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Background: Motor and cognitive impairments are common symptoms of 
basal ganglia (BG) stroke, although the underlying neurobiological mechanisms 
remain unclear. Therefore, we  aimed to explore the alterations in functional 
connectivity (FC) between thalamic subregions post-BG stroke via resting-state 
functional magnetic resonance imaging (rs-fMRI) measurements.

Methods: This cross-sectional study compared 40 patients with BG stroke and 
35 healthy controls (HCs). Seed-based FC analysis was performed for 14 thalamic 
subregions. Correlations between FC changes and Fugl–Meyer Assessment 
(FMA)/Mini-Mental State Examination (MMSE) scores were assessed.

Results: Patients exhibited hyperconnectivity between the left thalamic 
subregion connected with the sensory cortex (SC_thalamus) and left precuneus 
(t = 3.97, pFWE = 0.041) and the right SC_thalamus–left angular gyrus (t = 4.50, 
pFWE = 0.032). Hypoconnectivity emerged between the left thalamic subregion 
connected with the prefrontal cortex (PFC_thalamus) and right supramarginal 
gyrus (t = −5.54, pFWE = 0.015), left thalamic subregion connected with 
the temporal cortex (TC_thalamus) and right postcentral gyrus (t = −4.95, 
pFWE = 0.022), and right thalamic subregion connected with the primary 
motor cortex (M1_thalamus) and right medial suprafrontal gyrus (t = −5.62, 
pFWE = 0.012). FC strength between the right M1_thalamus and right medial 
suprafrontal gyrus was positively correlated with FMA (r = 0.484, pFDR = 0.033), 
while left PFC_thalamus–right supramarginal connectivity predicted MMSE 
performance (r = 0.490, pFDR = 0.021).

Conclusion: BG stroke disrupts thalamocortical circuitry at subregional levels, 
with distinct FC patterns linking to motor/cognitive deficits. These network-
level insights may guide targeted neuromodulation therapies. The identified FC 
alterations could serve as biomarkers for monitoring recovery and personalizing 
interventions to improve post-stroke rehabilitation outcomes.
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1 Introduction

Stroke-associated disability and mortality rates are extremely high 
among middle-aged and older adults, posing a huge burden on public 
health (1). Blood supply to the basal ganglia (BG) is abundant, where a 
cerebral infarction usually occurs. The BG plays a crucial role in 
coordinating complex movements and regulating advanced cognitive 
functions (2, 3). Patients with BG stroke frequently exhibit persistent 
motor and cognitive deficits (4), reflecting large-scale network 
dysfunction rather than isolated focal impairments (5). Notably, these 
deficits arise not only from local ischemic damage but also through 
diaschisis—functional disruptions in remote yet interconnected brain 
regions (6–8). In addition, the abnormal function of cortical–BG–
thalamocortical circuits is believed to cause cognitive decline in patients 
with BG stroke (9). However, conventional neuroimaging paradigms 
often treat the thalamus as a homogeneous entity, averaging blood 
oxygen level-dependent (BOLD) signals across its subnuclei. This 
approach obscures critical FC patterns within specific thalamocortical 
circuits and limits the identification of subregion-specific diaschisis 
mechanisms (10). Given that distinct thalamic subregions project to 
functionally specialized cortical networks (e.g., motor vs. prefrontal 
regions) (11), a subregional analysis is essential for uncovering circuit-
level disruptions underlying post-stroke deficits.

Anatomically, the thalamus can be parcellated into seven distinct 
subregions based on cortico-thalamic connectivity profiles derived from 
the probability fiber tracing algorithm (11). Building upon this 
framework, we defined 14 bilateral thalamic subregions as regions of 
interest (ROIs). Related studies have shown that secondary damage 
manifests in the thalamus far from the infarcted site after cerebral 
infarction (12, 13), with ipsilateral thalamic volume loss correlating with 
cognitive outcomes (14). Preliminary functional investigations have also 
reported increased thalamo-cerebellar connectivity in stroke patients 
compared to healthy controls (HCs) (15). Nevertheless, the 
abovementioned studies have treated the thalamus as a whole structure, 
potentially masking compensatory or pathological changes specific to 
individual subregions. For instance, connectivity alterations in motor-
related versus cognitive-related thalamic subregions may differentially 
predict FMA or MMSE scores—distinctions that remain unexplored.

