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Background: The glucose-to-potassium ratio has shown promise as a 
biomarker in neurological disorders, but its prognostic value in acute ischemic 
stroke (AIS) after intravenous thrombolysis (IVT) continues to be uncertain. The 
study explores the relationship between admission GPR and 90-day functional 
outcomes in AIS patients undergoing IVT treatment.

Methods: A retrospective analysis included 649 AIS patients undergoing IVT 
between May 2016 and December 2023. Baseline clinical, laboratory, and 
imaging data were analyzed. GPR was calculated from serum glucose and 
potassium levels at admission. A modified Rankin Scale score of 3 to 6 at 
90 days was used to define poor functional outcomes. Logistic regression and 
restricted cubic splines assessed the GPR-outcome relationship, adjusting for 
confounders. Receiver operating characteristic (ROC) analysis evaluated GPR’s 
predictive value.

Results: Among 649 patients, 174 (26.8%) had poor outcomes. Median GPR 
was significantly higher in these patients (2.14 vs. 1.88, p < 0.001). Higher GPR 
independently predicted negative consequences (OR, 1.821; 95% CI, 1.340–
2.473, p < 0.001). Subgroup analysis indicated a stronger association in non-
diabetic patients. ROC analysis demonstrated an area under the curve (AUC) 
of 0.631 (95% CI, 0.585–0.677, p < 0.001) for GPR in predicting poor functional 
outcomes.

Conclusion: High GPR levels are independently linked to unfavorable 90-day 
functional outcomes in AIS patients who received IVT, suggesting its potential as 
a prognostic biomarker. Further studies are warranted to validate these findings.
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Introduction

Ischemic stroke has become the second most common cause of death and the third largest 
factor in global disability. Among those who survive cerebrovascular disease, over 70% 
experience varying degrees of work-related impairment, contributing to a growing global 
socioeconomic burden (1–3). Statistical data indicate that approximately 2 million individuals 
in China are affected annually, with around 8 million individuals currently living with the 
condition (4). The advent of intravenous thrombolysis (IVT) has revolutionized the treatment 
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of acute ischemic stroke (AIS), yet the functional outcomes of patients 
undergoing this therapy remain highly variable. Identifying reliable 
predictors of prognosis following IVT is crucial for guiding treatment 
decisions and optimizing outcomes (5).

Serum biomarkers have emerged as important tools in predicting 
stroke outcomes, as they reflect underlying pathophysiological 
processes. Among these, glucose and potassium are critical 
components of cellular metabolism and ionic homeostasis, 
respectively. Hyperglycemia has long been associated with poor 
outcomes in AIS, possibly due to increased oxidative stress, 
inflammation, and blood–brain barrier disruption (6, 7). Similarly, 
hypokalemia may exacerbate neuronal injury through ionic 
imbalances and impaired cellular repair mechanisms (8).

As a novel biomarker, the glucose to potassium ratio (GPR) has 
been proposed, incorporating the prognostic aspects of both glucose 
and potassium levels. Prior investigations have revealed that elevated 
GPR correlates with adverse results in various neurological diseases, 
including traumatic brain injury, intracranial hemorrhage, and 
ischemic stroke treated with endovascular thrombectomy (5, 6). 
However, its role in predicting functional outcomes after IVT in AIS 
has not been determined. Consequently, this investigation focused on 
examining how GPR correlates with functional outcomes at the 
90-day mark following IVT through a retrospective study.

Methods and materials

Study participants and design

This study is a retrospective analysis involving patients with acute 
ischemic stroke who underwent IVT at Yangpu Hospital of Tongji 
University School of Medicine, between May 2016 and December 
2023. The inclusion of patients was determined by the following 
criteria: (1) 18 years old or above; (2) confirmation of cerebral 
infarction via imaging; and (3) availability of data necessary for the 
calculation of the GPR. To ensure consistency among study 
participants, we  excluded patients who were treated with a 
combination of intravenous alteplase and endovascular thrombectomy 
(bridging therapy), those with renal failure, those with an estimated 
glomerular filtration rate (eGFR) of less than 60 mL/min/1.73 m2, 
those undergoing hemodialysis or peritoneal dialysis, and those 
lacking complete medical history, imaging reports, laboratory results, 
and National Institutes of Health Stroke Scale (NIHSS) scores. The 
Heidelberg Bleeding Classification was used to diagnose symptomatic 
intracerebral hemorrhage (sICH) within 24 h of IVT (9). The study 
received approval (LL-2021-LW-003, February 22, 2021) from the 
ethics committee at Yangpu Hospital of Tongji University School of 
Medicine. Patient information was kept confidential at Yangpu 
Hospital of Tongji University School of Medicine. The clinical studies 
were carried out in accordance with the guidelines of the Declaration 
of Helsinki.

