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Aims: Atrial fibrillation (AF) is associated with cognitive decline, but the role of

electroencephalography (EEG) in assessing cognitive dysfunction in AF patients

is underexplored.

Objective: This study investigated the relationship between resting-state EEG

patterns and cognitive impairment in AF patients.

Methods: We recruited 120 participants from the A�liated Xuancheng Hospital,

China (January 2023 to January 2024), categorizing them into healthy controls

and AF patients. Resting-state EEG metrics, including power spectral density

(PSD), functional connectivity (FC), cross-frequency coupling (CFC), and sample

entropy (EnSA), were analyzed alongside the Montreal Cognitive Assessment

(MoCA) scores. Mediation analysis explored EEG’s role in the AF-cognitive

decline relationship.

Results: AF patients had significantly lower MoCA scores. PSD analysis showed

increased δ and θ and decreased α and β activity. FC was reduced in the α and β

bands but increased in localized θ and γ bands. CFC analysis revealed elevated

θ–β and θ–γ phase-amplitude coupling (PAC), reduced β–γ PAC, and lower

EnSA. EEGmetrics were significantly correlated with MoCA scores, with θ–β PAC

mediating cognitive decline.

Conclusion: AF patients exhibit distinctive EEG changes, with θ–β PACmediating

cognitive impairment, suggesting the potential of resting-state EEG for cognitive

assessment in AF patients.

KEYWORDS

atrial fibrillation, cognitive dysfunction, resting-state EEG, power spectral density,

functional connectivity, cross-frequency coupling, sample entropy
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Introduction

Atrial fibrillation (AF) is one of the most prevalent cardiac

arrhythmias, significantly associated with increased risks of stroke,

heart failure, and mortality (1, 2). It is also linked to a

higher prevalence of chronic disease comorbidities (3). As the

population ages, the incidence of cognitive dysfunctions, including

mild cognitive impairment and dementia, continues to rise (4).

Dementia is characterized by progressive cognitive decline and

loss of daily living skills, yet its pathological mechanisms are

still not fully understood. There is growing evidence suggesting

a critical role of AF in the development of cognitive decline

and dementia. For example, the Rotterdam study found that

the risk of cognitive dysfunction in AF patients was twice as

high as in individuals without AF (5). Although stroke is a

well-known cause of cognitive impairment in AF (6), recent

studies indicate that AF significantly elevates the risk of cognitive

dysfunction. This risk often persists independent of a stroke

history (7–11). For instance, a meta-analysis by Kalantarian

et al. (12) demonstrated that AF is associated with an increased

risk of cognitive dysfunction and dementia, irrespective of prior

stroke history. These findings show the urgent need for more

in-depth research into the mechanisms connecting AF and

cognitive decline.

Electroencephalogram (EEG) is a non-invasive technique

with high temporal resolution that has shown potential in

the early detection of cognitive impairment. Patients with

cognitive impairment often exhibit EEG patterns characterized

by increased low-frequency power (δ, θ) and decreased high-

frequency power (α, β) (13, 14), accompanied by reduced

signal complexity and coherence (15–19). These EEG

features are closely related to the transition of brain function

from normal to pathological. Consequently, EEG has been

widely used in the diagnosis of mild cognitive impairment,

Alzheimer’s disease, and other neurodegenerative diseases.

Furthermore, the sensitivity of EEG to early neurological

changes has led to its recommendation as a complementary

tool to neuroimaging biomarkers in clinical trials for

neurodegenerative diseases.

Although AF and cognitive dysfunction share multiple

common risk factors, systematic studies that utilize

electroencephalography (EEG) to assess cognitive decline in

AF patients are still limited. Resting-state EEG reflects the

functional state and network characteristics of the brain. To

comprehensively capture the neurological changes associated with

AF, we employed four complementary categories of EEG metrics.