This study investigates subregional thalamic FC alterations in 
patients with BG stroke using rs-fMRI. We systematically compared 
whole-brain, voxel-wise FC profiles of 14 thalamic subregions between 
patients with BG stroke and HCs and assessed correlations between 
aberrant FC patterns and clinical outcomes using the MMSE for 
cognition and the FMA for motor recovery. By moving beyond whole-
thalamus analyses, our subregion-specific approach reveals (1) which 
thalamocortical circuits are selectively disrupted or preserved post-
stroke and (2) how these disruptions map to motor versus cognitive 
deficits—a critical advance over prior homogeneous thalamus models. 
These findings offer novel insights into the neural mechanisms 
underlying post-stroke motor and cognitive rehabilitation.

2 Materials and methods

2.1 Participants

This prospective observational study enrolled 40 patients with 
acute BG stroke from the Neurology Department of Tianjin 

Huanhu Hospital between May 2022 and October 2023. 
Concurrently, 35 age-, sex-, education-, and body mass index 
(BMI)-matched HCs were recruited through community 
advertisements during the same period. The inclusion criteria were 
as follows: (1) unilateral, single-lesion BG stroke for the first time 
diagnosed by magnetic resonance imaging (MRI) within 7 days of 
neurological symptoms, (2) middle-aged and older adults aged 
45–75 years, and (3) right-handedness interpreted using the 
Edinburgh Handedness Inventory. In addition, the exclusion 
criteria included (1) contraindications to MRI, (2) comorbidities or 
medications (e.g., antiepileptics and antipsychotics) that may 
influence the experimental outcome, and (3) cases of 
unqualified images.

2.2 Ethics statement

This study protocol was approved by the Ethics Committee of 
Tianjin Huanhu Hospital (approval number 2022-056) and was 
conducted in accordance with the Declaration of Helsinki. Written 
informed consent was obtained from all participants before 
the experiment.

2.3 Instrumental assessments

On the day of the MRI examination, cognitive and motor 
functions in the upper limbs were assessed using the MMSE and the 
FMA scores, respectively.

2.4 Data acquisition

The MR data of all participants were captured from a 3T Prisma 
scanner (Siemens Healthcare, Erlangen, Germany) in the Imaging 
Department of Tianjin Huanhu Hospital. Participants were 
instructed to relax, close their eyes, and forget distracting thoughts 
during the MR data acquisition. High-resolution 3DT1, T2, fluid-
attenuated inversion recovery (FLAIR), diffusion-weighted imaging 
(DWI), and rs-fMRI images were captured. High-resolution 
3DT1-weighted anatomical images were acquired using a 
magnetization-prepared rapid-acquisition gradient-echo sequence 
with the following parameters: repetition time [TR], 1,560 ms; echo 
time [TE], 1.65 ms; inversion time [TI], 778 ms; flip angle, 8°; field 
of view [FOV], 256 × 256 mm2; matrix size, 256 × 256; slice 
thickness, 1 mm; and number of slices, 192. In addition, the 
rs-fMRI images were acquired using echo planar imaging (TR, 
1000 ms; TE, 30 ms; flip angle, 70°; FOV, 220 × 220 mm2; matrix, 
110 × 110; number of transverse slices, 64; voxel size, 
2 × 2 × 2.2 mm3; and slice volume, 400). The whole-brain image was 
acquired with the phase-encoded direction from anterior 
to posterior.

2.5 Lesion probability map

Lesion probability maps were constructed as follows 
(Figure 1): (1) manual delineation of acute BG stroke lesions on 
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DWI using MRIcron1; (2) individual lesion masks were rigidly 
aligned with individual T1 images using six-degree-of-freedom 
transformations in statistical parametric mapping (SPM12, http://
www.fil.ion.ucl.ac.uk/spm); (3) coregistered lesion maps were 
spatially smoothed with a 4-mm full-width half-maximum 
(FWHM) Gaussian kernel, and registration to Montreal 
Neurological Institute (MNI) space was performed via SPM12’s 
unified segmentation-normalization algorithm; (4) voxel-wise 
averaging of normalized binary masks (0–1 scale); and (5) 
thresholding at > 10% overlap (intensity > 0.1).