Baseline variable assessment

Patient records, encompassing admission data, were 
retrospectively analyzed to evaluate demographics, vascular risk 
factors, imaging, and laboratory data. A certified neurologist employed 

the NIHSS to assess baseline neurological deficits (10). Patient 
outcomes were gathered during clinic visits or telephone interviews 
conducted 3 months post-event. The main result was identified as 
poor functional status, indicated by a modified Rankin Scale (mRS) 
score between 3 and 6. Blood samples were taken from every patient 
prior to reperfusion therapy, and the GPR was computed by dividing 
the glucose concentration by the potassium concentration (11).

Statistical analysis

Depending on the normality of their distribution, quantitative 
variables were expressed as mean ± standard deviation (SD) or median 
with interquartile range (IQR), whereas categorical variables were 
presented as frequencies and percentages. Continuous variables were 
analyzed using t-tests or Mann–Whitney U tests, while categorical 
variables were assessed with chi-square tests or Fisher’s exact tests. The 
90-day adverse outcome odds ratio (OR) and 95% confidence interval 
(CI) for each unit rise in GPR and its quartiles were analyzed using 
logistic regression models. Adjustments were made to the crude 
model for variables that had a p-value below 0.05 in the univariate 
analysis, including age, sex, diabetes, smoking, history of stroke or 
transient ischemic attack (TIA), atrial fibrillation, sICH, baseline 
NIHSS score, proportion of mRS scores of 0–2 upon admission, blood 
pressure of systolic, C-reactive protein (CRP), hemoglobin (HB), 
platelet count (PLT), red blood cell count (RBC), glycated hemoglobin 
(HBA1c) and cholesterol associated with high-density lipoproteins 
(HDL-C), excluding glucose and potassium due to collinearity 
concerns. Model 1 was further adjusted for the crude model variables 
and additional factors such as hypertension, coronary artery disease, 
onset-to-needle time (ONT), blood pressure of diastolic, white blood 
cell count (WBC), creatinine (CRE), total cholesterol (TC), 
triglycerides (TG), cholesterol associated with low-density lipoprotein 
(LDL-C) and homocysteine (Hcy). Model 2 retained all the variables 
from Model 1, excluding the proportion of mRS 0–2 scores, and 
replaced it with baseline mRS as a continuous variable. Furthermore, 
to investigate the association between the GPR and prognosis in 
specific populations, we  conducted a subgroup analysis based on 
identified risk factors, including gender, age, NIHSS score, history of 
stroke or transient ischemic attack, diabetes, atrial fibrillation, 
hypertension, and coronary artery disease. To determine the 
predictive value of GPR for a poor functional outcome at 90 days, 
receiver operating curve (ROC) analysis was utilized. Ultimately, to 
examine the dose–response relationship between the GPR and clinical 
functional outcome, restricted cubic splines (RCS) were applied, using 
three knots at the 10th, 50th, and 90th percentiles, while adjusting for 
covariates in model 2 (12).

Data processing and analysis were performed using R version 
4.4.0 (2024-04-24), along with Zstats 1.0.1 Statistical significance was 
determined by a two-sided p-value below 0.05.

