
radiotherapy target areas and dose calculation, improving the 
precision and safety of radiotherapy.

Although CT images are less commonly used in brain metastasis 
image segmentation and classification, some studies have explored 
this. In brain metastasis image segmentation, Wang et  al. (103) 
constructed an improved U-Net architecture with a position attention 
module (PAM) to automatically segment the gross tumor volume 
(GTV) from CT simulation images of brain metastasis patients. This 
model demonstrated excellent performance in external independent 
validation sets, though its generalization ability needs further 
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validation. Wang et al. (104) further innovated by combining GAN, 
Mask R-CNN, and CRF optimization to construct a deep learning 
model for automatic segmentation of GTV in brain metastasis from 
CT simulation images. The model demonstrated good generalization 
ability on both internal and external validation datasets, providing an 
effective technical approach for brain metastasis image segmentation. 
However, despite advances in CT image segmentation technology in 
brain metastasis diagnosis, its performance still lags behind MRI and 
requires further optimization.

In brain metastasis image classification, existing research has 
attempted to use CT radiomics features and deep learning models. For 
example, Li et al. (105) used CT radiomics features from lung cancer 
patients to predict brain metastasis, achieving good diagnostic 
performance (AUC = 0.81). Zhang et al. (106) constructed a stacked 
ensemble model for classifying tumor volume (GTV), brainstem, and 
normal brain tissue in brain metastasis CT images, outperforming 
individual base models (AUC = 0.928, 0.932, and 0.942, respectively). 
Gong et al. (107) proposed a deep learning model combined with CT 
radiomics features to predict the risk of brain metastasis in non-small 
cell lung cancer patients within 3 years. Their ensemble learning 
model showed good predictive efficacy on both training and validation 
sets (AUC between 0.85–0.91). While CT images have been applied in 
brain metastasis classification, the lower image clarity and resolution 
compared to MRI make it more challenging to distinguish brain 
metastasis from normal tissue in CT images. As a result, models 
trained on CT images typically perform worse in feature extraction, 
classification accuracy, and generalization ability compared to models 
trained on MRI images, limiting the depth and breadth of research in 
brain metastasis CT image classification. However, globally, especially 
in developing countries and primary healthcare settings, CT remains 
an important diagnostic tool due to its higher prevalence, lower cost, 
ease of access, and greater convenience for patients unable to tolerate 
long MRI scans. Therefore, CT continues to play a crucial role in brain 
metastasis diagnosis and related research, prompting researchers to 
address the limitations of CT images and improve the performance of 
models based on CT images.

In future research, considering the differences between CT and 
MRI in imaging principles and clinical application advantages, and 
recognizing that they cannot replace each other, it may be valuable to 
combine both modalities to more comprehensively assess brain 
metastasis characteristics. Exploring deep learning models based on 
fused CT and MRI images, such as developing automatic brain 
metastasis segmentation models or classification models, could 
improve segmentation and classification accuracy, leading to more 
precise treatment planning.

4.2 The conflict between AI model 
generalization and patient privacy 
protection

Deep learning models show great potential in the diagnosis and 
treatment of brain metastasis, offering innovative solutions and 
breakthrough possibilities in this field. However, a key factor limiting 
the widespread clinical application of deep learning models is the lack 
of sufficient external validation. This issue leads to insufficient model 
generalization, making it difficult for the models to adapt to the 
complex and dynamic clinical scenarios.