First, power spectral density (PSD) quantifies the intensity of

neural oscillations in all frequency bands and represents linear

oscillatory activity. It is the most commonly used spectral measure

in studies of cognitive impairment (20). Second, functional

connectivity (FC) metrics, such as coherence and the weighted

phase lag index (wPLI), measure synchronization between brain

regions and reveal network-level disruption (21). Third, cross-

frequency coupling (CFC), especially phase-amplitude coupling

(PAC), captures non-linear coupling mechanisms between

different frequency bands and is related to cognitive processes

such as attention and memory (22). Lastly, entropy-based

complexity metrics, such as sample entropy (EnSA), quantify

the reduction in signal complexity that typically occurs from the

early stages of mild cognitive impairment (23). These spectral

features, network connectivity patterns, PAC, and non-linear

complexity (e.g., entropy) metrics constitute a multidimensional

neurophysiological framework for understanding cognitive

dysfunction in patients with AF, especially those without a history

of stroke.

In this study, we analyzed the resting-state EEG characteristics

of AF patients and examined their associations with cognitive

function, aiming to provide a theoretical basis for understanding

the mechanisms of AF-related cognitive impairment and

developing early screening and intervention strategies.

Methods

Study population

This cross-sectional study included 120 patients admitted to

the Affiliated Xuancheng Hospital of Wannan Medical College,

China, between January 2023 and January 2024. Participants

were categorized into an AF patient (PT) group and a healthy

control (HC) group based on electrocardiogram (ECG) diagnostic

results or ambulatory ECG obtained at the time of admission.

Ethical approval was obtained from the Xuancheng People’s

Hospital Medical Ethics Committee, and all patients provided

written informed consent before undergoing EEG examination

and cognitive assessment using the Montreal Cognitive Assessment

(MoCA) scale. The study flowchart is presented in Figure 1.

Inclusion and exclusion criteria

PT group: the inclusion criteria for this group were a confirmed

diagnosis of AF via electrocardiogram (ECG) or ambulatory ECG,

with diagnoses verified by cardiovascular specialists. Exclusion

criteria included patients with (1) comorbidities such as acute

stroke, severe liver and kidney failure, advanced malignant tumors,

valvular heart disease, acute myocardial infarction, (2) inability to

cooperate with the examination procedures; or (3) current use of

medications known to affect EEG results.

HC group: healthy adults confirmed by a neurologist to be

free from neurological disease and showing no pathologic changes

on cranial computed tomography or magnetic resonance imaging

scans were eligible for enrollment. The exclusion criteria were

identical to those of the PT group.

Clinical data collection

Essential demographic variables (gender, age, height, weight,

smoking and drinking history, and education level) were collected

along with laboratory test results (serum albumin, fasting glucose,

blood creatinine, and blood uric acid) and echocardiographic

metrics [ejection fraction (EF), left atrial diameter, aortic

root diameter]. Medical histories, including conditions such as
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FIGURE 1

Study flowchart.

hypertension, diabetes mellitus, hyperlipidemia, heart failure,

and habits such as smoking and alcohol consumption, were

also recorded.

Assessment of cognitive function

Cognitive function was evaluated for all participants

using the MoCA scale. The total score of MoCA is 30, with

a score below 22 indicating cognitive impairment. This

study used the MoCA
R©

version 8.1, which is based on a

sample analysis of 3,097 subjects, establishing a threshold

score of ≥22 as normal cognition. This scale covers six

cognitive domains: executive function, visuospatial ability,

short-term memory, language, attention and numeracy,

and orientation.

EEG data acquisition

EEG recordings were conducted in a quiet environment free

from electromagnetic interference using a Nicolet V5.95 system

(Natus Medical Inc.). A 21-channel montage was employed

according to the international 10–20 system. The electrodes

were positioned at the following bilateral sites: frontopolar

(Fp1, Fp2), frontal (F3, F4), frontotemporal (F7, F8), central

(C3, C4), mid-temporal (T3, T4), posterior-temporal (T5, T6),

parietal (P3, P4), occipital (O1, O2), and sphenoidal (F9, F10).

Midline electrodes were placed at Fz, Cz, and Pz, whereas

A1 and A2 were used as earlobe electrodes. Signals were

sampled at 500Hz with an online bandpass filter of 0.5–70Hz.