1  www.zstats.net
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Results

Basic features

Throughout the study, 764 patients with acute ischemic stroke 
were treated with IVT. Of these patients, 46 underwent bridging 
therapy, 40 did not have imaging confirmation of infarction, 21 
presented with renal failure, 6 had incomplete laboratory data, and 2 
were not followed up on. These cases were subsequently excluded 
from the analysis (Figure 1). Consequently, data from 649 patients 
were included and analyzed. The enrolled subjects’ demographic 
details, laboratory information, and clinical characteristics are 
compiled in Table 1. Participants in the cohort had a median age of 71, 
with an interquartile range of 62 to 84 years, and consisted of 410 men. 
The initial median NIHSS score was 4, with an interquartile range of 
2 to 8. Based on the Heidelberg Bleeding Classification, 17 patients 
(2.6%) were diagnosed with sICH. The median GPR levels among 
enrolled patients were 1.93 (IQR:1.58–2.47).

Correlation between GPR and functional 
outcomes

In the 90-day follow-up period, 174 patients (26.8%) had negative 
functional outcomes. Univariate analysis indicated that patients with 
unfavorable functional outcomes were significantly older than those 
without (median age: 82 years versus 68 years; p < 0.001). Patients 
with negative functional outcomes had significantly higher rates of 
diabetes (34.1% compared to 22.1%; p = 0.018), stroke or TIA (31.0% 
compared to 19.8%; p = 0.002), and atrial fibrillation (32.2% compared 
to 12.8%; p < 0.001). Additionally, patients with negative functional 

outcomes also had elevated initial NIHSS scores (median: 9 versus 4; 
p < 0.001), systolic blood pressure (median: 161 mmHg versus 
155mHg; p = 0.006), HbA1c (median: 6.25% versus 6.00%; p < 0.001), 
CRP levels (median: 5.00 mg/L versus 5.00 mg/L; p = 0.007), and GPR 
(median: 2.14 versus 1.88; p < 0.001). They also had a higher incidence 
of sICH (6.3% versus 1.3%; p < 0.001) and all-cause mortality (21.8% 
versus 0%; p < 0.001). Conversely, they had lower proportions of 
smokers (31.6% versus 48.4%; p < 0.001), baseline mRS scores of 0–2 
(100.0% versus 93.1%; p < 0.001), and male patients (50.0% versus 
68.0%; p < 0.001). Furthermore, they showed lower levels of RBC 
(median: 4.52 versus 4.63; p = 0.002), PLT (median: 195.5 versus 
212.00; p = 0.013), HB (median: 137.00 versus 142.00; p < 0.001), and 
HDL-c (median: 1.07 versus 1.15; p = 0.011; Table 1).

After accounting for possible confounding factors in multivariate 
logistic analysis, an increased GPR was notably linked to a greater 
likelihood of a negative functional outcome after 90 days (OR, 1.821; 
95% CI, 1.340–2.473, p < 0.001). The detailed results of univariate and 
multivariate logistic regression analyses for the evaluation of 
functional prognostic factors are provided in Supplementary Table S1. 
Analyzing GPR in categorical terms yielded similar findings (Table 2). 
Simultaneously, utilizing model 2, to depict the findings of the 
subgroup multivariate logistic regression analysis, we developed a 
forest plot. The findings indicate that GPR exerts a more pronounced 
influence on the outcomes of non-diabetic patients in comparison to 
those with diabetes (Figure 2). Then, the results of the ROC analysis 
indicated that, across all patients, for predicting a poor functional 
prognosis at 90 days, the AUC of the GPR was 0.631 (95% CI, 0.585–
0.677, p < 0.001). A cutoff value of 1.745 was identified as optimal, 
showing a sensitivity of 41.7% and a specificity of 78.2% (Figure 3). 
Additionally, the RCS analysis showed that GPR is positively linearly 
associated with unfavorable functional outcomes after 90 days 
(p = 0.207 for no linearity; p < 0.001 for overall; Figure 4).

FIGURE 1

Research flow chart.
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Discussion

The research indicates a notable correlation between GPR and the 
functional results in AIS patients receiving IVT. Importantly, this 
correlation persisted even after taking into account potential 
confounding factors. Higher GPR levels upon admission were linked 

to an increased likelihood of negative functional outcomes 90 days 
after treatment. When GPR was analyzed as a categorical variable, 
there was an observed trend of increasing odds ratio values from the 
first to the fourth quartile. The impact of GPR on results was more 
significant in patients without diabetes than in those with 
the condition.

TABLE 1  Baseline information for patients experiencing both good and bad functional prognoses at 90 days.