2.6 Imaging data preprocessing

The Data Processing Assistant for Resting-State fMRI (DPARSF, 
http://rfmri.org/DPARSF), based on SPM12, was adopted to 
preprocess the rs-fMRI images (16). In brief, the first 20 volumes 
were removed to allow an adaptation, retaining 380 volumes for 
analysis. Temporal offsets were adjusted across slices using the 
middle slice as a reference for slice timing correction. Images were 
realigned to the first volume via rigid-body transformation (six 
degrees of freedom). Frames with excessive head motion 
(translation > 2.0 mm or rotation > 2°) were removed, and 
participants with > 20% removed frames were excluded. The 
structural T1-weighted image was preprocessed using a 
six-parameter rigid-body transformation to correct for head 
motion. It was then coregistered to the mean rs-fMRI image to 
establish spatial correspondence. Subsequent steps included tissue 
segmentation into gray matter (GM), white matter (WM), and 
cerebrospinal fluid (CSF) using a probabilistic atlas-based approach 
(17), followed by non-linear registration to the MNI stereotactic 
space (2 × 2 × 2 mm3 isotropic resolution) with volumetric 
registration prioritized to enhance subcortical anatomical 
alignment (particularly for thalamic nuclei) to standardize 
anatomical localization across participants. Adopting the same 
transformed parameters, the exponentiated Lie algebra (DARTEL) 
algorithm was adopted for the spatial normalization of rs-fMRI 
images (18). Spatial smoothing was applied to the preprocessed 
rs-fMRI data using a Gaussian kernel with 4 mm FWHM to 

1 www.nitrc.org/projects/mricron

balance noise reduction and preservation of spatial details, aligning 
with common practice in rs-fMRI studies (16). The Friston 24 
motion parameters (19), mean signals in the WM and CSF, and 
linear trends were regressed out as covariates to account for 
potential confounding effects. We processed the rs-fMRI images 
using a temporal Fourier filter ranging from 0.01 to 0.1 Hz to 
remove low-frequency drift and high-frequency respiration (20). 
Bilateral thalami were subdivided into seven functionally distinct 
subregions per hemisphere (M1_thalamus, SC_thalamus, thalamic 
subregion connected with the occipital cortex (OC_thalamus), 
PFC_thalamus, thalamic subregion connected with the premotor 
cortex (PMC_thalamus), thalamic subregion connected with the 
posterior parietal cortex (PPC_thalamus), and TC_thalamus) as 
ROIs based on the probability fiber tracing algorithm (11) 
(Figure 2). FC was estimated using Pearson’s correlation of the 14 
bilateral ROIs and whole-brain voxels. Fisher’s r-to-z 
transformation normalized the FC distributions, and the resulting 
z-maps were analyzed.

2.7 Statistical analyses

IBM SPSS Statistics for Windows, version 24.0 (IBM Corp., 
Armonk, N.Y., United States), was used to perform all statistical 
analyses. Continuous data (mean ± standard deviation) and 
categorical data were compared using the two-sample t-test and 
chi-squared test, respectively (21). The FC differences between 
patients with BG stroke and HCs were tested using non-parametric 
permutation tests (SnPM toolbox) (22), SPM12; 5,000 
permutations, two-tailed, chosen for their suitability for small-to-
moderate sample sizes, with age and sex as covariates. Effect sizes 
for significant FC differences were calculated as Cohen’s d. 
Analyses were restricted to a GM mask using a two-threshold 
approach: voxel level: p < 0.001 (uncorrected) and cluster level: 
pFWE < 0.05 (permutation-derived cluster extent). Significant 
clusters surviving correction were defined as regions exhibiting 
altered FC in patients with BG stroke. The mean FC z-values 
within these clusters were extracted for subsequent clinical 
correlation analysis. Pearson’s correlation was used to identify the 
correlation of FCs with the MMSE and FMA scores in patients 
with BG stroke. All comparisons underwent two-tailed FDR 
correction (pFDR < 0.05), with significance determined by 
adjusted p-values.

