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Background: This study employs network meta-analysis to assess the efficacy 
of transcranial direct current stimulation (tDCS) combined with different 
rehabilitation approaches in enhancing motor function in people suffering 
from stroke-related symptoms (PSSS). The objective is to determine the most 
effective tDCS-based rehabilitation approach and offer valuable evidence to 
guide clinical decision-making.

Methods: This study included randomized controlled trials (RCTs) published 
before September 23, 2024. We  conducted a systematic search across eight 
databases: PubMed, Embase, Cochrane Library, Web of Science, China National 
Knowledge Infrastructure (CNKI), China Biology Medicine (SinoMed), Wanfang, 
and VIP. Network meta-analysis (NMA) was conducted utilizing R Studio and 
Stata 15.0 for data analysis.

Results: A total of 74 RCTs were included in this study, encompassing 4,335 PSSS 
and 11 intervention strategies. The NMA revealed that brain-computer interface 
therapy (BCIT) in combination with tDCS [surface under the cumulative ranking 
curve (SUCRA) = 88.34%] was the most effective tDCS-based intervention for 
improving the Fugl-Meyer Assessment for Upper Extremity score in PSSS. Mirror 
therapy (MT) in combination with tDCS (SUCRA = 85.96%) was identified as 
the optimal intervention for enhancing the Action Research Arm Test score in 
PSSS. MT + tDCS (SUCRA = 84.29%) was the best approach for improving the 
Fugl-Meyer Assessment for Lower Extremity score. Additionally, acupuncture 
and moxibustion (AM) in combination with tDCS (SUCRA = 77.16%) was 
the most effective intervention for increasing the Berg Balance Scale score 
in PSSS. The two-dimensional clustering analysis showed that MT + tDCS 
(SUCRA = 75.83%/85.96%) was the optimal tDCS-based rehabilitation 
strategy for treating upper limb motor dysfunction in PSSS, while AM+tDCS 
(SUCRA = 76.94%/77.16%) was the best tDCS-based rehabilitation strategy for 
improving lower limb motor dysfunction in PSSS.
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Conclusion: BCIT+tDCS was identified as the optimal tDCS-based rehabilitation 
strategy for improving upper limb motor ability in PSSS, MT + tDCS was the 
most effective intervention for enhancing arm mobility, MT + tDCS was the best 
protocol for improving lower limb motor ability, while AM+tDCS was the best 
strategy for improving balance ability. Furthermore, MT + tDCS was the optimal 
tDCS-based rehabilitation approach for treating upper limb motor dysfunction, 
whereas AM+tDCS was the most effective strategy for addressing lower limb motor 
dysfunction in PSSS. Future studies may focus on investigating the therapeutic 
effects of MT combined with tDCS on Berg Balance Scale score in PSSS, as well as 
the effects of AM combined with tDCS on Action Research Arm Test score, in order 
to further explore the therapeutic potential of these two intervention strategies.

Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/view/
CRD42024621998, Identifier PROSPERO CRD42024621998.

KEYWORDS

stroke, network meta-analysis, motor function, upper limb, transcranial direct current 
stimulation

1 Introduction

With population aging and lifestyle changes, the number of stroke 
cases has been increasing annually (1). It has become the world’s third 
leading cause of disability and the second most common cause of 
death among adults (2). The high disability rate associated with stroke 
significantly impacts patients’ quality of life, as many stroke survivors 
experience varying degrees of motor dysfunction, including marked 
weakness in the affected limbs, restricted joint range of motion, 
impaired balance, and coordination deficits (3, 4). Currently, the 
rehabilitation of motor dysfunction in people suffering from stroke-
related symptoms (PSSS) remains a major challenge in clinical practice.

