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Prolonged apnea in a boy with 
epilepsy and a novel 
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Introduction: The CACNA1A gene encodes the pore-forming subunit of the Cav2.1 
(P/Q type) neuronal calcium channel and pathogenic variants cause a variety of 
neurological disorders including episodic and congenital ataxia, familial hemiplegic 
migraine, developmental delay and epilepsy. Multiple types of seizures have been 
described in affected patients, including status epilepticus as the first manifestation. 
In mice harboring the homozygous gain-of-function variant p.Ser218Leu, seizures 
leading to SUDEP triggered by brainstem spreading depolarization with subsequent 
apnea and cardiac arrest have been reported.

Methods: Clinical, genetic and functional data are presented.

Results and discussion: The 9-year-old boy with global developmental delay and 
congenital ataxia developed recurrent seizures and status epilepticus with prolonged, 
life-threatening apnea implying a high risk for SUDEP. Genetic testing showed a 
novel de novo missense variant in CACNA1A (c.5398T>A, p.Phe1800Ile). Functional 
analysis revealed a gain of channel function as the molecular pathomechanism. 
Therefore, an increased risk of SUDEP in patients with CACNA1-associated epilepsy 
seems reasonable and preventive strategies should be discussed with caregivers.
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1 Introduction

The CACNA1A gene encodes the pore-forming α1A subunit of the neuronal voltage-gated 
calcium channel Cav2.1 (P/Q type). The Cav2.1 channel consists of four homologous domains, 
each comprising six transmembrane helices (S1-S6) connected by intra- and extracellular 
loops. Segments S1-S4 of each repeat form the voltage sensing domains, segments S5-S6 of all 
four repeats together form the conduction pore with the selectivity filter and the activation 
gate. In the central and peripheral nervous system, Cav2.1 plays a key role in initiating 
neurotransmitter release in excitatory and inhibitory synapses and is involved in intracellular 
signaling, transcriptional regulation and neuronal viability (1–4). Pathogenic variants of the 
CACNA1A gene result in allelic disorders with a broad clinical spectrum including episodic 
ataxia type 2 (OMIM: 108500), familial hemiplegic migraine type 1 (OMIM: 141500), 
spinocerebellar ataxia type 6 (OMIM: 183086) (5, 6), and overlapping features between these 
conditions in individual patients. In addition, CACNA1A-related epilepsy (OMIM: 617106) 
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with multiple seizures types and status epilepticus have been described 
(7–10). Sudden unexpected death in patients with epilepsy (SUDEP) 
is a rare but significant risk in the cohort of patients with epilepsy of 
heterogeneous etiology. Brainstem spreading depolarization has been 
discussed to play an important role, possibly leading to brainstem 
dysfunction followed by respiratory and cardiac arrest (11–15). 
Variants in CACNA1A have been found to be one of the susceptibility 
genes to SUDEP (16).

Here, we report a 9-year-old boy who initially presented with 
global developmental delay and congenital ataxia caused by a novel de 
novo missense variant in CACNA1A. Functional analysis of the variant 
revealed altered gating properties leading to a predominantly gain of 
function phenotype. Epilepsy began with recurrent status epilepticus 
after the age of 6 years. The seizures were followed by prolonged and 
life-threatening central apneas, constituting a high risk of sudden 
unexpected death.

2 Materials and methods

The patient charts were reviewed for the clinical history, the 
laboratory (including metabolic and genetic) and radiological 
investigations. Blood samples from the patient and his parents were 
obtained after informed consent. Whole exome sequencing was 
performed after written informed consent according to national 
regulations on genetic diagnostics.

2.1 Whole exome sequencing and data 
analysis

DNA samples from whole blood were isolated by standard 
procedures. Trio whole-exome sequencing (trio-WES) was performed 
with DNA samples of both healthy parents and the index patient, as 
described previously (17).

The functional impact of the identified variants was predicted 
using CADD, REVEL, M-CAP in silico tools (18–21).

2.2 Plasmids

To generate the GFP-CaV2.1 expression plasmid, the cDNA 
sequence of human CaV2.1 (nt 1–676) was amplified in separate PCR 
reactions using pβA-CaV2.1 [GenBankTM FJ040507; (22)] as template 
with a primer introducing a SalI site at the 5’end. The obtained PCR 
product was then SalI/NotI digested, the remaining cDNA sequence 
coding for CaV2.1 was isolated from pβA-CaV2.1 by NotI/BamHI 
digestion and the two fragments were ligated into the corresponding 
sites of GFP-CaV1.2 (23).