Each recording session lasted 30min, during which patients

were instructed to remain awake, perform an eye-open/eye-

close task, and avoid physical movement and blinking to

reduce artifacts. Data quality was monitored in real-time by

trained personnel.

EEG signal preprocessing

EEG signals were preprocessed using MATLAB and the

EEGLAB toolbox. Channel coordinates were mapped using

the standard 10–5 system template. The preprocessing steps

were as follows: (1) removal of A1, A2, and EKG channels,

which were connected during acquisition but excluded from

analysis; (2) relabeling of sphenoidal electrodes (ROC, LOC)

as F9 and F10 for consistency; (3) band-pass filtering (1–

45Hz) and notch filtering (48–52Hz); (4) segmentation into 2-s

epochs with baseline correction; (5) detection and interpolation

of bad channels due to flat signals, high noise, or extreme

amplitudes; (6) re-referencing to the common average; (7) manual

rejection of heavily contaminated segments; (8) application of

independent component analysis to remove ocular and muscular

artifacts; and (9) exclusion of epochs exceeding ±100 µV. The

resulting preprocessed data were saved as “cleaned_data” for

further analysis.

EEG data analysis

EEG data were analyzed using the following metrics: absolute

PSD, relative band power, functional connectivity (coherence and

wPLI), PAC, and EnSA. Detailed computational steps and formulas

are provided in Supplementary Methods.
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Statistical analysis

In the clinical data analysis, variables adhering to a normal

distribution were presented as mean ± standard deviation and

compared between the two groups using independent samples

t-tests. Non-normally distributed continuous variables were

expressed as medians with interquartile ranges and analyzed using

the Mann–Whitney U-test. Categorical variables were expressed as

percentages (frequencies) and compared using the χ² test. EEG

metrics were also compared between the PT and HC groups

using independent samples t-tests, with the false discovery rate

(FDR) correction applied to adjust for multiple comparison errors.

In addition to p-values, t-values, effect sizes (Cohen’s d), 95%

confidence intervals, and statistical power were also reported for

each comparison. Comprehensive statistical details are provided in

Supplementary Tables S1–S6. Correlations between MoCA scores

and EEG metrics were assessed using Spearman’s test. Mediation

analysis, considering AF as the independent variable (X), EEG

metrics as the mediator (M), and MoCA scores as the dependent

variable (Y), was conducted using PROCESS Version 4.2 (Model 4)

by Andrew F. Hayes, with adjustments for potential confounders

such as EF, gender, and occupation. The Bootstrap method,

employing 1,000 samples, was utilized to estimate indirect effects

and their confidence intervals. All statistical analyses and graph

plotting were performed using SPSS 23.0, GraphPad Prism 9.5.1,

and OriginPro 2021, with a threshold for statistical significance set

at p < 0.05.

Results

Basic information

A total of 120 participants were included in this study, and their

basic information is summarized in Table 1. There were 60 males

and 60 females, with a median age of 71 (68–75.75) years. The PT

group included 60 patients (34 males, 56.7%), with a median age

of 72 (68.25–76) years, whereas the HC group had 60 participants

(26 males, 43.3%), with a median age of 71 (67–74.75) years. The

differences in age and gender between the two groups were not

statistically significant. The proportion of workers was significantly

lower in the PT group than in the HC group (26.7 vs. 45.0%;

p= 0.036).

The albumin levels and the prevalence of hyperlipidemia were

significantly lower in the PT group than in the HC group (both

p = 0.002). Although the proportion of patients with a history of

alcohol consumption was lower in the PT group, this difference

did not reach statistical significance (p = 0.068). No significant

differences were observed between the two groups regarding

history of hypertension, diabetes, hyperuricemia, antihypertensive

medication, glucose-lowering medication, smoking, education

level, statin use, body mass index, and glomerular filtration rate.

The MoCA scores were significantly lower in the PT group

than in the HC group (p < 0.001). Anticoagulant use was

significantly higher in the PT group compared to the HC group

(p < 0.001), indicating that standardized anticoagulant therapy

was implemented for AF patients. Cardiac decompensation was

significantly more prevalent in the PT group than in the HC group

(p < 0.001). Additionally, the PT group showed significantly lower

EF values (p < 0.001) and significantly higher left atrial diameter

(p = 0.01) and aortic root diameter (p = 0.017) compared to the

HC group. These results indicate structural and functional cardiac

abnormalities in AF patients.

