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Background: Disruption of blood–brain barrier and neuroinflammation are 
critical pathological features in the acute phase of ischemic stroke. This 
study investigates whether oligodendrocyte precursor cell transplantation 
can downregulate inflammation to attenuate blood–brain barrier disruption 
following ischemic brain injury.

Methods: Adult male Institute of Cancer Research mice (n = 60) underwent 
transient middle cerebral artery occlusion. Post ischemic assault, these 
mice received a stereotactic injection of oligodendrocyte precursor cells 
(6 × 105). Neurobehavioral outcomes, infarct volume, inflammatory cytokines, 
myeloperoxidase, and tight junction protein levels were measured following 
ischemia.

Results: Oligodendrocyte precursor cell transplantation reduced infarct volume, 
alleviated anxiety and depression, and promoted neurological recovery after 
ischemic stroke. Compared to the control group, oligodendrocyte precursor 
cell treated mice exhibited reduced levels of inflammatory cytokines IL-1β, 
IL-6, and TNF-α, reduced neutrophil infiltration, and diminished loss of tight 
junction protein. Oligodendrocyte precursor cells alleviated inflammation 
by increasing β-catenin expression. The administration of β-catenin inhibitor 
blocked the beneficial effects of oligodendrocyte precursor cell transplantation 
on neuroinflammation and blood–brain barrier permeability.

Conclusion: This study demonstrates that oligodendrocyte precursor cell 
transplantation attenuates neuroinflammation and protectes blood–brain barrier 
in the acute phase of ischemic stroke. Our findings indicate that oligodendrocyte 
precursor cell transplantation is a promising therapeutic approach for ischemic 
stroke.
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Introduction

Ischemic stroke is one of the leading causes of death and disability 
in the world (1, 2). Currently, thrombolysis and endovascular 
interventional therapy are the most effective treatment strategies in 
the early stage after ischemic stroke, but the time windows for both 
treatments are limited (3, 4). Many pathological processes, including 
blood–brain barrier (BBB) dysfunction, inflammation, excitotoxicity, 
oxidative stress, neuronal loss, and glial activation, are involved in 
stroke progression (5).

BBB disruption and neuroinflammation are critical pathological 
features in the acute phase of cerebral ischemia (6, 7). BBB is 
comprised of brain endothelial cells with their tight junctions, the 
basement membrane, pericytes, and astrocyte end-feet (8). Brain 
endothelial cells express high levels of tight junction proteins, which 
determine BBB integrity (8, 9). After ischemic stroke, inflammatory 
responses at the blood-endothelial interface of brain capillaries are the 
basis of ischemic tissue damage (10). Post-ischemic inflammation is 
associated with acute BBB disruption, vasogenic edema, hemorrhagic 
transformation, and worse neurological outcomes in animals and 
humans (11). The proinflammatory signals from immune mediators 
activate resident cells and influence infiltration of inflammatory cells 
into the ischemic region, exacerbating brain damage (12). Neutrophils 
migrate through the endothelial vessel wall and are attracted towards 
the ischemic area (13). Neutrophils cause secondary injury by 
releasing proinflammatory factors, reactive oxygen species (ROS), 
proteases, and matrix metalloproteinases (MMPs) (12). Therefore, 
targeting neuroinflammation may be  a promising therapeutic 
approach for the treatment of ischemic stroke.

Oligodendrocyte precursor cells (OPCs) are derived from the 
ventricular zone in the embryo and migrated widely through the central 
nervous system (14). OPCs could maintain BBB integrity during 
development and mediate the remyelination process after brain injury 
(15). OPC transplantation showed a promising potential for ischemic 
stroke therapy (16–18). In our previous study, OPC transplantation could 
attenuate tight junction disruption in brain endothelial cells in the acute 
phase of ischemic stroke and promote angiogenesis and remyelination 
in the chronic phase of ischemic stroke via activating the Wnt/β-catenin 
pathway. As neuroinflammation is closely related to BBB integrity, 
we hypothesize that the protective role of OPC transplantation on BBB 
is achieved through attenuating neuroinflammation in ischemic stroke.