Variables Total population 
(n = 649)

Results after 90 days p-value

Favorable prognosis 
(mRS ≤ 2, n = 475)

Unfavorable prognosis 
(mRS > 3, n = 174)

Age (years), median (IQR) 71 (62 ~ 84) 68 (61 ~ 80) 82 (70 ~ 88) <0.001

Male, n (%) 410 (63.2) 323 (68.0) 87 (50.0) <0.001

Risk factors, n (%)

  Smoking 285 (43.9) 230 (48.4) 55 (31.6) <0.001

  Diabetes 239 (36.8) 162 (34.1) 77 (44.3) 0.018

  Stroke/TIA 148 (22.8) 94 (19.8) 54 (31.0) 0.002

  Hypertension 471 (72.6) 340 (71.6) 131 (75.3) 0.348

  Coronary artery disease 120 (18.5) 80 (16.8) 40 (23.0) 0.074

  Atrial fibrillation 117 (18.0) 61 (12.8) 56 (32.2) <0.001

Clinical data

 � Time from onset-to-needle (min), 

median (IQR)
131 (125 ~ 137.5) 131 (122 ~ 135) 131 (131 ~ 142) 0.083

  sICH, n (%) 17 (2.6) 6 (1.3) 11 (6.3) <0.001

 � Systolic blood pressure (mmHg), 

median (IQR)
157 (142 ~ 173) 155 (141 ~ 171) 161 (144 ~ 183) 0.007

 � Diastolic blood pressure (mmHg), 

median (IQR)
86 (78 ~ 97) 86 (78 ~ 97) 86 (76 ~ 97) 0.624

 � NIHSS on admission, median (IQR) 4 (2 ~ 8) 4 (2 ~ 6) 9 (5 ~ 16) <0.001

 � mRS 0–2 on admission, n (%) 637 (98.2) 475 (100.0) 162 (93.1) <0.001

  All-cause mortality at 90 days, n (%) 38 (5.8) 0 (0.0) 38 (21.8) <0.001

Laboratory parameters, median (IQR)

  CRP, mg/L 5.00 (3.05 ~ 5.06) 5.00 (3.00 ~ 6.23) 5.00 (4.00 ~ 8.35) 0.007

  WBC, 109/L 7.10 (5.90 ~ 8.50) 7.10 (5.85 ~ 8.50) 7.30 (5.90 ~ 8.50) 0.976

  RBC, 1012/L 4.60 (4.24 ~ 4.98) 4.63 (4.28 ~ 5.01) 4.52 (4.06 ~ 4.87) 0.002

  PLT, 109/L 206.00 (171.00 ~ 245.00) 212.00 (173.00 ~ 247.00) 195.50 (163.75 ~ 230.00) 0.013

  HB, g/L 141.00 (129.00 ~ 152.00) 142.00 (131.00 ~ 153.00) 137.00 (121.00 ~ 149.00) <0.001

  HBA1c, % 6.00 (5.70 ~ 6.60) 6.00 (5.70 ~ 6.50) 6.25 (5.80 ~ 7.40) <0.001

  Glucose, mmol/L 7.25 (6.17 ~ 9.27) 7.05 (6.06 ~ 8.79) 7.88 (6.64 ~ 10.01) <0.001

  Potassium, mmol/L 3.87 (3.57 ~ 4.16) 3.88 (3.59 ~ 4.17) 3.77 (3.53 ~ 4.08) 0.031

  GPR 1.93 (1.58 ~ 2.47) 1.88 (1.52 ~ 2.37) 2.14 (1.77 ~ 2.79) <0.001

  TG, mmol/L 1.18 (0.87 ~ 1.64) 1.24 (0.88 ~ 1.66) 1.13 (0.80 ~ 1.54) 0.056

  TC, mmol/L 4.56 (3.83 ~ 5.37) 4.67 (3.83 ~ 5.39) 4.47 (3.78 ~ 5.27) 0.123

  HDL-C, mmol/L 1.12 (0.95 ~ 1.33) 1.15 (0.96 ~ 1.34) 1.07 (0.90 ~ 1.27) 0.011

  LDL-C, mmol/L 2.91 (2.36 ~ 3.46) 2.96 (2.39 ~ 3.49) 2.87 (2.33 ~ 3.40) 0.309

  CRE, mmol/L 78.00 (65.00 ~ 95.00) 77.00 (65.00 ~ 95.00) 82.50 (67.00 ~ 93.25) 0.349