To generate the GFP-CaV2.1-F1800I expression plasmid, the 
F1802I mutation in GenBank™ FJ040507 (corresponding to F1800I 
in the CACNA1A variant GenBank™ AAB64179.1) was introduced 
into GFP-CaV2.1 by splicing by overlap extension (SOE) PCR. For 
simplicity reasons, henceforth we will be using the name CaV2.1-
F1800I. Briefly, the cDNA sequence of human CaV2.1 (nt 5,072–5,980) 
was amplified in separate PCR reactions using GFP-2.1 as template 
with overlapping primers mutating the c.5404T>A. The two separate 

PCR products were then used as templates for a PCR reaction with 
flanking primers to connect the nucleotide sequences. The resulting 
fragment was then XhoI/BglII digested and ligated into the 
corresponding sites of GFP-CaV2.1.

All newly generated sequences were verified by sequencing 
(Eurofins genomics).

2.3 Electrophysiology

The experiments were conducted on an in-house produced cell 
line (A2MG), a HEK 293 cell line that stably expresses human β3 and 
α2δ-1 calcium channel subunits (24, 25). Calcium currents were 
recorded using the ruptured whole-cell patch-clamp technique in 
voltage-clamp mode. Patch pipettes (borosilicate glass, Harvard 
Apparatus, Holliston, MA) had a resistance of 2.5–4.5 MΩ when filled 
with a solution containing (mM) 135 CsCl, 1 MgCl2, 10 HEPES, 4 
ATP-Na2, and 10 EGTA (pH 7.4 with CsOH). 10 mM concentration 
of EGTA prevents calcium-dependent inactivation (CDI) (26). The 
extracellular bath solution comprised (mM) 15 CaCl2, 150 choline-
chloride, 10 HEPES, and 1 MgCl2 (pH 7.4 with CsOH). All 
experimental groups were analyzed in transiently transfected cells 
from three to six independent cell passages. For each cell, the 
stimulation protocol was only recorded once (no technical replicates). 
The recordings were acquired with Axopatch 200A amplifier (Axon 
Instruments, Foster City, CA). Data acquisition and command 
potentials were controlled by pClamp software (version 10.7, Axon 
Instruments). Current–voltage (I–V) relationships were obtained by 
applying a voltage-step square pulse protocol starting from a holding 
potential (Vhold) of −80 mV followed by the command potential 
(Vcmd) of 500 ms, ranging from −60 mV to +80 in 10 mV increment. 
The resulting I–V curves were fitted to the following equation:

 
( ) ( )( )( )∗= +I Gmax V–Vrev / 1 exp – V–V1/2 /K

 (1)

Where Gmax is the maximum conductance of the calcium 
channels, Vrev is the extrapolated reversal potential of the current, 
V1/2 is the potential for half-maximal conductance, and k is the slope.

The conductance was extrapolated using:

 
( ) ( )G –I 1000 / Vrev –Vcmd∗=

 
(2)

The conductance voltage dependence was calculated according to 
the Boltzmann distribution:

 
( )( )( )= +G Gmax / 1 exp – V–V1/2 /K

 (3)

The time constant of activation (τact) was obtained by applying a 
mono-exponential fit to the rising phase of the current using 
the equation:

 ( ) ( )( )τ= × −F t A 1–exp t /
 (4)
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In contrast, the time constant of inactivation (τinact.) was obtained 
by fitting the decay phase of the current with a mono-exponential 
function described by:

 ( ) ( )( )= × − τF t A exp t /
 (5)

For both equations, A is the current amplitude, and τ corresponds 
to the time constant of either activation or inactivation.

The voltage dependence of inactivation was adapted from 
Gambeta et al. (27) by application of two test pulses to Vmax (at +20 mV 
for WT and at +10 mV fore F1800I) before and after holding cells at 
various conditioning test potentials (ranging from −80 to +50 mV) 
for a duration of 5 s (60 s intersweep interval). Inactivation was 
calculated as the ratio between the current amplitudes of the test 
pulses. Steady-state inactivation parameters were obtained by fitting 
the data to the modified Boltzmann equation, as follows:

 
( ) ( )( )( )= + +ni ,inact niG 1–G /( 1 exp V–V1/2 . /Kinact G

 (6)

Where V1/2,inact. is the half-maximal inactivation voltage, kinact is 
the inactivation slope factor and Gni is the fraction of non-inactivating 
current in steady-state.