In this study, we use a mouse model of transient middle cerebral 
artery occlusion (tMCAO) to explore whether OPC transplantation 
downregulates inflammation to attenuate BBB disruption after 
ischemic brain injury.

Materials and methods

Experimental protocol

Animal procedures and protocols were approved by the Institutional 
Animal Care and Use Committee (IACUC) of Fudan University, 

Shanghai, China. Animal studies were reported according to ARRIVE 
2.0 guidelines. Adult male Institute of Cancer Research mice (n = 60) 
weighing 28–30 g (JSJ, Shanghai, China) were used in the study. 
Animals were housed with free access to water and food. Mice were 
randomly divided into four groups: sham group, phosphate buffered 
saline (PBS) treated group, OPC-treated group, and OPC-treated plus 
β-catenin inhibitor (XAV-939) group, n = 10–16 per group.

OPC isolation and identification

The brain cortex was dissected from P1 Sprague–Dawley rat pups 
as described (19, 20). Brain tissue was dissociated into a single-cell 
suspension and was filtered with a 70-μm filter. Then cells were seeded 
on poly-d-lysine (PDL, Sigma, St. Louis, MO) coated culture flasks in 
DMEM (Gibco, Carlsbad, CA) with 10% fetal calf serum (Gibco). Eight 
days later, the microglia were separated from glia cell mixtures after 
30 min of culture by a 220-rpm shake and then OPCs were collected by 
20 h of culture by a 200-rpm shake. Collected cells were injected into the 
mouse or seeded on a PDL-coated culture dish in Neurobasal-A (Gibco) 
containing 2% B27 (Gibco), 10 ng/mL PDGF-AA (Gibco), 10 ng/mL 
bFGF (Peprotech, Rocky Hill, NJ) and 2 mmoL/L glutamine (Gibco).

For identification, OPCs were incubated with primary antibodies 
against NG2 (1:200, Millipore, Bedford, MA), GAFP (1:200, 
Millipore), MBP (1:200, Abcam, Cambridge, United Kingdom), NeuN 
(1:200, Millipore), and Iba-1 (1:200, WAKO, Osaka, Japan) at 4°C 
overnight. Then cells were incubated with the fluorescence conjugated 
second antibodies at 37°C for 1 h.

Establishing a mouse model of tMCAO

The mouse model of tMCAO was performed as described 
previously (21). Mice were anesthetized with 1.5% isoflurane (RWD 
Life Science, Shenzhen, China) and placed supine. After the isolation 
of the left common carotid artery, external carotid artery, and internal 
carotid artery, the origin of the middle cerebral artery was occluded 
by a silicone-coated 6-0 suture (Covidien, Mansfield, MA). The suture 
was withdrawn after 90 min of tMCAO. The success of occlusion was 
assessed by the laser Doppler flowmetry (Moor Instruments, Devon, 
United Kingdom) with a decrease of cerebral blood flow at least 80% 
of the baseline. Sham mice were conducted in the same procedure 
except for the insertion of suture.

Transplantation of OPCs

OPCs were injected at 24 h after tMCAO (Figure  1E). Before 
transplantation, OPCs were labeled with carboxyfluorescein diacetate-
succinimidyl ester (CFDA-SE, Beyotime, Shanghai, China) for 
tracking. The mice after tMCAO were anesthetized and received 
stereotaxic transplantation. A microsurgical drill made a small skull 
hole 2 mm lateral to the bregma. An amount of 6 × 105 OPCs was 
suspected in 5 μL PBS and slowly injected into the left striatum at 
2 mm lateral to the bregma and 3 mm under the dura (AP = 0 mm, 
ML = 2 mm, DV = 3 mm) at a rate of 1 μL/min by the 10 μL Hamilton 
syringe (Hamilton, Bonaduz, Switzerland) (17, 18, 22, 23). The same 
amount of PBS was injected as control (16).