Di�erential analysis of EEG between the
two groups

Absolute PSD analysis
The average PSD spectrogram, illustrated in Figure 2F, showed

that the PT group exhibited increased activity in the lower

frequency bands (δ and θwaves) and significantly decreased activity

in the higher frequency bands (α and β waves). The PSD values

in the δ and θ bands were significantly higher in the PT group

compared to the HC group, with substantial differences noted in

all channels following FDR correction. In contrast, the PSD values

in the β and γ bands were notably lower in the PT group than in the

HC group, particularly in localized regions such as O1, O2, T6, and

F9 (Figure 2).

Relative band power analysis
As shown in Supplementary Figure S1, the relative band power

in the δ and θ frequency bands was significantly higher in the PT

group than in the HC group across all channels, whereas in the α

and β frequency bands, the relative band power was significantly

lower than in the PT group. No significant difference was observed

in the γ band.

FC analysis
In the α frequency band, coherence (COH) and wPLI were

significantly lower in the PT group than in the HC group, as

was the wPLI in the β frequency band. Conversely, the PT group

demonstrated significantly higher COH in the θ-band between local

channel pairs than the HC group. The COH in the β-band exhibited

inconsistent differences between the two groups depending on the

channel pair, whereas in localized regions, the γ-band COH in the

PT group was significantly higher than in the HC group for specific

channel pairs. However, neither δ-band COH nor wPLI showed

significant differences between the groups, as illustrated in Figure 3.

CFC analysis
Significant differences were observed in the θ–β, θ–γ, and β–γ

phase-amplitude coupling (PAC) patterns between the PT and HC

groups. Specifically, the θ–β PAC demonstrated significantly higher

coupling strengths in the PT group than in the HC group at the

FP1 and F9 channels, and this difference was maintained after FDR

correction. Similarly, in the θ–γ PAC, the coupling strength at the

FP1 channels was significantly elevated in the PT group. In the β–

γ PAC, the coupling strength at the right occipital (O2) channel

was significantly lower in the PT group compared to the HC group

(Figures 4A–C).

Frontiers inNeurology 04 frontiersin.org

https://doi.org/10.3389/fneur.2025.1583715
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Bao et al. 10.3389/fneur.2025.1583715

TABLE 1 Basic information of the study subjects.

Variable Group HC PT p-Value

Age (years) 71 (67–74.75) 72 (68.25–76) 0.285

Gender Male 26 (43.3%) 34 (56.7%) 0.144

Female 34 (56.7%) 26 (43.3%)

Education Below junior high school 38 (63.3%) 43 (71.7%) 0.33

Above junior high school 22 (36.7%) 17 (28.3%)

Occupation Farmer 33 (55.0%) 44 (73.3%) 0.036∗

Employee 27 (45.0%) 16 (26.7%)

Hypertension No 27 (45.0%) 28 (46.7%) 0.855

Yes 33 (55.0%) 32 (53.3%)

Diabetes No 50 (83.3%) 49 (81.7%) 0.81

Yes 10 (16.7%) 11 (18.3%)

Hyperlipidemia No 43 (71.7%) 56 (93.3%) 0.002∗∗

Yes 17 (28.3%) 4 (6.7%)

Hyperuricemia No 45 (75.0%) 40 (66.7%) 0.315

Yes 15 (25.0%) 20 (33.3%)

Smoking No 54 (90.0%) 51 (85.0%) 0.408

Yes 6 (10.0%) 9 (15.0%)

Drinking No 51 (85.0%) 57 (95.0%) 0.068

Yes 9 (15.0%) 3 (5.0%)

Albumin (g/L) 41.6 (38.7–44.9) 39.35 (36.63–41.38) 0.002∗∗

Anticoagulants No 57 (95.0%) 7 (11.7%) <0.001∗∗

Yes 3 (5.0%) 53 (88.3%)