Insufficient model generalization is a common issue in medical 
imaging research. In brain metastasis segmentation research, some 
studies lack external validation on independent test sets, rely only on 
single-center data, or lack multi-center data for external validation. 
Some studies also use multimodal MRI data and cascaded networks, 
but with small training datasets from single institutions, making it 
difficult to adapt to different hospital scanning technologies and 
hardware differences, limiting the generalization ability of the models 
and potentially leading to performance degradation in real-world 
applications. Similar issues arise in the differential diagnosis of GBM 
and BM, identification of brain metastasis sources, and the 
differentiation of radiation necrosis and tumor recurrence post-
radiotherapy. Many studies lack external dataset validation, making it 
difficult to ensure the models’ effectiveness in diverse environments. 
Some studies also suffer from small sample sizes and focus only on 
limited tumor types, resulting in poor model generalization ability. 
Furthermore, some studies also face the combined challenges of small 
sample sizes, lack of external independent validation, and pathology 
diagnosis verification, reducing the reliability of the results and 
severely limiting the model’s generalization ability, making it difficult 
to apply in broader clinical settings. The limitations in model 
generalization performance are not challenges unique to brain 
metastasis segmentation tasks. The medical image analysis field has 
addressed similar issues through establishing large-scale clinical 
validation datasets via multi-institutional collaborations, while 
simultaneously utilizing these standardized datasets to provide unified 
accuracy assessment metrics (such as sensitivity, specificity, Dice 
coefficient, etc.), thereby enabling direct performance comparison and 
objective evaluation between different algorithms. The primary brain 
tumor segmentation validation framework represented by the brain 
tumor segmentation (BRATS) challenge has thoroughly validated the 
effectiveness of this multi-center data-driven approach in enhancing 
algorithm clinical translation capabilities, providing a successful 
paradigm that can be referenced for brain metastasis image analysis 
tasks (18).

To promote the clinical application of machine learning 
technologies in brain metastasis segmentation and classification, 
validation is needed on larger, more diverse clinical datasets to assess 
the models’ reliability and effectiveness. However, constructing large-
scale, diverse brain metastasis datasets also presents challenges, 
especially in head and neck imaging data. Unlike imaging data from 
other parts of the body, head and neck images contain a significant 
amount of facial information, which is highly identifiable and 
reconstructible, and direct public use could lead to patient privacy 
breaches. Therefore, when building public datasets, strict 
anonymization processes, such as face blurring or de-identification, 
are necessary to ensure patient privacy. This is one of the reasons why 
head and neck tumor imaging data in public databases like TCIA are 
difficult to share openly.

However, while strict anonymization can address privacy 
concerns to some extent, the variability of data from different 
hospitals introduces new challenges. Differences in scanners, 
imaging parameters, and patient populations at different hospitals 
can make generalization ability even more crucial for clinical 
applications. To improve model generalization, domain 
adaptation/domain generalization techniques (108) can be used to 
overcome distribution differences between datasets, for example, 
by learning common features across domains or regularizing the 
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model to enhance its robustness to different data distributions. 
Additionally, federated learning techniques (109) can be used to 
train models on multi-center data while protecting patient privacy. 
For example, Jiménez-Sánchez et al. (110) proposed a federated 
learning method combining curriculum learning and unsupervised 
domain adaptation, which achieved significant results in 
classification performance (AUC 0.79, PR-AUC 0.82, far 
surpassing traditional methods) and domain adaptation in breast 
cancer classification. Feng et  al. (111) built a robust federated 
learning model (RFLM) using multi-center preoperative CT 
imaging data of gastric cancer patients, outperforming clinical 
models and other federated learning algorithms in predicting 
post-surgery recurrence risk. Federated learning methods, 
including horizontal, vertical, and federated transfer learning, can 
be  selected based on specific situations. Horizontal federated 
learning is suitable for cases where participants have similar 
features but different samples, such as brain metastasis patient data 
from different hospitals. Vertical federated learning is suitable 
when participants have the same samples but different features, 
such as data from different departments within the same hospital. 
Federated transfer learning is applicable when participants have 
both different samples and features. Additionally, data 
heterogeneity, communication efficiency, and privacy concerns 
must be considered. Techniques such as differential privacy and 
homomorphic encryption can further enhance privacy protection 
in federated learning.

For brain metastasis diagnosis and treatment, federated learning 
can be  used to integrate data from multiple medical institutions, 
thereby training deep learning models with better generalization 
ability. For example, a federated learning network involving multiple 
hospitals can be  built to collaboratively train a brain metastasis 
segmentation model using each hospital’s imaging data, without 
sharing raw patient image data, effectively protecting patient privacy.

However, despite federated learning demonstrating enormous 
potential at the technical level, it still faces complex administrative 
coordination and policy regulation challenges in practical applications, 
which perhaps explains why most current large-scale medical imaging 
databases tend to adopt the traditional model of multi-source 
anonymized data integration. In the future, federated learning 
technology needs continuous optimization in algorithm robustness, 
privacy protection mechanisms, and heterogeneous data processing 
capabilities to better adapt to the practical requirements of complex 
medical image analysis tasks such as brain metastases.