Abbreviations: BBB, Blood–brain barrier; tMCAO, Transient middle cerebral artery 

occlusion; MMP, Matrix metalloproteinase; mNSS, Modified neurological severity 

score; OPCs, Oligodendrocyte precursor cells.
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Administration of drugs

The mice were injected i.p. daily with cyclosporine A (5 mg/kg, 
Sigma) for immunosuppression after cell transplantation. The PBS 
group and sham group were administered cyclosporine A as well. For 
the OPC plus XAV-939 group, the β-catenin inhibitor XAV-939 
(40 mg/kg, MCE, Monmouth Junction, NJ) was injected 
intraperitoneally once a day (16, 24).

Neurobehavioral assessment

The modified neurological severity score (mNSS) was performed 
by an investigator who was blinded to the experimental treatment to 
evaluate the neurological function at 3 and 14 days after tMCAO. The 
mNSS ranged from 0 to 14 and included motor, sensory, balance, and 
reflex tests (25).

Rotarod test was performed at 7 and 14 days after tMCAO to test 
the motor coordination and balance. Briefly, Mice were trained on a 
rotating rod at 20 rpm for 3 consecutive days before tMCAO. Mice 
were placed on the rod for adaption, after which the rod was 
continuously accelerated to 40 rpm. The mice were monitored, and 
the time mice stayed on the rod (latency to fall) was recorded (17).

The novel object recognition test is used to test cognition behavior. 
The apparatus is a box 45 cm × 45 cm× 45 cm in size. The first 3 days 

are for adaption. Each mouse was placed in the apparatus and allowed 
to explore freely for 10 min. On the inspection day, two objects of the 
same shape, size, and color are placed on the bottom of the box. Each 
mouse is placed inside the instrument and allowed to explore freely 
for 10 min. One hour later, one of the objects is replaced by a novel 
object with different shapes and colors. Each mouse is put back into 
the apparatus and allowed to explore freely for 5 min. The novel object 
preference index is time spent exploring novel objects/total time to 
explore novel and familiar objects (26, 27).

The tail suspension test is a test for the antidepressant activity (17). 
In the test, the tail of the mouse is suspended on a lever with tape, and 
a camera is used to record its behavior. The mouse struggles to escape 
for a period of time and then adopt a posture of immobility. After 
2 min of induction time, the time for each mouse to keep immobility 
and the total time are recorded within left 4 min. Depression can 
decrease the frequency and duration of locomotor activity.

The elevated plus maze test is used to evaluate anxiety-related 
behaviors which is based on the test animals’ aversion to open spaces 
when feeling anxious (20). The equipment consists of a “+”-shaped maze 
elevated above the ground with 2 opposite closed arms, 2 opposite open 
arms, and a central area. Choice behavior was observed for 10 min. The 
number of entries to the open arms were counted and the time in the 
open arms were recorded by a video camera installed above the maze.

Brain infarct volume measurement

Mice were sacrificed at 3 days after tMCAO, and brains were cut 
into a series of 20 μm thick coronal sections. The cresyl violet staining 
(Sigma) was performed to measure the brain infarct volume. Infarct 
volume was calculated using ImageJ software (National Institutes of 
Health, Bethesda, MD) as described previously (5).

Immunofluorescence staining

Brain slices were fixed with methanol at 4°C for 10 min and 
blocked with diluted donkey serum (Jackson ImmunoResearch, West 
Grove, PA) for 60 min at room temperature. Slides were incubated 
with primary antibodies of MPO (1:200, R&D system, Minneapolis, 
MN), Iba-1 (1:200, NB100-1028, Novusbio, CO), CD31 (1:200, R&D 
system), occludin (1:200, Invitrogen, Carlsbad, CA), ZO-1 (1:100, 
Invitrogen) overnight at 4°C. After rinsing three times with PBS, brain 
slices were incubated with the fluorescence conjugated second 
antibodies for 1 h at room temperature. Immunofluorescence photos 
were collected by a confocal microscope (Leica, Solms, Germany). 
We measured the vessel length and gap by ImageJ software (National 
Institutes of Health). Gap length was presented as a percentage (%) of 
gap length in the whole vessel (16).