The kinetics of recovery from inactivation was assessed by 
application of a 5-s-long pre-pulse followed by a test pulse both at Vmax. 
The test pulse was recorded at various time points (between 20 ms and 
45 s, using a logarithmic increase) after the 5 s pre-pulse (30 s 
intersweep interval). Per each sweep, the rate of recovery from 
inactivation was calculated as the ratio between the Imax obtained 
during the test pulse and the Imax collected during the pre-pulse. The 
rate of recovery from inactivation was best fit using a double 
exponential equation.

2.4 Statistical analysis

SigmaPlot (version 12.0; SPSS) was used for statistical analyses 
and curve fitting; GraphPad Prism (version 8.0.1; Graphpad Softaware 
LLC) and CorelDRAW2021 (version 23.0.0.363; Corel Corporation) 
were used to make the figures. All data are presented as mean ± 
SEM. First, all the data were assessed for the normality of the 
distribution using a Shapiro–Wilk test with significant criteria 
alpha = 0.05. Statistical comparison of the fit parameters were 
obtained by using either Student’s t test or mixed-effects analysis 
matched with Šídák’s multiple comparisons test, with significance 
criteria, ∗ < ∗∗ < ∗∗∗ < ∗∗∗∗ <   0.05, 0.01, 0.001, 0.0001p p p p .

3 Results

Clinical and genetic data are summarized in Table 1.

3.1 Patient data

The 9-year-old boy was born after an uneventful pregnancy as the 
first child of healthy, unrelated Caucasian parents. At birth, his weight, 

length and head circumference were within the normal range. A 
global developmental delay was evident in the boy from infancy 
onward, and ataxia manifested when he started walking at 27 months 
of age. His speech was slurred but he  learned to speak complete 
sentences. On neurological examination at the age of 30 months, 
ataxia and dysarthria were the prominent features. Head circumference 
became macrocephalic (+2z) after the age of 4 years. At the age of 
9 years, the boy shows moderate developmental delay in speech 
and learning.

The first brain MRI was performed at 11 months of age, and was 
unremarkable. Subsequent brain MRI including MR spectroscopy at 
the age of 4, 6, and 7 years were also normal. At the age of 3 years and 
9 months, a comprehensive metabolic work-up in blood, urine and 
cerebrospinal fluid as well as EEG showed no abnormalities, but 
whole-exome-sequencing revealed the novel de novo missense variant 
[c.5398T>A, p.(Phe1800Ile)] in the CACNA1A gene which was 
consistent with the patient’s symptoms. Treatment with acetazolamide 
was initiated due to the known positive effects of carbonic anhydrase 
inhibitors in cases of CACNA1A-associated ataxia (28), but was 
discontinued shortly thereafter because of diarrhea.

After an uneventful period without seizures, headache or 
hemiplegic episodes, the boy was admitted at the age of 6 years and 
2 months with the first generalized, tonic–clonic status epilepticus that 
was followed by a prolonged period of more than 1 week with 
somnolence, confusion and inability to speak, sit or walk. Treatment 
with levetiracetam was initiated despite absence of epileptic discharges 
on EEG. MRI revealed no abnormalities. The boy recovered over the 
next few months, slowly regaining all of his former abilities. During 
the next 17 months, the boy was admitted to the emergency 
department with multiple focal to bilateral tonic–clonic status 
epileptici and seizures followed by prolonged central apnea up to 
50 min, bradycardia, and hypothermia requiring intubation and 
mechanical ventilation. The apnea was not on the consequence of 
benzodiazepine use, as it occurred in part before the administration 
of a dose of benzodiazepine and was not accompanied by convulsions 
or increased muscle tone. Postictal EEG showed focal slowing over 
posterior regions. Several interictal EEGs, including a 24-h EEG, 
showed normal background activity and no epileptic discharges. After 
the first status epilepticus, levetiracetam was started, and because of 
recurrent seizures, the treatment was changed to multiple antiepileptic 
drugs including carboanhydrase inhibitors, and calcium channel 
inhibitors, i.e., levetiracetam plus zonisamide, levetiracetam plus 
ethosuximide, levetiracetam plus ethosuximide plus lamotrigine, and 
levetiracetam plus lamotrigine plus topiramate, respectively. The latter 
resulted in a stable situation with only single seizures with mainly 
spontaneous termination and without postictal apnea. After the first 
status epilepticus with prolonged and life-threatening postictal apnea, 
the patient’s risk of dying during seizures seemed extremely high. 
Therefore, pulse oximetry monitoring during sleep was initiated. At 
the time of the most recent visit, the boy had been seizure-free for 
4 months and had not experienced episodes of severe headache 
or hemiplegia.