Current research suggests that a range of rehabilitation interventions, 
including acupuncture and moxibustion, functional electrical stimulation, 
core stability training, proprioceptive training, and transcranial direct 
current stimulation (tDCS), are widely employed to manage motor 
dysfunction in individuals with stroke-related symptoms (PSSS), aiming 
to enhance motor recovery and functional mobility (5–9). Among these, 
tDCS has demonstrated particularly promising therapeutic effects (10). 
tDCS is a non-invasive neuromodulation technique (11) that enhances 
excitability in the affected cortical region, reduces inhibitory effects from 
the healthy hemisphere, and improves local cerebral blood flow to protect 
neurons in ischemic areas (12). Based on these mechanisms, numerous 
clinical studies have confirmed the effectiveness of tDCS in treating motor 
dysfunction in PSSS. For example, Lindenberg et al. (13) reported that 
PSSS receiving tDCS exhibited greater improvements in upper limb 
motor function compared to those receiving sham tDCS. Similarly, Cha 
et al. (14) found that tDCS treatment resulted in significantly greater 
improvements in both upper and lower limb function in PSSS than in 
those who did not receive tDCS. Over the past two decades, the clinical 
application of tDCS in PSSS motor rehabilitation has matured, with most 
studies reporting favorable outcomes. To further enhance the effectiveness 
of motor rehabilitation in PSSS, researchers have explored the 
combination of tDCS with other rehabilitation techniques. Tedla et al. 
(15) found that PSSS receiving tDCS combined with proprioceptive 
training exhibited significantly greater improvements in upper limb 
motor ability compared to those receiving sham tDCS. Additionally, a 
study by Cui et  al. (16) demonstrated that tDCS combined with 
acupuncture and moxibustion led to significantly greater improvements 

in balance ability than conventional rehabilitation. Compared to 
standalone tDCS or conventional rehabilitation, combined tDCS-based 
therapies have consistently shown superior efficacy in motor function 
rehabilitation for PSSS.

Network meta-analysis (NMA) is a specialized form of meta-analysis 
that integrates direct, indirect, and mixed comparisons of different 
interventions. This approach enables the evaluation of the relative efficacy 
of various treatments and ultimately facilitates the identification of the 
most effective intervention (17). In this study, we applied NMA to compare 
the therapeutic effects of tDCS combined with other rehabilitation 
interventions in the rehabilitation of motor dysfunction in PSSS. The 
objective is to determine the most effective tDCS-based rehabilitation 
approach and offer valuable evidence to guide clinical decision-making.

2 Methods

This network meta-analysis (NMA) was performed following 
the 2020 Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) guidelines and the methodological 
framework of the Cochrane Handbook (18). Additionally, this 
study has been registered in PROSPERO under the registration 
number CRD42024621998.

2.1 Search strategy

An extensive electronic literature search was conducted across 
eight databases: PubMed, Embase, Cochrane Library, Web of Science, 
CNKI, SinoMed, WanFang, and VIP, covering studies published until 
September 23, 2024. Tailored search strategies were applied to meet 
the specific criteria of each database, with detailed methodologies 
available in Supplementary Table 1.

2.2 Inclusion criteria

(1) Participants: studies included adult PSSS (people suffering from 
stroke-related symptoms) aged ≥18 years who met the diagnostic criteria 

https://doi.org/10.3389/fneur.2025.1586685
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.crd.york.ac.uk/PROSPERO/view/CRD42024621998
https://www.crd.york.ac.uk/PROSPERO/view/CRD42024621998


Zheng et al. 10.3389/fneur.2025.1586685

Frontiers in Neurology 03 frontiersin.org

for stroke and were confirmed to have motor function impairment. (2) 
Intervention in the Experimental Group: Participants received tDCS or 
tDCS combined with other rehabilitation therapies, with conventional 
rehabilitation as the baseline treatment. (3) Intervention in the control 
group: participants received sham stimulation or conventional 
rehabilitation. (4) Outcome measures: Fugl-Meyer Assessment-Upper 
Extremity (FMA-UE): Evaluates upper limb motor ability, with higher 
scores indicating better motor function. Action Research Arm Test 
(ARAT): Assesses arm movement ability, with higher scores reflecting 
better arm mobility. Fugl-Meyer Assessment-Lower Extremity (FMA-
LE): Measures lower limb motor ability, where higher scores represent 
better lower limb function. Berg Balance Scale (BBS): Evaluates balance 
ability, with higher scores indicating better balance control. This study 
primarily focuses on NMA, which only requires included studies to 
report sufficient data on primary outcomes (BBS, FMA-LE, FMA-UE, 
ARAT). (5) Study design: randomized controlled trials (RCTs).