Real-time PCR analysis

Regional brain tissues from the infarct hemisphere of ischemic 
mice, including cortex and striatum, were isolated for real-time 
PCR. The real-time PCR assay was performed as described previously 
(28). The two-stage RT-PCR amplification parameters were 95°C for 
30 s followed by 40 cycles of 95°C for 5 s and 60°C for 30 s. The 

FIGURE 1

OPC identification and transplantation. (A) Morphology of cultured 
cells under phase-contrast microscopy. Scale bar = 50 μm. 
(B) Representative image of NG2 in cultured cells. Scale bar = 50 μm. 
(C) Immunofluorescence staining showed that cultured cells were 
negative for GFAP, Iba-1, NeuN, and MBP. Scale bar = 50 μm. 
(D) Green fluorescent OPCs (CFDA-SE stained) were located in the 
ischemic hemisphere. Scale bar = 100 μm. (E) Diagram of 
experimental design.
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mRNA expression level was normalized to reference gene GAPDH 
and displayed as relative expression of mRNA by 2−ΔΔCt method.

Western blot analysis

Western blot was performed as described previously (17, 29). The 
membranes were blocked with 5% skim milk and incubated with 
primary antibodies against β-catenin (1:500, Abcam) and GAPDH 
(1:1000, Abcam) overnight at 4°C. After washing with TBST buffer, 
the membranes were incubated with HRP-conjugated 
secondary antibody.

Statistical analysis

The sample size was determined according to our previous 
publications for similar outcomes (17, 20). For immunohistochical 
images, we adopted the manual fluorescence positive cell counting or 
software to measure the length of linear expression (21, 22). Analysis 
was performed by Prizm Graphpad 9. Multiple comparisons were 
analyzed using one-way ANOVA followed by Tukey’s post-hoc test for 
normally distributed data. Comparisons between the two groups were 
carried out using Student’s t-test. Data were expressed as mean ± SD. A 
probability value of less than 0.05 was considered significant.

Results

OPC identification and transplantation

Cultured OPCs showed a bipolar or multipolar morphology 
under phase contrast microscope (Figure 1A). The cultured OPCs 
were identified by immunofluorescence 10 days after isolating from 
P1 rat brains. Immunofluorescent staining showed that the percentage 
of NG2+ cells was 94% (Figure 1B). Very few cells expressed GFAP, 
Iba-1, NeuN or MBP (Figure 1C). Transplanted OPCs were labeled 
with CFDA-SE for in vivo cell tracking. The results demonstrated that 
a considerable number of transplanted OPCs could survive at 3 days 
after tMCAO (Figure 1D).

OPC transplantation reduced infarct 
volume, alleviated anxiety and depression, 
and improved neurobehavioral recovery 
after tMCAO

The brain infarct volume was evaluated using cresyl violet 
staining. Results showed that infarct volume was significantly 
decreased in the OPC-treated mice compared to the control (PBS) 
mice at 3 days after tMCAO (Figures 2A,B, p < 0.05).

The novel object recognition test was performed to detect the 
memory and cognition. OPC transplantation increased the new object 
exploring time at 14 days after tMCAO which indicating better 
memory and cognitive abilities (Figure 2C, p < 0.05).

The mNSS and rotarod test were performed to evaluate the 
neurological function. OPC transplantation significantly decreased 
neurological scores at 3 and 14 days after tMCAO (Figure 2D, p < 0.05). 

The rotarod test demonstrated that the time staying on the rotarod was 
prolonged in OPC-treated mice compared to control mice at 7 and 
14 days after tMCAO (Figure 2E, p < 0.05). The OPC-treated group 
attenuated the neurobehavioral deficiency compared to the control group.

The tail suspension test was performed to assess the depression-like 
behavior. The induction time and freezing time indicated depression 
level. The decrease of the induction time or the increase of the freezing 
time represented that the mice tended to be more depressed. Our test 
showed that there was no difference in the induction time. The freezing 
time significantly decreased in OPC-treated mice compared to the 
PBS-treated mice (Figure 2F, p < 0.05). This result indicated that OPC 
transplantation could alleviate post-stroke depression.