3.2 Genetic data

Using WES, we  identified the novel de novo missense variant 
c.5398T>A, [p.(Phe1800Ile)] in CACNA1A (RefSeq accession number 
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TABLE 1 Clinical and genetic data of our patient.

genetic data results

genomic position c.5398T>A

aminoacid change p.Phe1800Ile

protein domain domain IV, segment S6

mode of inheritance de novo

general data

ethnicity caucasian / german

gender male

gestational age (weeks) 40+5

pregnancy, birth uneventful, spontaneous delivery

Apgar score 9/10/10

birth weight (g) (perc.) 3340 (P21)

birth height (cm) (perc.) 56 (P91)

birth head circumference (cm) (perc.) 35.5 (P41)

age at first examination (months) 23

age at latest examination (years) 9

weight at latest examination (kg) (perc.) 43.9 (P89)

height at latest examination (cm) (perc.) 144.5 (P65)

head circumference macrocephalus after the age of 4 yrs.

head circumference at latest examination (cm) (perc.) 57 (P99)

clinical findings

dysmorphism none

first symptoms muscular hypotonia

further neurological symptoms ataxia, dysarthria

development

motor development

 • age of free sitting (months)

 • age of walking (months)

delayed

12

30

speech development

 - age of first words (months)

delayed

17

cognitive development moderate intellectual deficits

school performance special needs school

behavioural disturbances no

epilepsy

age at seizure onset (years) 6

seizure types focal, focal to bilateral tonic clonic

febrile seizures yes

Status epilepticus yes

complications after status epilepticus encephalopathy, apnea

postictal EEG findings focal slowing over posterior regions

interictal EEG findings (including 24-hour-EEG) normal

current antiepileptic drugs levetiracetam, lamotrigine, topiramate

further antiepileptic drugs (discontinued) acetacolamide, zonisamide, ethosuximide

further diagnostics

MRI (incl. spectroscopy) at 11 months, 4, 6 and 7 years normal

echocardiography normal

audiometry normal

eye examination normal

metabolic work-up including amino acids (blood, CSF), acylcarnitine profile (blood), organic acids (urine), isoelectric 

transferrin focusing (blood), glycosaminoglycans (urine)
normal
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NM_001127221.2). The detected alteration had not been reported in the 
dbSNP1 or GnomAD2 databases and was computationally predicted to 
be  functionally relevant with the following scores—CADD: 27.7, 
REVEL: 0.911 and M-CAP: 0.629. The affected Phe1800 is highly 
conserved across species and is located within the transmembrane 
segment S6 of the domain IV, which is part of the channel conduction 
pore and near a hot-spot for disease-associated variants in calcium 
channels (29). According to the scoring criteria of American College of 
Medical Genetics and Genomics (ACMG) this variant was evaluated as 
pathogenic [applied criteria: PS2, PM2, PP3 and PS3 (see below)] (30). 
No other candidate genes or known disease genes have been identified 
that could contribute to the patient’s phenotype.

3.3 Functional data

To examine the effects of the Phe1800Ile substitution on the 
properties of the CaV2.1 calcium channel we  introduced the 
corresponding mutation in the human CaV2.1 variant (GeneBank™ 
FJ040507). The domain model in Figure 1B shows the position of the 
mutation in the S6 helix of domain IV, which forms part of the activation 
gate. The expression plasmids coding for the wildtype and mutant 
channel N-terminally tagged with green fluorescent protein (GFP-
CaV2.1, GFP-CaV2.1-F1800I) were heterologously expressed in HEK 293 
cells. Using the patch-clamp technique, whole-cell calcium currents in 
response to 500 ms voltage steps from a holding potential of −80 mV to 
varying test potentials were recorded (Figures 1A,C–E). While peak 
amplitudes of the calcium currents were not significantly different in 
wildtype and mutant constructs (Figures 1F,H), the voltage-dependence 
of activation of CaV2.1-F1800I was shifted by 10 mV to less depolarized 
potentials (Figures 1F,G,I; Table 2). Consequently, cells expressing the 
disease-associated variant CaV2.1-F1800I experienced calcium influx at 
0 mV, a membrane potential at which wildtype CaV2.1 channels barely 
opened (Figure 1C). Comparing normalized currents indicated slowed 
activation kinetics of the CaV2.1-F1800I variant (Figure 1J). Indeed, the 
time-to-peak measured in the maximal current traces (Vmax) was 
significantly slower in CaV2.1-F1800I compared to wildtype control 
(Figure 1K). However, the time constants of current activation measured 
at the test potentials between 0 and +60 mV revealed no statistical 
significant difference (Figure 1L).