Antiplatelet agents No 20 (33.3%) 54 (90.0%) <0.001∗∗

Yes 40 (66.7%) 6 (10.0%)

Diabetes drugs No 51 (85.0%) 50 (83.3%) 0.803

Yes 9 (15.0%) 10 (16.7%)

Antihypertensive No 26 (43.3%) 25 (41.7%) 0.853

Yes 34 (56.7%) 35 (58.3%)

Statin No 19 (31.7%) 26 (43.3%) 0.187

Yes 41 (68.3%) 34 (56.7%)

NYHA 1 58 (96.7%) 24 (40%) <0.001∗∗

2 1 (1.7%) 12 (20%)

3 0 (0%) 16 (26.7%)

4 1 (1.7%) 8 (13.3%)

MoCA 23 (20–25) 19 (14.25–22) <0.001∗∗

Aortic root diameter (mm) 29 (27–32) 31 (31–34) 0.017∗

Glomerular filtration rate 94.4 (75.2–123.04) 91.71 (70.74–105.93) 0.17

Left atrial diameter (mm) 36.58± 5.37 47.22± 8.81 0.01∗

EF 0.63± 0.06 0.52± 0.11 <0.001∗∗

Body mass index 23.30± 3.72 23.33± 3.26 0.203

HC, healthy control group; PT, AF patient group; MoCA, montreal cognitive assessment; EF, ejection fraction; NYHA, The New York Heart Association. ∗p < 0.05; ∗∗p < 0.01.
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FIGURE 2

Di�erences and trends in absolute PSD across EEG channels in the PT and HC groups. (A) δ-PSD, (B) θ-PSD, (C) α-PSD, (D) β-PSD, (E) γ-PSD, (F)

Average PSD spectrum. PSD, power spectral density. *p < (FDR-corrected). Detailed statistical analyses are shown in Supplementary Tables S1a–e.

EnSA analysis
The HC group exhibited significantly higher EnSA values

than the PT group, particularly in the prefrontal and posterior

occipital regions (Figure 4D). This significant difference was

consistent across all channels following FDR correction, indicating

a pronounced reduction in the complexity of brain activity in

AF patients.

Mediating e�ects of EEG on the risk of
cognitive dysfunction

After adjusting for potential confounders, including EF, gender,

and occupation, the mediation analysis revealed that θ–β PAC

partially mediated the relationship between AF and MoCA scores,

with both the direct effect (β = 3.115, p < 0.001) and the indirect

effect (β = −0.314, p = 0.032) being significant. These findings

highlight θ–β PAC as a crucial mechanism contributing to AF-

related cognitive impairment (Table 2).

Association between EEG indicators and
MoCA scores

As shown in Supplementary Figure S2, several EEG indicators

were significantly correlated with MoCA scores. Specifically, θ–β

PAC, θ–α PAC, δ–α PAC, δ–β PAC, δ–γ PAC, δ-PSD, and θ-PSD

were weakly tomoderately negatively correlated withMoCA scores.

In contrast, β-PSD, α-COH, β-wPLI, α-wPLI, β-γ PAC, and EnSA

exhibited significant positive correlations with MoCA scores.

Discussion

This study systematically analyzed the resting-state EEG

characteristics of patients with AF and HCs, exploring the

relationship between EEG metrics and cognitive dysfunction.

Our findings indicated that AF patients exhibited poorer

performance in cognitive function assessments, with

MoCA scores significantly lower than HCs. Furthermore, a

strong association was observed between EEG features and

cognitive dysfunction.

Our analysis identified an increasing trend in δ- and θ-wave

PSD in AF patients, whereas α- and β-wave PSD showed a

decreasing trend, as analyzed through both absolute PSD and

relative band power. These changes align with the EEG patterns

observed in patients with cognitive impairment, characterized by

elevated low-frequency (δ and θ) power and diminished high-

frequency (α and β) power. Correlation analysis further revealed

significant negative correlations between δ-PSD and θ-PSD with

MoCA scores, suggesting a decline in the brain’s information

processing efficiency.