The plus maze test was performed to estimate the anxiety behavior 
of mice. The number of entries to the open zone and the time in the 
open zone of OPC-treated mice were increased compared to the 
control (Figure 2G, p < 0.05). This indicated that OPC transplantation 
could attenuate anxious behavior.

OPC transplantation downregulated the 
expression of inflammatory factors after 
tMCAO

Inflammatory factors IL-1β, IL-6, and TNF-α were upregulated at 
3 days after tMCAO. However, OPC transplantation reduced IL-1β, 
IL-6, and TNF-α expression compared to the control group 
(Figure 3A, p < 0.05). Besides, OPC transplantation downregulated 
the NF-κB pathway related to inflammatory factors (Figure  3A, 
p < 0.05).

OPC transplantation alleviated the 
leukocyte infiltration and increase of 
microglia after tMCAO

Neutrophils are the primary inflammatory cell type that responds 
to the inflammatory stimulus following ischemic stroke (30). To 
determine whether OPC transplantation alleviated leukocyte 
infiltration after tMCAO, we conducted immunostaining to examine 
the number of MPO+ cells. We  found that OPC transplantation 
reduced the number of MPO+ cells in the ipsilateral brain at 3 days 
after tMCAO (Figure  3B, p < 0.05). It was noted that neutrophil 
infiltration was greatly reduced in the OPC-transplanted mice 
after tMCAO.

Microglia are resident immune cells in the central nervous system. 
To detect whether OPC transplantation affected the number of 
microglia, we conducted immunostaining to examine the number of 
Iba-1+ cells. We found that OPC transplantation reduced the number 
of Iba-1+ cells in the ipsilateral brain at 3 days after tMCAO (Figure 3C, 
p < 0.05). So, OPC transplantation alleviated the increase of microglia 
after tMCAO.

OPC transplantation attenuated BBB 
disruption after tMCAO

Occludin and ZO-1 expression presented a gap in the endothelial 
cell margin of the cerebral microvessel after ischemic injury. CD31/
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occludin double staining results showed that OPC transplantation 
alleviated the disruption of occludin (Figure 4A, p < 0.001). CD31/
ZO-1 double staining results suggested that OPC transplantation 
alleviated the disruption of ZO-1 (Figure  4B, p < 0.05). OPC 
transplantation significantly reduced gap formation after tMCAO.

Inhibition of β-catenin aggravated 
inflammation and BBB disruption

OPC transplantation enhanced β-catenin expression in the 
ipsilateral hemisphere compared to the control (Figure 5, p < 0.05). 
As we supposed that the downregulated inflammation caused by 
OPC transplantation was related to the enhanced β-catenin 
expression, we used XAV-939 to inhibit the β-catenin. The β-catenin 
inhibitor XAV-939 administration could suppress the β-catenin 
expression which was enhanced by OPC transplantation (Figure 5, 
p < 0.05). To further examine whether β-catenin was involved in the 

beneficial role of OPCs after tMCAO, β-catenin inhibitor XAV-939 
was injected in OPC-treated ischemic mice. We found that XAV-939 
could upregulate the expression of inflammatory factors and 
increase neutrophil infiltration after tMCAO (Figures  6A,B, 
p < 0.05). Besides, the inhibition of β-catenin downregulated the 
NF-κB pathway (Figure  6A, p < 0.05). The endothelial gap 
formation was increased after XAV-939 administration (Figure 6C, 
p < 0.05). XAV-939 treatment reversed the protective role of OPC 
transplantation on the integrity of BBB.

Discussion

Our study demonstrated that OPC transplantation reduced 
inflammation, attenuated tight junction disruption of BBB, and 
improved neurobehavioral outcomes in ischemic mice. The Wnt/β-
catenin pathway activated by OPC treatment might contribute to the 
downregulation of neuroinflammation after ischemic stroke.