The normalized current traces at Vmax also indicate a slowed 
inactivation of the CaV2.1-F1800I currents (Figure 2A). Accordingly, 
the fractional inactivation measured after 100, 250, and 500 ms 
depolarization was significantly reduced in CaV2.1-F1800I compared 
to wildtype controls (Figures 2B–D). For example, in test pulses to 
+10 mV this resulted in a substantially increased calcium current 
during the declining phase of the current (Figure  1D). However, 
analyzing the time constants of inactivation at voltages between 0 mV 
and +60 mV showed no statistically significant differences (Figure 2E). 
Furthermore, the analysis of steady-state inactivation demonstrated a 
reduced availability of CaV2.1-F1800I mutant channels after prolonged 
depolarizations (Figure 2F). The voltage-dependence of inactivation 
was shifted by 10 mV to more hyperpolarized potentials, in parallel to 
the left-shift of the voltage-dependence of activation (Figures 2G,H). 

1 https://www.ncbi.nlm.nih.gov/snp/

2 http://gnomad.broadinstitute.org/

Recovery from inactivation after a 5 s depolarization reached about 
90% within 45 s, and the time course of recovery was very similar in 
wildtype and mutant channels (Figures 2I,J). Together, the functional 
analyses demonstrates that the F1800I substitution in CaV2.1 results 
in altered channel gating properties with a left-shifted voltage-
dependence of activation and inactivation, and somewhat reduced 
activation and inactivation kinetics (Table 2).

4 Discussion

CACNA1A-related disorders include a spectrum of distinct 
clinical phenotypes such as episodic ataxia, familial hemiplegic 
migraine, and epilepsy, but also overlapping phenotypes with 
additional symptoms such as developmental delay and cognitive 
disability. Here, we describe a case of CACNA1A-associated disease in 
a boy with developmental delay and congenital ataxia who developed 
recurrent status epilepticus and life-threatening postictal apnea after 
the age of 6 years. A broad spectrum of seizure types has been reported 
in CACNA1A-related epilepsy with status epilepticus often being the 
initial manifestation. Both gain-of-function and loss-of-function 
variants have been found in patients with epilepsy (10, 31). However, 
in patients with status epilepticus mainly gain-of-function variants, 
located in the transmembrane regions, particularly in segments 4–6, 
have been reported (8, 9). Accordingly, the novel missense variant 
p.Phe1800Ile, found in our patient, is located in the transmembrane 
segment 6 of domain IV (Table 3).

Functional analysis of the variant in our patient showed that 
Cav2.1-F1800I channels opened at lower voltages, but also inactivated 
at lower voltages. Specifically, the left-shifted voltage-dependence of 
activation and delayed inactivation correspond to a gain of channel 
function resulting in increased calcium influx during brief 
depolarizations. Both effects on channel gating of the F1800I mutation 
in the S6 helix of the fourth repeat are very similar to the 
electrophysiological effects reported for a deletion variant of the 
corresponding phenylalanine in the S6 helix of the third repeat of 
CaV2.1 (ΔF1502) found in patients with congenital ataxia and 
hemiplegic migraine (32), thus, supporting the causative role of 
mutations of this highly conserved amino acid in the pore domain of 
CaV2.1. As CaV2.1 is the major pre-synaptic channel in the central and 
peripheral nervous system, such altered channel gating would 
translate in increased neurotransmitter release and synaptic 
transmission. Whereas CaV2.1 controls neurotransmitter release in 
both, excitatory and inhibitory synapses, previous studies of gain-of-
function CaV2.1 variants revealed enhanced excitatory 
neurotransmission at glutamatergic pyramidal cell synapses without 
affecting GABA-ergic neurotransmission at interneuron synapses 
(33–35). Such a propensity for enhancing excitatory neurotransmission 
might result in hyperexcitability and thereby explain the seizures in 
the patients.