4.3 AI model interpretability and clinical 
trust challenges

Although deep learning models have achieved excellent 
performance in brain metastases detection, segmentation, and 
classification tasks, their “black box” characteristics severely constrain 
clinical translation applications. AI interpretability challenges in brain 
metastases diagnosis are particularly prominent, as clinicians need to 
understand how AI distinguishes microscopic lesions smaller than 
3 mm from vascular artifacts, the basis for determining lesion 
boundaries, and the prioritization logic in cases with multiple lesions. 
This lack of decision transparency directly affects physicians’ trust in 
AI systems, becoming a critical barrier to clinical adoption.

Current interpretability methods exhibit obvious limitations in 
brain metastases applications. Although Adnan et al. (112) employed 
Grad-CAM technology to visualize model attention regions, with 
their NASNet large model achieving 92.98% accuracy while providing 
clear localization, the interpretation granularity is coarse and difficult 
to meet precise diagnostic requirements. Chen et al. (113) used SHAP 
methods to analyze 10 mm brain-tumor interface features, with their 
logistic regression model achieving an AUC of 0.808 and quantifying 
feature contribution values, but the computational complexity of high-
dimensional image processing limits real-time applications. The 
integrated gradients method by Sayres et al. (114) improved physician 
sensitivity from 79.4 to 88.7%, yet simultaneously exposed the double-
edged effect of interpretability—potentially increasing misdiagnosis 
risk for patients without lesions. These studies indicate that existing 
interpretability techniques lack optimization design specifically for 
brain metastases tasks.

The impact of interpretability deficiency has transcended the 
technical level, becoming a significant barrier for AI systems to obtain 
regulatory approval, hospital procurement decisions, and clinical 
workflow integration. In clinical practice, radiologists’ acceptance of 
AI recommendations highly depends on their understanding of 
decision logic, particularly when handling complex cases or 
formulating treatment plans. Current brain metastases AI research 
generally treats interpretability as an additional feature rather than a 
core requirement, leading to a disconnect between technological 
development and clinical needs.

Future brain metastases AI systems should construct multi-level, 
personalized interpretability frameworks. At the technical level, 
comprehensive solutions integrating LIME local interpretation, 
Grad-CAM global visualization, and uncertainty estimation are 
needed, incorporating brain anatomical prior knowledge and 
radiomics semantic features. At the clinical level, stratified 
interpretation interfaces should be  designed for physicians with 
different experience levels, providing detailed educational explanations 
for residents and key feature summaries for senior physicians. At the 
system level, standardized metrics for interpretability evaluation and 
multi-center validation mechanisms need to be established to ensure 
clinical effectiveness and safety of interpretation methods. More 
importantly, deep integration of interpretable AI with clinical decision 
support systems should be promoted, constructing a fully transparent 
diagnostic and treatment system from image analysis to treatment 
recommendations, truly achieving collaborative development between 
AI technology and clinical practice.

4.4 Lack of clinical practice translation and 
reader studies

Although deep learning models have shown significant potential 
in the diagnosis and treatment of brain metastases, their clinical 
translation still faces numerous challenges. For instance, while the 
U-Net architecture and its improved models have achieved small-scale 
clinical applications in brain metastasis image segmentation, they still 
face significant limitations in terms of precision for small lesion 
detection and generalization ability, particularly when adapting to 
different scanning devices and MRI sequences (20, 21). These 
technical limitations severely restrict large-scale clinical translation 
and application. Similarly, in brain metastasis image classification 
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tasks, machine learning-based models for the differentiation of 
glioblastoma (GBM) and brain metastasis (BM) show high diagnostic 
accuracy in internal validation, but their clinical application remains 
significantly limited. The main reason is that these models are often 
based on single-center retrospective studies, lacking multi-center 
external validation, leading to concerns about their reliability across 
different medical institutions and patient populations (51, 53, 54). 
Furthermore, while studies combining radiomics and machine 
learning have made some progress in differentiating brain metastasis 
subtypes, the lack of standardized feature selection and model 
optimization processes has resulted in poor reproducibility and 
consistency between studies, severely affecting the clinical deployment 
value of these models (69, 70, 96).