Due to the presence of certain heterogeneity in the original 
studies, there were no fully consistent standards regarding electrode 
placement, stimulation intensity, duration, and rehabilitation training 
protocols. During data extraction, we made every effort to record 
these key details for subsequent discussion of potential sources of 
heterogeneity. However, in the overall analysis, tDCS was treated as a 
unified intervention approach. Detailed tDCS stimulation parameters 
for all included studies are summarized in Supplementary Table 2.

2.3 Exclusion criteria

(1) Guidelines, conference abstracts, systematic review, meta-
analyses, etc. (2) non-RCTs. (3) Duplicate publications. (4) Studies 
with interventions or outcome measures that do not meet the 
inclusion criteria, studies with significant data errors, or studies where 
data could not be obtained. (5) tDCS combination interventions with 
fewer than two eligible studies.

2.4 Study selection and data extraction

Three researchers jointly established the inclusion criteria for the 
studies. After removing duplicate records using EndNote X9 software, 
two researchers independently conducted the study selection process. 
Initially, screening was performed based on titles, keywords, and 
abstracts, followed by a full-text review for data extraction and 
verification. In cases of disagreement, a third researcher was consulted 
to resolve discrepancies until a consensus was reached. The extracted 
baseline data included the following: basic study information (authors, 
publication year), patient characteristics (age, sample size, disease 
duration), intervention details (treatment and control group 
interventions), and outcome measures.

2.5 Quality assessment

Two researchers independently evaluated the methodological 
quality of the included studies using the Risk of Bias 2.0 (ROB 2.0) 
tool, as detailed in the Cochrane Handbook. The evaluation results 
were cross-checked, and any disagreements were resolved through 
discussion with a third researcher until a consensus was reached. The 

assessment covered several domains, including the randomization 
process, deviations from intended interventions, completeness of 
outcome data, outcome measurement, and selective reporting bias. 
Each domain comprised 1–7 specific items. The overall risk of bias for 
each study was classified as “high risk,” “low risk,” or “some concerns 
(moderate risk).”

2.6 Data analysis

This study utilized R 4.2.1 with the “gemtc” and “coda” packages 
and Stata 15 with the “gemtc” package to perform NMA. Continuous 
outcome variables were analyzed using mean difference (MD), with 
95% credible interval (CrI) for interval estimation. A consistency 
model was established with 20,000 burn-ins and 50,000 iterations. The 
deviance information criterion (DIC) was used to compare the 
consistency model with the inconsistency model, and if the DIC 
difference was <5, the direct and indirect comparisons were 
considered consistent. For each outcome measure, the surface under 
the cumulative ranking curve (SUCRA) was used to rank the efficacy 
of different interventions. A two-dimensional clustering analysis was 
conducted to explore the optimal intervention. A comparison-
adjusted funnel plot was generated to assess potential publication bias. 
A regression analysis between publication year and intervention effect 
was conducted using R Studio to evaluate whether the publication 
year influences the intervention effect. This NMA employed a burn-in 
of 20,000 iterations and 50,000 subsequent iterations. Convergence 
diagnostics, including the Gelman-Rubin statistic and visual 
inspection of trace plots, confirmed that the model met the 
stability requirements.