FIGURE 1

Lesion probability maps for patients with BG stroke. The heat maps corresponding to the probability of patients having a lesion in that area were 
overlaid on axial slices from a standard template in MNI space. BG, basal ganglia; MNI, Montreal Neurological Institute.
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3 Results

3.1 Demographic and clinical 
characteristics of participants

No significant differences were observed in demographic data 
between patients with BG stroke and HCs, including age (p = 0.248), 
male sex (p = 0.578), education level (p = 0.400), and BMI (p = 0.833) 
(Table 1). The FMA (16.05 ± 2.65) and MMSE (20.15 ± 2.26) scores in 
patients with BG stroke followed a normal distribution.

3.2 FC alterations

Table 2 and Figures 3, 4 show the FC alterations in the brain 
regions of patients with BG stroke and HCs with significant 

differences. Compared to HCs, patients with BG stroke had an 
increased FC between the left SC_thalamus and left precuneus 
(t = 3.97, d = 0.93, pFWE = 0.041) and between the right SC_thalamus 
and left angular gyrus (t = 4.50, d = 1.05, pFWE = 0.032), as illustrated 
in Figure 3. Conversely, as shown in Figure 4, patients with BG stroke 
exhibited a decreased FC between the left PFC_thalamus and right 
supramarginal gyrus (t = −5.54, d = −1.30, pFWE = 0.015), between 
the left TC_thalamus and right postcentral gyrus (t = −4.95, 
d = −1.16, pFWE = 0.022), and between the right M1_thalamus and 
right medial suprafrontal gyrus (t = −5.62, d = −1.32, pFWE = 0.012).

3.3 Correlational analysis

As shown in Figure 5, a positive FC correlation was identified 
between the right M1_thalamus and right medial suprafrontal gyrus 

FIGURE 2

Seven subregions of the left and right thalami, according to the probability fiber tracing algorithm (11). M1_thalamus, thalamic subregion connected 
with the primary motor cortex; SC_thalamus, thalamic subregion connected with the sensory cortex; OC_thalamus, thalamic subregion connected 
with the occipital cortex; PFC_thalamus, thalamic subregion connected with the prefrontal cortex; PMC_thalamus, thalamic subregion connected with 
the premotor cortex; PPC_thalamus, thalamic subregion connected with the posterior parietal cortex; TC_thalamus, thalamic subregion connected 
with the temporal cortex.

TABLE 1 Demographic and clinical characteristics of patients with basal ganglia stroke (n = 40) and healthy controls (n = 35).

Characteristics BG stroke patients (n = 40) Healthy controls (n = 35) p-value

Age (yrs) 60.95 ± 5.57 59.43 ± 5.73 0.248a

Male (n, %) 22 (55.0) 17 (48.6) 0.578b

Education level (yrs) 10.07 ± 1.70 9.74 ± 1.69 0.400a

BMI (kg/m2) 25.29 ± 1.07 25.23 ± 1.13 0.833a

MMSE (points)* 20.15 ± 2.26 -

FMA (points)* 16.05 ± 2.65 -

*The MMSE and FMA surveys were not applicable to healthy controls. BG, basal ganglia; BMI, body mass index; MMSE, Mini-Mental State Examination; FMA, Fugl–Meyer Assessment.
aTwo-sample t-test.
bChi-squared test.
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with the FMA scores (r = 0.484, pFDR = 0.033) and between the left 
PFC_thalamus and right supramarginal gyrus with the MMSE scores 
(r = 0.490, pFDR = 0.021). No correlations of other abnormal FC 
values with either FMA or MMSE scores survived FDR correction.

4 Discussion

Our study identified altered FC patterns between the thalamic 
subregions and cortical regions in patients with BG stroke, revealing 
significant correlations with motor and cognitive deficits. These 
findings suggest that post-stroke impairments may arise not only from 
direct ischemic damage but also through dysregulated thalamocortical 
network interactions. This aligns with prior evidence, demonstrating 

that BG stroke disrupts both sensorimotor and cognitive processing 
through distributed network effects (23).