To better serve clinical practice, AI research should establish a 
standardized validation process system comprising three levels: 
technical validation, clinical validation, and implementation 
validation. The technical validation phase should adopt multi-
dimensional assessment metrics including Dice coefficient, sensitivity, 
specificity, and Hausdorff distance, while introducing clinical 
relevance evaluation. Clinical validation requires designing 
prospective multi-center randomized controlled reading studies (110), 
objectively evaluating the impact of AI systems on diagnostic accuracy, 
reading time, and clinical decision-making by randomly assigning 
radiologists of different experience levels to AI-assisted groups and 
control groups. The key is to establish unified MRI scanning parameter 
standardization protocols, including technical specifications such as 
contrast agent injection timing for T1c sequences and slice thickness 
settings, as well as image quality control standards, ensuring 
consistency and comparability of multi-center research data.

To achieve genuine clinical application of AI systems, key issues 
such as technical integration and regulatory compliance must 
be addressed. In PACS system integration, interface design based on 
DICOM standards should be adopted, developing structured report 
formats compliant with DICOM-SR standards to achieve seamless 
storage and retrieval of AI analysis results in PACS (115). Through 
asynchronous processing modes and automatic triggering 
mechanisms, the system should be capable of automatically processing 
newly uploaded brain MRI examinations without affecting normal 
hospital workflow. In regulatory compliance, quality management 
systems meeting the requirements of regulatory agencies such as FDA 
and NMPA must be established, including complete software lifecycle 
management, risk control measures, and continuous performance 
monitoring mechanisms. AI system performance dashboards should 
be established to monitor key indicators such as processing time and 
accuracy in real-time, automatically alerting and initiating emergency 
responses when performance deviates from preset thresholds. 
Additionally, improving clinical physicians’ acceptance is equally 
critical. Training programs should be designed for medical personnel 
at different levels, helping clinicians understand the advantages and 
limitations of AI systems through case analysis and practical exercises, 
and establishing user feedback collection mechanisms to continuously 
optimize system functionality.

In reader studies, existing research exhibits obvious inadequacies. 
Although studies indicate that deep learning-assisted systems (BMSS) 
can significantly improve the accuracy and efficiency of brain 
metastases delineation, particularly with more pronounced effects for 
less experienced residents (116), these studies are mostly limited to 
single-center small-sample data, resulting in lack of generalizability. 

Compared to fields such as breast cancer detection and lung cancer 
detection (117, 118), reader studies for AI in brain metastases 
segmentation and classification tasks are relatively lacking. Current 
research focuses more on technical-level algorithm optimization and 
performance improvement, with less involvement in evaluating 
radiologists’ performance when using AI tools in actual clinical 
practice. Future research should pay more attention to radiologists’ 
performance when using AI-assisted systems, particularly the 
differences among physicians of different experience levels when using 
AI tools. It is recommended to design multi-center, multi-level reader 
studies to evaluate AI tool performance in different clinical scenarios 
and explore their potential value in training young physicians, better 
guiding the practical application of AI in clinical settings.

5 Conclusion

Artificial intelligence technologies, including classical machine 
learning and deep learning, have shown enormous potential in the 
diagnosis and treatment of brain metastases. From precise tumor 
segmentation to complex classification tasks, AI technologies provide 
new tools to improve diagnostic accuracy and efficiency. Deep 
learning models such as U-Net and DeepMedic have achieved 
significant results in brain metastasis detection and segmentation 
tasks, while machine learning and deep learning methods have also 
been successfully applied to differentiate brain metastases from 
glioblastoma, identify primary sources of brain metastases, and 
distinguish radiation necrosis from tumor recurrence post-
radiotherapy. Although AI has made promising progress in brain 
metastasis image analysis, further research is still needed to overcome 
existing challenges, such as improving model interpretability and 
generalization ability, building large-scale high-quality clinical 
datasets, developing user-friendly software tools, and conducting 
rigorous clinical trials. With continued technological advancements 
and deeper clinical application, AI technologies are expected to make 
greater contributions to the precision diagnosis and prognosis 
improvement of brain metastases.
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