3 Results

3.1 Literature search results

A total of 4,195 records were initially identified through the search 
strategy. After removing 1,327 duplicate records and excluding 422 
records consisting of reviews, animal studies, non-randomized controlled 
trials (RCTs), and conference abstracts, 2,446 records remained. Title and 
abstract screening led to the exclusion of another 2,257 records. Of the 
189 remaining studies, 8 lacked full-text access, 78 had inappropriate 
interventions, 23 had unsuitable outcome measures, and 6 were excluded 
due to other reasons (e.g., apparent data errors or unavailability of 
original data). Ultimately, 74 RCTs (13–16, 19–88) were included in this 
study. The process of study selection is depicted in Figure 1.

3.2 Basic characteristics of the included 
studies

A total of 74 RCTs were included in this study, involving 4,335 
PSSS (people suffering from stroke-related symptoms) and 11 
intervention strategies. Both the treatment and control groups received 
conventional rehabilitation (C) as the baseline therapy. In addition to 
transcranial direct current stimulation (tDCS), the treatment group 
included nine combined tDCS interventions: tDCS+MIT (motor 
imagery therapy), tDCS+MT (mirror therapy), tDCS+AM 
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(acupuncture and moxibustion), tDCS+CIMT (constraint-induced 
movement therapy), tDCS+BCIT (brain-computer interface therapy), 
tDCS+VRT (virtual reality technology), tDCS+RRT (robotic 
rehabilitation therapy), tDCS+PT (proprioceptive training), and 
tDCS+FES (functional electrical stimulation). Table  1 provides an 
overview of the basic characteristics of the included studies.

3.3 Quality assessment of the included 
studies

Regarding the overall risk of bias, 69 studies (13–15, 19–49, 
51–61, 63–75, 77–81, 83–88) were assessed with moderate risk of 
bias, while 5 studies (16, 50, 62, 76, 82) were found to have high risk 
of bias. In terms of randomization, 64 studies had low risk of bias, 
and 10 studies had moderate risk. All studies showed moderate risk 
of bias concerning whether the intervention deviated from the 

intended plan. Regarding missing outcome data, 69 studies had low 
risk of bias, and 5 had high risk. For outcome measurement, 33 
studies had low risk of bias, and 41 had moderate risk. Regarding 
selective outcome reporting, all studies exhibited low risk of bias. 
In conclusion, the main sources of bias in the included studies were 
moderate bias due to deviations from the intended interventions 
and high bias resulting from missing outcome data. A detailed 
description of the risk of bias for the included studies is provided 
in Figure 2.

3.4 Network meta-analysis

Figure 3 presents the network evidence diagrams. In the network 
evidence diagram, each node represents a different intervention, with 
the size of the node indicating the sample size of that intervention. The 
connections between nodes reflect the number of studies comparing 

FIGURE 1

Flow chart of literature screening.
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TABLE 1 The basic characteristics of the included studies.

No. Author Year Age (TG) Age (CG) N (TG) N (CG) Treatment 
(TG)

Treatment 
(CG)

Outcome Duration 
(TG)

Duration 
(CG)