The further observed left-shifted voltage-dependence of steady-
state inactivation results in a decreased availability of CaV2.1 channels 
in neurons persistently depolarized to potentials above −30 mV, thus 
representing a loss-of-function effect of this disease variant. However, 
under physiological conditions, such persistent depolarizations of 
neurons are not to be  expected and therefore reduced channel 
availability due to left-shifted voltage-dependence of steady-state 
inactivation probably is of lesser importance for the pathogenicity of 
the CaV2.1-F1800I variant. In contrast, the observed gain of channel 
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function could lead to an increased neurotransmitter release 
probability as well as to synaptic remodeling due to increased calcium 
influx (36). Although epilepsy has been reported in patients with both 
gain-of-function variants and loss-of-function CACNA1A variants, 
status epilepticus was more frequently associated with gain-of-
function variants (8). Apneic seizures also occurred in a boy with 
epileptic encephalopathy and the p.Val1808Leu variant, which is 
located next to the variant found in our patient. However, no 
functional data are available (37).

Our patient had recurrent status epilepticus occurring during 
sleep with prolonged central apnea postictally requiring intensive 
care and implicating a high risk of death without appropriate 
intervention. In a case review of 130 patients, 6 deaths were reported 
in children aged 3 months to 5 years with CACNA1A-related disease 
(8). Causes of death were listed as “fatal cerebral edema” and 
“epileptic encephalopathy” (not referred to as SUDEP) (38, 39). The 
pathophysiology of SUDEP is assumed to be heterogeneous and not 
fully understood. Several mechanisms have been discussed, including 

FIGURE 1

Functional analysis of the CaV2.1-F1800I variant heterologously expressed in HEK-293 cells—Current activation. (B) Domain structure of the CaV2.1 α1 
subunit with the approximate location of the F1800I mutation in the IVS6 gate-forming helix. (A) Voltage-clamp protocol. (C–E) Calcium currents 
(mean ± SEM) of wildtype CaV2.1 (WT, blue) and mutant CaV2.1-F1800I (F1800I, orange) in response to 500-ms voltage steps to 0 mV (C), +10 mV 
(D) and +20 mV (E) demonstrates that currents are elicited at lower potentials in the disease variant. (F,G) I/V curves and fractional activation curves 
showing a 9.3 mV left-shift of the V1/2 of activation for F1800I relative to its control. (H,I) Scatter plots of current density and the voltage of half-
maximal activation (H: p = 0.3; I: p < 0.0001). (J) Normalized calcium currents at Vmax (+20 or +30 mV for WT; +10 or +20 mV for F1800I) show the 
relative slowing of activation kinetics of the mutant (F1800I, orange) compared to the wild type (WT, blue). (K) Scatter plot of the time to peak obtained 
at Vmax displaying a significantly slowed activation kinetics of F1800I compared to its control (p = 0.005). (L) Time constants of current activation 
calculated at voltage steps (τact) between 0 and +60 mV indicate no significant difference (p = 0.1). Mean ± SEM; mutant and WT controls compared by 
t-tests or mixed-effects analysis matched with Šídák’s multiple comparisons test, using significance criteria, 
∗ < ∗∗ < ∗∗∗ < ∗∗∗∗ <   p p p p0.05, 0.01, 0.01, 0.01. .
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the spread of cortical depolarization to the brainstem during a seizure 
and the resulting suppression of cardiorespiratory control (14). 
SUDEP has a frequency of 1,2/1,000 years of epilepsy patients and 
higher in patients with generalized tonic–clonic seizures. Several 
genes, especially channelopathies, have been identified in patients 
who died of SUDEP including gene variants associated with seizures 
(e.g., SCN1A, SCN8A, SCN2A) or long QT-Syndrome (SCN5A, 
KCNH2, KCNQ1) (40–42). Conversely, however, only a few genes 
have been shown to be associated with an increased SUDEP risk, and 
it is often unclear whether this is due to a high seizure frequency in 
these patients or to additional pathophysiological factors caused by 
the gene variant. Therefore, SUDEP is thought to have a multifactorial 
origin with a genetic predisposition. In addition to the genes listed 
above, CACNA1A was identified as a potential candidate gene in a 
cohort of 14 patients who died of SUDEP (43). The CACNA1A 