Previous studies have reported that increased low-frequency

activity (e.g., δ- and θ-waves) is strongly associated with cognitive

decline, and in particular, a reduction in α-wave activity is

associated with cognitive deterioration mediated by cholinergic

deficit (20, 24–26). These findings reinforce the relationship

between AF and cognitive decline.

Frontiers inNeurology 06 frontiersin.org

https://doi.org/10.3389/fneur.2025.1583715
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Bao et al. 10.3389/fneur.2025.1583715

FIGURE 3

Topographic maps showing the COH (left side) and wPLI (right side) in the δ, θ, α, β, and γ frequency bands in the PT and HC groups after FDR

correction. The left side of the figure indicates “HC>PT,” where FC strength in the HC group exceeds that in the PT group. The right side indicates

“PT>HC,” where FC strength in the PT group exceeds that in the HC group. The color bar (from blue to red) reflects the significance level (from low

to high). Yellow lines represent connections with significant di�erences, with line intensity corresponding to the significance level. COH, coherence;

wPLI, weighted phase lag index. Detailed statistical analyses are shown in Supplementary Tables S3, S4.

Based on the PSD findings, the complexity of EEG signals

was quantified by EnSA. The PT group showed significantly lower

EnSA values across all channels than HCs, indicating more regular

and less complex brain activity in AF patients. This finding is

consistent with previous studies that associated reduced complexity

(low entropy values) with cognitive decline (23, 27). Furthermore,
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FIGURE 4

Comparative analysis of PAC metrics and EnSA values between the PT and HC groups. Panels (A–C) represent analysis results of θ–β PAC, θ–γ PAC,

and β–γ PAC, respectively, whereas Panel (D) shows the results of EnSA. The first two columns show the topographical distributions for the HC and

PT groups, whereas the last two columns display group comparisons, including statistically significant regions (FDR-corrected). The two left color

bars indicate metric values (red: higher, blue: lower). The two right color bars show group di�erences (red: significantly higher metric values in the PT

group vs. the HC group, blue: significantly lower metric values in the PT group vs. the HC group). Detailed statistical analyses are shown in

Supplementary Tables S5, S6.

EnSA values were weakly to moderately positively correlated with

MoCA scores, confirming the relationship between reduced EEG

complexity and cognitive dysfunction.

The analysis of FC indicated that FC in the α and β frequency

bands was significantly lower, whereas that in the θ and γ frequency

bands was significantly higher in the localized brain regions of

AF patients compared to HCs, suggesting functional impairment

in the brain network of AF patients. These changes, particularly

reductions in α and β FC, have been widely reported in various

neurodegenerative disorders and are considered an important

marker of cognitive impairment (21, 28–37). In the present study,

FC in the α and β frequency bands was positively correlated

with MoCA scores, suggesting that the stronger the connectivity

in these bands, the better the cognitive function. Conversely, θ

and γ FC were significantly higher in the PT group, which is

consistent with the findings by Iyer et al. (38), who observed similar

patterns in patients with cognitive impairment due to Parkinson’s

disease. Increased connectivity in θ and γ frequency bands has been

linked to increased anxiety and cognitive impairment symptoms.

TABLE 2 Total, direct, and indirect e�ects of di�erent groups on MoCA

scores via θ–β PAC.

E�ect
type

β SE p-Value 95%CI
LB

95%CI
UB

Total 2.801 0.715 <0.001∗∗ 0.850 4.437

Direct 3.115 0.676 <0.001∗∗ 1.790 4.441

Indirect −0.314 0.239 0.032∗ −0.94 −0.004

θ-β PAC, theta-beta phase-amplitude coupling; β, regression coefficient; SE, standard error;

95% CI LB/UB, 95% confidence interval lower bound/upper bound. ∗∗p < 0.01, ∗p < 0.05.

Excessive network activity may represent an adaptive cortical

response for overall cognitive efficiency (39).

CFC analysis provided further evidence of abnormal network

integration in AF patients. The significant increase in θ and γ

FC in localized brain regions of AF patients was accompanied

by a notable enhancement in θ–γ PAC. Additionally, θ–β PAC

was significantly enhanced in localized brain regions. It is

Frontiers inNeurology 08 frontiersin.org

https://doi.org/10.3389/fneur.2025.1583715
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Bao et al. 10.3389/fneur.2025.1583715

often considered a key marker of informational interactions

between global and local networks of neurons (40), facilitating

interaction and synchronization between these processes (22).