  Hcy, mmol/L 14.82 (11.21 ~ 20.41) 14.94 (11.00 ~ 20.00) 15.45 (12.69 ~ 21.84) 0.071

TIA, transient ischemic attack; sICH, symptomatic intracerebral hemorrhage; NIHSS, National Institutes of Health stroke scale; CRP, C-reactive protein; WBC, white blood cell count; RBC, 
red blood cell count; PLT, platelet count; HB, hemoglobin; HBA1c, glycated hemoglobin; GPR, glucose-to-potassium ratio; TG, triglycerides; TC, total cholesterol; HDL-C, cholesterol 
associated with high-density lipoproteins; LDL-C, cholesterol associated with low-density lipoprotein; CRE, creatinine; Hcy, homocysteine.
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TABLE 2  Univariate and multivariate logistic regression analysis for the relationship between GPR levels and 90-day poor functional outcome.

Univariate regression Crude model Model 1 Model 2

OR (95% 
CI)

p-value OR (95% 
CI)

p-value OR (95% 
CI)

p-value OR (95% 
CI)

p-value

GPR levels
1.806 (1.415–

2.305)
<0.001

1.748 (1.300–

2.352)
<0.001

1.951 (1.436–

2.650)
<0.001

1.821 (1.340–

2.473)
<0.001

GPR level quartiles

  1st Reference / Reference / Reference / Reference /

  2nd
3.286 (1.832–

5.894)
<0.001

2.082 (1.053–

4.118)
0.035

1.980 (0.997–

3.932)
0.051

2.235 (1.123–

4.449)
0.022

  3rd
3.097 (1.723–

5.568)
<0.001

2.263 (1.153–

4.441)
0.018

2.421 (1.229–

4.769)
0.011

2.450 (1.236–

4.858)
0.010

  4th
4.341 (2.442–

7.719)
<0.001

2.543 (1.245–

5.196)
0.010

2.898 (1.416–

5.934)
0.004

2.853 (1.378–

5.906)
0.005

Quartiles of GPR level: 1st GPR <1.582; 2nd GPR = 1.582 ~ 1.925; 3rd GPR = 1.925 ~ 2.471; 4th GPR ≥2.471.
Crude model: variables with a p-value below 0.05 in the univariate analysis of baseline information, including age, sex, history of stroke or TIA, atrial fibrillation and diabetes, smoking, sICH, 
baseline NIHSS, proportion of mRS 0–2 on admission, blood pressure of systolic, CRP, HB, PLT, RBC, HBA1c, and HDL-C, excluding 90-day all-cause mortality as well as glucose and 
potassium due to collinearity concerns.
Model 1: adjusted for the crude model variables and additional factors such as hypertension, coronary artery disease, ONT, diastolic blood pressure, WBC, CRE, TC, TG, LDL-C, and Hcy.
Model 2: retained all the variables from Model 1, excluding the proportion of mRS 0–2 scores, and replaced it with baseline mRS as a continuous variable.

FIGURE 2

Forest plot of subgroup analysis by binary logistic regression of model 2.
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FIGURE 4

Correlation between GPR levels and risk of 90-day poor functional outcome. Odds ratio and 95% confidence intervals were derived from restricted 
cubic spline regression with three knots (at 10th, 50th, and 90th percentiles). The odds ratio was controlled for the same variables as model 2 in 
Table 2.