The thalamus comprises functionally specialized nuclei, 
including the mediodorsal (MD), pulvinar, ventral lateral (VL), 
ventral anterior (VA), and ventral posterior (VP) nuclei. These 
nuclei exhibit distinct cortico-thalamic connectivity patterns: (1) 
The VP nucleus (which has overlapping regions with the SC_
thalamus) receives somatosensory inputs and projects to the 
primary motor cortex, forming the SC_thalamus-M1 pathway 
(24–26); (2) the MD nucleus (which has overlapping regions with 
the PFC_thalamus), interconnected with prefrontal regions, 
supports higher-order cognitive functions through valuation and 
motivational processing (27–30); and (3) the pulvinar and MD 
nuclei (which have overlapping regions with the TC_thalamus) 

TABLE 2 Functional connectivity alterations in brain regions of patients with basal ganglia stroke.

Brain region Cerebral 
hemisphere

MNI coordinates Cluster size t-value pFWE

x y z

Left SC_thalamus (ROI) Left - - - - - -

Precuneus Left −12 −63 54 72 3.97 0.041

Right SC_thalamus (ROI) Right - - - - - -

Angular Left −39 −69 42 76 4.50 0.032

Left PFC_thalamus (ROI) Left - - - - - -

Supramarginal Right 63 −35 32 135 −5.54 0.015

Left TC_thalamus (ROI) Left - - - - - -

Postcentral gyrus Right 24 −33 57 81 −4.95 0.022

Right M1_thalamus (ROI) Right - - - - - -

Medial suprafrontal gyrus Right 12 48 21 64 −5.62 0.012

x, y, and z coordinates of primary peak locations in Montreal Neurological Institute (MNI) space. MNI, Montreal Neurological Institute; FWE, family-wise error; SC_thalamus, a thalamic 
subregion connected with the sensory cortex; ROI, region of interest; PFC_thalamus, a thalamic subregion connected with the prefrontal cortex; TC_thalamus, a thalamic subregion connected 
with the temporal cortex; M1_thalamus, a thalamic subregion connected with the primary motor cortex.

FIGURE 3

Increased FC in patients with BG stroke compared to HCs (corrected by FWE at cluster level following 5,000 permutations). The first row shows the left 
SC_thalamus as the ROI, with red areas in transverse sections indicating an increased FC in the left precuneus. The second row shows the right SC_
thalamus as the ROI, with red areas in transverse sections indicating an increased FC in the left angular gyrus. L, left; R, right; FC, functional connection; 
ROI, region of interest; HCs, healthy controls; SC, sensory cortex; BG, basal ganglia; FWE, family-wise error.
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jointly mediate temporo-cortical integration for cognitive control 
(11, 31). Notably, VP nucleus activity precedes voluntary 
movements, highlighting its role in motor planning.

Patients with BG stroke exhibited an increased FC between 
the left SC_thalamus and left precuneus/angular gyri. These 
regions constitute key hubs of the default mode network (DMN), 
with the angular gyrus involved in semantic processing and spatial 

cognition (32), while the precuneus mediates self-referential 
processing and conscious awareness (33–35). This 
hyperconnectivity may reflect maladaptive compensatory 
mechanisms, analogous to DMN reorganization observed in post-
stroke aphasia (36). Recent longitudinal studies suggest that 
stroke-induced DMN hyperconnectivity is often associated with 
persistent attentional deficits, despite offering initial 

FIGURE 4

Decreased FC in patients with BG stroke compared to HCs (corrected by FWE at cluster level following 5,000 permutations). The first row shows the 
left PFC_thalamus as the ROI, with blue areas in transverse sections indicating decreased FC in the right supramarginal gyrus. The second row shows 
the left TC_thalamus as the ROI, with blue areas in transverse sections indicating decreased FC in the right postcentral gyrus. The third row shows the 
right M1_thalamus as the ROI, with blue areas in transverse sections indicating decreased FC in the right medial suprafrontal gyrus. L, left; R, right; FC, 
functional connection; ROI, region of interest; HCs, healthy controls; PFC, prefrontal cortex; BG, basal ganglia; FWE, family-wise error.