FIGURE 2

OPC transplantation reduced infarct volume and improved neurobehavioral recovery after tMCAO. (A) Cresyl violet staining showed the infarction after 
tMCAO in PBS and OPC groups. (B) Bar graph indicated that OPC transplantation reduced infarct volume. N = 6 per group. (C) Bar graph of novel 
object exploring time in the novel object recognition test. N = 6–9 per group. (D) Bar graph of neurological scores. N = 6–9 per group. (E) Bar graph 
of latency to fall. N = 6–9 per group. (F) Bar graphs of induction time and freezing time in the tail suspension test. N = 6–9 per group. (G) The track 
plot and bar graphs of number of entries to the open zone and time in the open zone in the plus maze test. N = 6–9 per group. Data are mean ± SD, 
*p < 0.05.
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Inflammation could exacerbate ischemic tissue damage and 
worsen clinical outcome in patients with stroke (31). The intense 
neuroinflammation occurring during the acute phase of stroke is 
associated with BBB breakdown, neuronal injury, and worse 
neurological outcomes. Inflammation-driven injury mechanisms 
in stroke include oxidative stress, increased MMPs production, 
microglial activation, and infiltration of peripheral immune cells 
into the ischemic tissue (32). Many types of stem cells can 
potentially treat ischemic stroke (33). Mesenchymal stem cell 
therapy could reduce inflammation and attenuate BBB disruption 
in mice after ischemia (22). Our data showed that OPC 
transplantation significantly attenuated inflammation after 
ischemia. Inflammatory cytokines IL-1β, IL-6, and TNF-α and 
neutrophil infiltration were reduced in OPC-treated mice 
compared to the control group. The suppression of inflammation 
of OPC transplantation ameliorated neurobehavioral deficiency.

Inflammatory interactions at the blood-endothelial interface 
include cytokines, chemokines, adhesion molecules, and white blood 
cells, which are crucial for the pathogenesis of cerebral infarction 
(34). Proinflammatory intracellular signaling cascades and 
transcription factors, for example, NF-κB, ROS, MMPs, and the 
release of proinflammatory cytokines, especially IL-1β, IL-6, and 
TNF-α, are associated with BBB dysfunction after stroke (32). Our 
results showed that OPC transplantation reduced tight junction 

protein degradation after ischemia. The protective effect on BBB of 
OPC transplantation could be  through the downregulation 
of inflammation.

The Wnt/β-catenin pathway is involved in cellular proliferation, 
survival, differentiation, migration, angiogenesis, and vascular 
maturation (35). Research indicated that enhancing cerebrovascular 
Wnt/β-catenin activity would offer protection against BBB 
permeability and neuroinflammation in acute infection (36). Previous 
studies reported that reactivation of Wnt/β-catenin signaling in vessels 
during experimental autoimmune encephalomyelitis/multiple 
sclerosis partially restored functional BBB integrity and limited 
immune cell infiltration into the brain (37). In our study, OPC 
transplantation increased the level of β-catenin and downregulated the 
mRNA level of NF-κB. Furthermore, the inhibition of β-catenin 
reversed the inflammation inhibition by OPC transplantation and 
aggravated tight junction protein disruption.

Wnt/β-catenin signaling exerts the anti-inflammatory function 
partially due to repressing the NF-κB pathway (38). Previous research 
suggested the negative regulation of NF-κB-mediated inflammatory 
responses by β-catenin in intestinal epithelial cells (39). Wnt/β-catenin 
pathway components modulate inflammatory and immune responses 
via the interaction with NF-κB (40). Our results demonstrated that the 
level of NF-κB had a negative correlation with that of β-catenin. 
Therefore, we  supposed that OPC transplantation attenuated 

FIGURE 3

OPC transplantation reduced inflammation after tMCAO. (A) Bar graphs showed the mRNA level of IL-1β, IL-6, TNF-α, and NF-κB in the sham, PBS, and 
OPC groups at 3 days after tMCAO. N = 4 per group. (B) Representative images of MPO staining in the peri-infarct area at 3 days after tMCAO. Bar 
graph showed the quantification of MPO+ cells. Scale bar = 100 μm. N = 6 per group. (C) Representative images of Iba-1 staining in the peri-infarct 
area at 3 days after tMCAO. Bar graph showed the quantification of Iba-1+ cells. Scale bar = 100 μm. N = 6 per group. Data are mean ± SD, *p < 0.05.
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inflammation by β-catenin and the downstream pathway might 
be NF-κB.