missense variant p.Ser218Leu is associated with a gain of channel 
function and in the homozygous CACNA1A218 mouse, in contrast to 
the wildtype, seizures led to SUDEP triggered by brainstem spreading 
depolarization with subsequent apnea and cardiac arrest (44, 45). The 
shift in the voltage dependence of activation observed here in the 
CaV2.1-F1800I variant is similar in direction and extent as reported 
in both neurons of the CACNA1A218 mouse and human recombinant 
S218L mutant channels (35, 46). Further, Cain et  al. (47) 
demonstrated that the superior colliculi play an important role in the 
propagation of seizures to the brainstem in CACNA1A218 mice, 
leading to fatal seizures. Hyperexcitability of superior colliculus 
neurons as a result of gain of channel function with lower voltage 
threshold for calcium influx and prolonged channel opening was 
speculated by the authors as the underlying mechanism. These data 
from the CACNA1A mouse model closely fit the combination of the 

TABLE 2 Current properties of WT and F1800I mutant CaV2.1.

CaV2.1 WT F1800I p-value

Activation

n 8 6

ICa (pA/pF) -152.7 ± 45.5 -96.4 ± 22.2 0.34

V0.5 (mV) 12.2 ± 1.2 2.9 ± 0.4 < 0.0001

TTP (ms) 7.3 ± 0.9 13.7 ± 1.8 0.005

% inact. at 100 ms 47.5 ± 4.4 26.2 ± 4.4 0.006

% inact. at 250 ms 77.5 ± 3.0 60.3 ± 5.5 0.01

% inact. at 500 ms 88.7 ± 1.9 76.3 ± 4.8 0.02

Steady state inactivation

n 9 7

V0.5 (mV) -13.7 ± 1.9 -24.7 ± 3.0 0.006

Time constants of activation (τact/ms)

n 8 6

at 0 mV 2.4 ±1.3 3.4 ± 0.5 0.9947

at 10 mV 2.1 ± 0.2 3.1 ± 0.5 0.6277

at 20 mV 1.6 ± 0.2 1.2 ± 0.1 0.4283

at 30 mV 0.9 ± 0.1 0.7 ± 0.1 0.9162

at 40 mV 0.7 ± 0.1 0.6 ± 0.1 0.9976

at 50 mV 0.4 ± 0.1 0.4 ± 0.1 >0.9999

Time constants of activation (τinact/ms)

n 8 6

at 0 mV 584.1 ±174.8 572.9 ± 222.0 >0.9999

at 10 mV 260.8 ± 40.9 267.9 ± 52.5 >0.9999

at 20 mV 149.1 ± 25.5 194.8 ± 18.9 0.7439

at 30 mV 123.1 ± 10.1 235.9 ± 36.5 0.1682

at 40 mV 140.4 ± 9.5 233.1 ± 30.7 0.1811

at 50 mV 166.1 ± 15.9 347.9 ± 53.1 0.1558

at 60 mV 190.4 ± 14.5 317.9 ± 63.8 0.6455

Mean current densities (ICa), activation kinetics (time to peak, TTP) and percentage of inactivation at 100, 250, and 500 ms were calculated at Vmax (WT + 20 or +30 mV; F1800I + 10 or 
+20 mV, respectively). The voltage-dependence of activation (V0.5), tau of activation and inactivation (τact, τinact.) were measured from voltage-step protocols (Figure 1E). The voltage-
dependence of inactivation was determined using a steady-state inactivation protocol (Figure 2A). Mean ± SEM; mutant and WT controls compared by t-tests or mixed-effects analysis 
matched with Šídák’s multiple comparisons test, using significance criteria, ∗ < ∗∗ < ∗∗∗ < ∗∗∗∗ <   p p p p0.05, 0.01, 0.01, 0.01.
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gain of channel function observed in our patient, as determined by 
the functional analysis of our patient’s variant, and the prolonged 
seizure-related but nonconvulsive apneas leading to multiple life-
threatening situations.

In our patient, the combination of levetiracetam plus topiramate 
plus lamotrigine resulted in the cessation of status epilepticus. Since 
no selective Cav2.1 channel inhibitors are available, we  aimed to 
modulate channel activity and neuronal calcium homeostasis. To 
address the gain-of-function in channel activity, we  chose the 
aforementioned unselective calcium channel inhibitors. Different 
therapeutic approaches in patients with CACNA1-related disorder 
have been discussed, mainly targeting channel activity and its cellular 
function, such as the use of carbonic anhydrase inhibitors, for example 
acetazolamide, in both gain- and loss-of-function CACNA1A 

mutations (48–50) as well as non-selective calcium channel blockers 
or openers to modulate channel activity (51–53). The best benefit of 
lamotrigine, which acts on the P/Q-type calcium channel, was 
observed in a patient with epileptic encephalopathy and the 
CACNA1A missense variant p.Ser1373Leu, but functional data on the 
variant were not reported (54). In the case series of 18 patients, Le 
Roux et  al. (10) found the best efficacy in seizure reduction for 
topiramate, levetiracetam, lamotrigine, and valproate, which is 
consistent with the observation in our patient.