1 Che XW (19) 2017 61.49 ± 10.51 58.77 ± 14.3 41 39 MIT + tDCS tDCS FMA-UE NR NR

2 Chen HB (20) 2021 48.4 ± 13.2 50.1 ± 11.5 19 18 FES + tDCS tDCS FMA-LE BBS 0-6 m 0-6 m

3 Chen H (21) 2020 59.32 ± 8.59 61.31 ± 9.13 26 26 MT + tDCS tDCS FMA-UE 58.92 ± 17.30d 62.81 ± 18.14d

4 Chen TT (22) 2023 56.45 ± 9.57 55.10 ± 10.18 20 20 FES + tDCS tDCS FMA-UE 28.85 ± 4.65d 28.15 ± 5.13d

5 Chen Y (23) 2022 62.03 ± 8.45 62.84 ± 8.53 55 55 MT + tDCS tDCS FMA-UE FMA-LE 3.46 ± 0.81 m 3.42 ± 0.76 m

6 Cheng P (24) 2015 61.08 ± 7.34 57.27 ± 6.87 19 19 tDCS C FMA-UE 51.12 ± 19.4d 48 ± 16.45d

7 Cheng XX (25) 2024 61.59 ± 10.97 62.57 ± 12.70 13 11 tDCS C FMA-UE 33.23 ± 5.86w 32.45 ± 5.39w

8 Cui C (16) 2021 64.87 ± 5.59 65.27 ± 5.14 28 27 AM+tDCS C BBS 6.47 ± 1.20w 6.57 ± 1.20w

9 Deng R (26) 2024 67.82 ± 6.80 61.24 ± 7.43 43 43 tDCS C FMA-UE NR NR

10 Dong K (27) 2021 54.10 ± 7.31 52.30 ± 5.03 10 10 tDCS C BBS 31.80 ± 5.55d 32.20 ± 14.02d

11 Feng CW (28) 2023 58.39 ± 9.12 56.29 ± 6.23 28 28 CIMT+tDCS C FMA-UE 57.79 ± 32.61d 52.93 ± 26.02d

12 Gao L (29) 2024 55.73 ± 8.60 54.60 ± 8.23 15 15 BCIT+tDCS tDCS FMA-UE ARAT 58.47 ± 30.98d 70.27 ± 46.49d

13 Gao Z (30) 2021 55.8 ± 10.9 56.1 ± 10.7 45 45 MIT + tDCS tDCS FMA-UE 33.6 ± 12.9d 33.9 ± 13.3d

14 Gao Z (31) 2023 71.18 ± 5.13 71.17 ± 5.15 71 71 MT + tDCS tDCS FMA-UE <3 m <3 m

15 Han X (32) 2023 67.51 ± 10.72 67.04 ± 10.73 47 49 tDCS C FMA-UE 39.57 ± 22.25d 34.27 ± 19.78d

16 Hu HL (33) 2023 61.45 ± 1.63 60.23 ± 1.74 40 40 tDCS C FMA-UE 36.41 ± 1.72d 35.23 ± 1.41d

17 Huang Y (34) 2023 42.67 ± 15.62 43.43 ± 14.57 50 50 tDCS C FMA-UE NR NR

18 Jiang Y (35) 2020 53.19 ± 5.95 52.35 ± 6.03 15 15 tDCS C FMA-UE 21.84 ± 13.81d 22.09 ± 12.05d

19 Jin J (36) 2019 53.1 ± 5.3 52.2 ± 5.2 45 45 tDCS C FMA-UE ARAT 36.1 ± 3.8d 35.5 ± 5.7d

20 Jin MY (37) 2020 62 ± 5.23 62 ± 5.34 30 30 tDCS C FMA-LE BBS 1.5 ± 1.02 1.5 ± 1.04

21 Li XL (38) 2021 50.37 ± 14.03 52.43 ± 15.12 162 162 MT + tDCS tDCS FMA-UE ARAT 76.06 ± 20.95d 72.13 ± 21.18d

22 Li YB (39) 2019 52.43 ± 12.15 50.12 ± 11.35 14 15 MT + tDCS tDCS FMA-UE ARAT 72.11 ± 22.19d 75.02 ± 18.17d

23 Liu LS (40) 2019 48.39 ± 11.2 48.39 ± 11.2 33 32 tDCS C FMA-UE ARAT 1-6 m 1-6 m

24 Liu Y (41) 2023 58.83 ± 5.89 58.76 ± 5.62 47 46 MT + tDCS tDCS FMA-UE 52.71 ± 11.23d 53.35 ± 10.85d

25 Liu YW (42) 2020 62.86 ± 9.05 63.53 ± 7.26 15 15 VRT + tDCS tDCS FMA-UE 9.33 ± 2.15 m 9.67 ± 2.26 m

26 Long SY (43) 2024 54.35 ± 6.02 55.47 ± 5.53 55 55 tDCS C FMA-UE FMA-LE NR NR

27 Pan AH (44) 2023 68.27 ± 7.83 67.95 ± 7.96 50 50 CIMT+tDCS tDCS FMA-UE ARAT 51.67 ± 13.89d 49.29 ± 14.12d

28 Qi YS (45) 2023 63.25 ± 2.21 63.18 ± 2.13 35 35 RRT + tDCS C FMA-UE FMA-LE 3.21 ± 0.24 m 3.29 ± 0.25 m

29 Qu F (46) 2024 59 63 30 30 AM+tDCS tDCS FMA-UE 59d 47d

(Continued)
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TABLE 1 (Continued)