In our previous study, some transplanted OPCs differentiate into 
oligodendrocyte which expressed MBP around the myelin at 28 days 
after tMCAO (17). We  found OPCs could secret Wnt7a which 
activated endothelial cells (16). Besides Wnt7a, OPCs could secret 
trophic factors, providing trophic signals to neighboring cells. Based 
on other basic researches on stem cell transplantation, like 
mesenchymal stem cell and endothelial progenitor cell, we tended 
to believe that factors released by OPCs were crucial for the 
beneficial effects of OPC transplantation following ischemic stroke 
(21, 33, 41).

We previously proved that OPC transplantation’s chronic effects 
on angiogenesis and remyelination after ischemic stroke. OPC 
transplantation reduced BBB permeability which indicated the better 
vascular maturity (17). But we did not focus on the chronic effects on 
the tight junction proteins in the endothelial cells. The long-term 
impact needs to be assessed. We ever injected OPCs 7 days after 
tMCAO and found improved behavior recovery and reduced brain 
atrophy volume at 28 days after OPC transplantation (18). The 
delayed OPC transplantation could enhance endogenous 
oligodendrogenesis, neurite growth, and synaptogenesis.

There were some limitations in our study. Conditional knock-out 
mice of β-catenin are needed to show a larger certainty of the underlying 

FIGURE 4

OPC transplantation attenuated the breakage of occludin and ZO-1 after tMCAO. (A) Three-dimension reconstruction confocal microscopy images of 
occludin (green), endothelial marker CD31 (red) and DAPI (blue) at 3 days after tMCAO in three groups. The white arrows indicated the gap formation 
of occludin. Bar graph showed the quantification of gap formation of occludin. Scale bar = 50 μm. (B) Three-dimension reconstruction confocal 
microscopy images of ZO-1 (green), CD31 (red), and DAPI (blue) at 3 days after tMCAO in three groups. The white arrows indicated the gap formation 
of ZO-1. Bar graph showed the quantification of gap formation of ZO-1. Scale bar = 25 μm. Data are mean ± SD, N = 6 per group, *p < 0.05 and 
***p < 0.001.

FIGURE 5

OPC transplantation increased β-catenin level. (A) Western blot of 
β-catenin expression in sham, PBS, OPC, and OPC plus XAV-939 
groups at 3 days after tMCAO. (B) Bar graph of relative expression of 
β-catenin. N = 4 per group. Data are mean ± SD, *p < 0.05.

https://doi.org/10.3389/fneur.2025.1583982
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Wang et al. 10.3389/fneur.2025.1583982

Frontiers in Neurology 08 frontiersin.org

mechanism. The β-catenin activation in different type of cells in the 
central nervous system, for example, microglial and astrocyte, should 
be further explored. A previous study showed that activation of Wnt/β-
catenin signaling attenuated ICAM-1/VCAM-1-mediated adhesion of 
both macrophages and neutrophils to alveolar epithelial cells (42). So 
other targets need to be studied in future.

In this study, we demonstrated that OPC transplantation attenuated 
inflammation, which protected BBB, decreased brain infarct volume and 
improved neurological outcomes after ischemic stroke in mice. This anti-
inflammatory function of OPC transplantation might be via activating 
β-catenin and then affecting NF-κB. OPC transplantation is a promising 
approach for the ischemic stroke therapy.
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group. (C) Three-dimension reconstruction confocal microscopy images of occludin (green) and CD31 (red) at 3 days after tMCAO in OPC and OPC 
plus XAV-939 groups. Bar graph showed the quantification of gap formation of occludin. Scale bar = 50 μm. N = 6 per group. Data are mean ± SD, 
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