In conclusion, patients with CACNA1A-related epilepsy are prone 
to develop status epilepticus. Life-threatening, seizure-related apnea 
in these patients increases the risk of sudden death in epilepsy and 
prevention strategies such as pulse oximetry monitoring should 
be discussed with the families.

FIGURE 2

Functional analysis of current inactivation of the CaV2.1-F1800I variant. (A) Normalized current traces at Vmax (blue, wild type, orange, CaV2.1-F1800I; 
mean ± SEM) showing different time courses of inactivation. The three vertical lines (100, 250 and 500 ms) indicate the specific time points at which 
fractional inactivation was calculated. (B–D) Percent reduction of peak currents at Vmax after 100, 250 or 500 ms of depolarization is significantly less 
for F1800I compared with WT (B: p = 0.006; C: p = 0.012; D: p = 0.02). (E) Time constant of current inactivation calculated at voltage steps (τinact.) 
between 0 and +60 mV reveal no statistically significant effect of the mutation on inactivation kinetics (p = 0.7). (F) Steady state inactivation protocol 
and typical example traces at −10 mV sweep for Cav2.1 WT (cyan) and Cav2.1-F1800I (yellow). (G,H) Fractional inactivation curves and scatter plot of 
the V1/2 of inactivation showing a 10.9 mV shift to more hyperpolarized potential of F1800I compared to WT. Mean ± SEM (C: p = 0.006). (I) Pulse 
protocol and representative current traces for analyzing the recovery of inactivation (∆t 20 ms to 45 s) after a 5 s. pre-pulse to Vmax (+20 mV for WT; 
+10 mV for F1800I). (J) The time course of recovery from inactivation does not reveal any significant difference between WT and variant (p = 0.58). 
Mean ± SEM; mutant and WT controls compared by t-tests or mixed-effects analysis matched with Šídák’s multiple comparisons test, using 
significance criteria, ∗ < ∗∗ < ∗∗∗ < ∗∗∗∗ <   p p p p0.05, 0.01, 0.01, 0.01. .
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TABLE 3 Rate of recovery from inactivation was measured from a double step protocol using different ∆t (Figure 2I).

CaV2.1 WT F1800I p-value

% of Recovery from inactivation (∆t / ms)

n 7 8

at 20 ms 8.3 ± 3.7 11.4 ± 2.8 >0.9999

at 35 ms 7.6 ± 3.4 11.5 ± 2.9 0.9996

at 60 ms 8.4 ± 3.1 13 ± 3.1 0.9965

at 100 ms 9.2 ± 3.1 13.3 ± 3.3 0.9992

at 170 ms 10.9 ± 3.2 15.9 ± 3.3 0.9945

at 290 ms 12.8 ± 2.9 20.2 ± 3.9 0.9002

at 490 ms 16.6 ± 3.6 23.9 ± 4.5 0.9783

at 830 ms 21.8 ± 4.1 29.1 ± 5 0.9913

at 1400 ms 26.9 ± 4.8 34.4 ± 6.1 0.9985

at 2400 ms 33.4 ± 5.2 40.9 ± 4.6 0.9982

at 4100 ms 41.8 ± 5.0 47.5 ± 5.6 >0.9999

at 7000 ms 51.4 ± 5.2 54.7 ± 5.5 >0.9999

at 12000 ms 63.8 ± 5.0 64.7 ± 5.3 >0.9999

at 20000 ms 77.1 ± 4.1 76.3 ± 3.9 >0.9999

at 32000 ms 87.1 ± 4.3 86.5 ± 2.8 >0.9999

at 45000 ms 94.1 ± 3.5 95.9 ± 1.5 >0.9999

Mean ± SEM; mutant and WT controls compared by mixed-effects analysis matched with Šídák’s multiple comparisons test, using significance criteria, 
∗ < ∗∗ < ∗∗∗ < ∗∗∗∗ <   p p p p0.05, 0.01, 0.01, 0.01.
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