No. Author Year Age (TG) Age (CG) N (TG) N (CG) Treatment 
(TG)

Treatment 
(CG)

Outcome Duration 
(TG)

Duration 
(CG)

30 Ren SS (47) 2023 66.18 ± 3.98 66.21 ± 4.06 28 28 MIT + tDCS tDCS FMA-UE 62.86 ± 12.67d 56.43 ± 10.18d

31 Song DW (48) 2024 62.01 ± 1.87 61.49 ± 1.83 41 41 tDCS C ARAT NR NR

32 Sun FB (49) 2023 62.15 ± 9.40 61.35 ± 9.82 20 20 tDCS C FMA-UE 37.95 ± 5.07d 38.10 ± 4.75d

33 Tu M (50) 2021 64.2 ± 6.9 63.5 ± 8.0 75 75 tDCS C FMA-UE NR NR

34 Wang C (51) 2021 61.39 ± 6.52 61.20 ± 6.31 54 53 tDCS C FMA-UE 5.77 ± 0.27 m 5.61 ± 0.48 m

35 Wang CY (52) 2023 62.80 ± 11.16 62.67 ± 10.70 15 15 BCIT+tDCS tDCS ARAT 13.60 ± 2.16d 12.53 ± 2.59

59.13 ± 11.93 15 C 13.93 ± 2.84

36 Wang HB (53) 2023 57.24 ± 8.23 57.81 ± 9.22 20 20 CIMT+tDCS tDCS FMA-LE BBS 35.62 ± 32.14d 37.22 ± 31.16d

37 Wang HY (54) 2023 60.25 ± 5.84 54.07 ± 6.15 40 40 AM+tDCS tDCS FMA-UE 1.15 ± 0.78 m 1.30 ± 0.71 m

38 Wang Y (55) 2021 60.95 ± 9.31 58.95 ± 7.2 19 20 AM+tDCS tDCS FMA-UE 1.2 ± 0.66 m 1.22 ± 0.74 m

39 Yin Y (56) 2015 55.70 ± 12.32 57.68 ± 13.54 40 40 tDCS C FMA-UE ARAT 31.55 ± 20.13d 35.90 ± 19.60d

40 Zhang SS (57) 2022 61.83 ± 6.29 61.26 ± 5.29 46 46 AM+tDCS C FMA-UE FMA-LE 1.32 ± 0.53 m 1.28 ± 0.58 m

41 Zhang Y (58) 2019 47.9 ± 6.7 48.5 ± 6.4 36 36 RRT + tDCS C FMA-UE 4.6 ± 1.5 m 4.3 ± 1.7 m

42 Wang W (59) 2021 60 ± 14 56 ± 11 15 15 PT + Tdcs C FMA-UE 20 ± 14d 20 ± 12d

43 Zhao F (60) 2021 60.4 ± 9.25 58.70 ± 9.64 39 39 VRT + tDCS C FMA-UE 38.3 ± 8.94d 34.7 ± 12.35d

44 Zhao JY (61) 2023 54.37 ± 4.54 54.98 ± 4.32 20 20 tDCS C FMA-UE FMA-LE 13.87 ± 2.42d 13.65 ± 2.31d

45 Zheng CJ (62) 2019 59.8 ± 8.3 61,1 ± 7.4 49 47 tDCS C FMA-UE 31.4 ± 11.4d 35.3 ± 12.2d

46 Zheng S (63) 2020 48.9 ± 2.0 48.5 ± 2.4 40 40 AM+tDCS tDCS FMA-UE 4.2 ± 2.9 m 4.6 ± 2.8 m

47 Zhou YP (64) 2018 54.25 ± 8.23 53.87 ± 8.91 32 31 MIT + Tdcs C FMA-UE 36.16 ± 19.9d 34.83 ± 22.91d