FIGURE 5

Correlations between FC and clinical symptom scores. (A) shows the FC values between the right M1_thalamus and right medial suprafrontal gyrus, 
which were positively correlated with FMA scores (r = 0.484, pFDR = 0.033). (B) shows the FC values between the left PFC_thalamus and right 
supramarginal gyrus, which were positively correlated with MMSE scores (r = 0.490, pFDR = 0.021). r represents the Pearson correlation; p represents 
the significance level. MMSE, Mini-Mental State Examination; FMA, Fugl–Meyer Assessment; FDR, false discovery rate.
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compensatory benefits (37). Specifically, increased thalamo-
parietal coupling may represent aberrant sensory reafference 
mechanisms aimed at stabilizing posture and guiding movement 
planning—a pattern consistent with previous reports of stroke-
induced DMN hyperconnectivity (38).

Decreased FC between the left PFC_thalamus and right 
supramarginal gyrus is correlated with lower MMSE scores. This 
finding extends recent evidence, showing that prefrontal-thalamic 
disconnection predicts 6-month cognitive prognosis in subcortical 
stroke (39). As the supramarginal gyrus contributes to cognitive-
emotional integration (40), this disconnection may impair 
executive control networks supported by prefrontal–striatal–
thalamic loops (41); the MD nucleus, serving as a thalamic hub 
for prefrontal connectivity, likely plays a critical role in 
maintaining goal-directed attention and working memory.

Reduced FC between the left TC_thalamus and right 
postcentral gyrus aligns with prior findings of sensory processing 
deficits in subcortical stroke (42). The postcentral gyrus, essential 
for somatosensory and emotional processing (43), may lose 
thalamic modulation required for integrating sensory feedback 
with motor planning.

Diminished FC between the right M1_thalamus and medial 
suprafrontal gyrus is correlated with FMA scores. The positive 
FC-motor function correlation suggests that preserved 
thalamofrontal communication facilitates motor recovery, which 
is consistent with neuromodulation studies where TMS-enhanced 
M1-thalamus connectivity predicts better rehabilitation outcomes 
(44). This highlights thalamocortical FC as a potential biomarker 
for stratifying motor recovery trajectories and guiding targeted 
neuromodulation. The medial suprafrontal gyrus modulates 
motor cortex excitability (45, 46), and its decoupling from 
thalamic motor nuclei may disrupt cortico-subcortical circuits 
critical for motor recovery, as evidenced by longitudinal FC 
studies (47).

The structure–function relationships identified in this study 
provide two translational pathways: (1) Thalamocortical FC 
patterns could serve as predictive biomarkers, given their 
correlation between acute impairment (FMA) and global 
cognition (MMSE). This aligns with recent efforts to integrate 
connectomic biomarkers into stroke prognosis models (48); and 
(2) FC targets, such as the PFC_thalamus–supramarginal gyrus 
pathways, could be  prioritized in non-invasive stimulation 
protocols, building on successful trials of thalamus-targeted 
transcranial direct current stimulation (tDCS) for post-stroke 
cognition (49).

Several limitations merit consideration in this study: (1) 
Volumetric registration prioritized subcortical anatomical fidelity 
over cortical alignment, so future studies could integrate surface-
based registration (FreeSurfer) with 7 T thalamic segmentation; 
(2) The rs-fMRI’s extended scan time limits bedside applicability, 
so abbreviated protocols should be explored; and (3) The single-
center design, right-handed cohort (lacking diversity in cerebral 
lateralization and excluding non-right-handed individuals), and 
cross-sectional data require validation in larger, longitudinal 
cohorts with population diversity, including left-handed/
ambidextrous individuals.

Future research should employ graph-theoretical and dynamic 
connectivity analyses (50, 51) to (1) quantify changes in global 

network topology (e.g., small-worldness and hub distribution); (2) 
track temporal fluctuations in thalamocortical coupling during 
recovery; and (3) integrate multi-modal data (e.g., DTI tractography 
and task-fMRI) to resolve structure–function decoupling.

5 Conclusion

This study establishes that BG stroke induces subregion-specific 
disruptions in thalamocortical FC, with distinct hyper-and 
hypoconnectivity profiles associated with motor and cognitive deficits. 
By mapping these network alterations to discrete thalamic nuclei, 
we  provide a neuroanatomical framework for developing targeted 
neuromodulation therapies. Our findings underscore the pivotal role of 
the thalamus in post-stroke network reorganization, serving as a bridge 
between focal lesions and system-level dysfunction. However, this study 
has several limitations, including the modest sample size and lack of 
longitudinal follow-up data, which should be  addressed in 
future investigations.
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