Notably, Gong et al. (41) emphasized that the modulation

level (slow 5/6) integrates information from higher frequencies

and modulates faster spontaneous slow oscillations and that

ultraslow oscillations achieve adaptive regulation by modulating

higher-frequency oscillations. The pattern of enhanced θ–β/θ–

γ PAC and attenuated β–γ PAC observed in our study aligns

with this cross-scale modulation framework, suggesting that the

changes in PAC and connectivity observed in patients with

AF may reflect a disruption in temporal integration in this

nested oscillatory framework. These results imply a synergistic

role for the θ, β, and γ bands in brain network function.

Specifically, increased FC may represent enhanced information

transfer between localized brain regions, whereas enhanced PAC

suggests greater cross-frequency integration within brain regions.

Together, these alterations may act as a compensatory mechanism

to address functional impairments of brain networks in AF

patients. However, the negative correlation between EEG metrics

and MoCA scores indicates that this compensation might reflect

“over-mobilization,” a state associated with cognitive impairment.

Additionally, the significant reduction in right occipital β–γ PAC

may be related to deficits in visual working memory, further

supporting the specific impact of AF on cognitive function in

localized brain regions.

We utilized EEG metrics as mediating variables to explore the

underlying relationship mechanisms between AF and cognitive

dysfunction. The results indicated that θ–β PAC partially mediated

the relationship between AF and the risk of cognitive impairment,

highlighting θ–β PAC as a potential key mechanism underlying

AF-associated cognitive dysfunction. In AF patients, enhanced θ–

β PAC may indicate abnormal network integration, potentially

exacerbating cognitive impairment risk. Although the mediating

effect of θ–β PAC was significant, it accounted for only part of

it, suggesting that AF may influence cognitive function through

additional mechanisms. In particular, AF may contribute to

MoCA decline through hemodynamic, embolic, and inflammatory

mechanisms. Specifically, chronic cerebral hypoperfusion, silent

microemboli, and systemic inflammation lead to endothelial

dysfunction, blood-brain barrier disruption, and the development

of white-matter hyperintensities (42, 43). These neurovascular

insults, combined with EEG-derived disruptions in FC, EnSA, and

PAC, contribute to cognitive decline in AF patients, even in the

absence of overt stroke.

Despite these promising findings, several limitations should

be acknowledged. First, the relatively small sample size limits

the reproducibility and generalizability of our findings, echoing

ongoing concerns regarding statistical power in neuroimaging

research (44). Although FDR correction and confounder

adjustment were applied, this cohort was insufficient for robust

internal validation. Future studies should confirm our results in

larger, independent cohorts. Second, the reliability of EEG-based

metrics must be interpreted with caution. Previous studies indicate

that metric reliability varies across modalities and preprocessing

pipelines (45, 46). Although our data were recorded under

consistent conditions, we did not assess test-repetition reliability.

Future studies should include repeated measurements to improve

the stability and clinical interpretability of EEG biomarkers. Finally,

although this study focused on EEG metrics, cognitive dysfunction

in AF is multifactorial. Integrating EEG with neuroimaging

and biomarker analyses may provide a more comprehensive

understanding of the mechanisms.

Conclusion

The present study analyzed the resting-state EEG

characteristics of patients with AF and their relationship

with cognitive dysfunction. The PT group exhibited increased

activity in low-frequency bands (δ, θ) and decreased activity in

high-frequency bands (α, β), along with reduced complexity of

brain activity. Furthermore, significant differences were observed

in FC and CFC patterns between AF patients and HCs. Mediation

analysis revealed a significant mediating role of θ–β PAC in the

relationship between AF and cognitive dysfunction. This suggests

that EEG metrics may be a critical mechanism through which

AF affects cognitive function. These findings provide a novel

perspective on cognitive assessment in patients with AF and

support the potential application of EEG for evaluating AF-related

cognitive dysfunction.
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