Our findings are consistent with previous research on various 
neurological disorders. For example, an earlier study discovered that 
the GPR upon admission could accurately forecast mortality rate 

within 30 days for patients suffering from ischemic stroke (6). Earlier 
research has emphasized the connection between GPR and 
unfavorable outcomes post-endovascular thrombectomy (5). 
Moreover, GPR has been proposed as a potential outcome marker for 
critical brain injuries and intracranial hemorrhage (13–15). The 
literature suggests that there is a close relationship between GPR and 
the Glasgow Coma Scale score, as well as cerebral vasospasm, in cases 
of aneurysmal subarachnoid hemorrhage (16, 17). Additionally, GPR 
has been analyzed as a forecast for the outcome of sudden intracerebral 
bleeding (13). This is also linked to prognosis in instances of severe 
traumatic brain injuries requiring surgical intervention, such as acute 
subdural hematoma, traumatic subarachnoid hemorrhage, acute 
epidural hematoma, and brain contusion due to trauma (18). In this 
study, patients with ischemic stroke who received IVT and had a 
greater GPR at admission was associated with a greater likelihood of 
a poor functional outcome after 90 days, especially in non-diabetic 
individuals. However, the basic pathological mechanism remains 
incompletely explained.

The prognostic value of GPR builds upon previous findings 
regarding the individual roles of glucose and potassium in stroke 
outcomes. Post-stroke hyperglycemia is triggered by increased cortisol 
and catecholamine levels after an ischemic injury, associated with 
increased infarct size, oxidative stress, and disruption of the blood–
brain barrier (7, 19). Early stroke mortality was independently linked 
to hyperglycemia, irrespective of diabetes status (20). Earlier research 
identified the connection between stress hyperglycemia ratio and 
patients’ clinical outcomes over 90 days, undergoing EVT for stroke 
caused by an acute blockage in a large vessel (19, 21). The results of this 

FIGURE 3

Receiver operating characteristic curve showing optimized cut-off 
for GPR in predicting poor functional outcomes (mRS 3–6). The 
optimal cutoff for predicting poor functional outcome is GPR ≥ 1.745 
(sensitivity: 41.7%, specificity: 78.2%).
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study are consistent with the latest guidelines issued by the European 
Stroke Organization (ESO) concerning intravenous thrombolysis for 
acute ischemic stroke. These guidelines underscore the importance of 
actively managing hyperglycemia with insulin in patients undergoing 
intravenous thrombolysis for acute ischemic stroke. Such management 
is crucial for optimizing therapeutic outcomes and enhancing patient 
prognosis (22). In the same way, serum potassium is vital for keeping 
the body’s internal environment stable and lowering the risk of stroke 
(23, 24). Hypokalemia has been linked to impaired neuronal repair, 
increased excitotoxicity, and heightened risk of recurrent stroke. 
According to Johnson et al., there is a linear relationship between 
potassium levels in the blood during early middle age and the potential 
for ischemic stroke, brain bleeding, and overall mortality (25). A study 
from China showed that decreased levels of serum potassium are 
connected to the risk of recurrent AIS or TIA (26).

The stress-related hypothalamic–pituitary–adrenal (HPA) axis 
and the renin-angiotensin-aldosterone system (RAAS) activation is 
reflected in high blood sugar and low potassium levels. Previous 
studies have demonstrated that the GPR serves as a marker for stress 
activity and RAAS response. A physiological mechanism through 
which GPR forecasts the 90-day results for patients who suffered an 
ischemic stroke after IVT includes the joint activation of the HPA axis 
and RAAS in reaction to stress. This interaction leads to 
overproduction of catecholamines, which increases serum glucose 
levels, thereby stimulating insulin secretion and facilitating the 
intracellular transport of serum potassium (27, 28). Consequently, by 
integrating these two parameters, it captures the synergistic effects of 
metabolic and ionic imbalance: the higher the GPR, the more severe 
the physiological damage.

While we  found a connection between GPR and functional 
outcome after 90 days, some restrictions should be acknowledged. 
Firstly, there is a possibility of selection bias and ongoing confounding 
due to the study’s retrospective design. Secondly, GPR was measured 
only at admission, and serial measurements might better capture the 
dynamic changes in metabolic and ionic states during stroke 
progression. Finally, the study was performed in one place, potentially 
limiting the relevance of the outcomes. In conclusion, our study 
identifies serum GPR as a significant prognostic biomarker for poor 
functional outcomes in AIS patients treated with IVT. These results 
indicate that assessing GPR could be a useful parameter for tracking 
outcomes after IVT. Broader studies are necessary to fully understand 
these relationships, potentially assisting in identifying patients at high 
risk for adverse outcomes post-IVT and stressing the importance of 
glucose and potassium.
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