48 Alisar (65) 2020 63.56 ± 10.19 63.5 ± 12.6 16 16 tDCS C FMA-UE 352.62 ± 390.32d 442.75 ± 687.43d

49 Cha (14) 2014 59.8 ± 10.4 57.8 ± 9.9 10 10 tDCS C FMA-UE FMA-LE 13.8 ± 4.6 m 14.5 ± 3.6 m

50 Cho (66) 2015 58.29 ± 10.67 60.38 ± 10.19 14 13 MT + tDCS C FMA-UE 13.2 ± 5.1 m 15.5 ± 7.8 m

51 Zeng (67) 2024 55.14 ± 14.76 57.24 ± 13.75 21 21 tDCS C FMA-UE ARAT 1.25w 2w

52 Gong (68) 2023 56.3 ± 2.1 56.8 ± 2.8 37 35 tDCS C FMA-UE 49.6 ± 6.4d 48.3 ± 6.5d

53 Lee (69) 2014 63.1 ± 10.3 60.3 ± 11.3 20 19 VRT + tDCS tDCS FMA-UE 17.8 ± 7.3d 17.4 ± 9.4d

54 Tedla (15) 2022 58.5 ± 6.42 58.78 ± 5.46 18 18 PT + tDCS C FMA-UE 62.56 ± 17.1d 62.78 ± 20.98d

55 Hsu (70) 2023 59.1 ± 11.4 59.2 ± 11.8 13 14 tDCS C FMA-UE FMA-LE 

ARAT

20.7 ± 3.5d 21.1 ± 5.3d

56 Rabadi (71) 2020 62 ± 11 63 ± 6 8 8 tDCS C ARAT 6.9 ± 3.7 m 5.9 ± 2.8 m

57 Qurat (72) 2023 59 ± 4.61 57.95 ± 5.45 22 22 tDCS C BBS 16.5 ± 11.8 m 16.41 ± 10.26 m

(Continued)
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TABLE 1 (Continued)

No. Author Year Age (TG) Age (CG) N (TG) N (CG) Treatment 
(TG)

Treatment 
(CG)

Outcome Duration 
(TG)

Duration 
(CG)

58 Li (73) 2024 58.65 ± 12.677 56.54 ± 10.428 26 26 tDCS C FMA-UE ARAT 100.12d 87.58d

59 Lindenberg (13) 2010 61.7 ± 14.7 55.8 ± 12.9 10 10 tDCS C FMA-UE 30.5 ± 21.4 m 40.3 ± 23.4 m

60 Llorens (74) 2021 57.6 ± 6.9 52.3 ± 10.9 14 15 VRT + tDCS C FMA-UE 8.7 ± 2.3 m 9.3 ± 2.4 m

61 Chang (75) 2015 59.9 ± 10.2 65.8 ± 10.6 12 12 tDCS C FMA-LE BBS 16 ± 6.2d 16.6 ± 5.2d

62 Duan (76) 2023 65.83 ± 8.8 66.58 ± 10.3 46 45 tDCS C FMA-LE 5 ± 2.9w 4 ± 2.9w

63 Youssef (77) 2023 65 66 11 11 tDCS C FMA-UE FMA-LE 

BBS

NR NR

64 Toktas (78) 2024 58.79 ± 10.19 62.57 ± 8.53 14 14 tDCS C FMA-LE BBS 8.07 ± 5.37 m 6.86 ± 3.08 m

65 Allman (79) 2016 59.5 ± 12.1 66.8 ± 10.4 11 13 tDCS C FMA-UE ARAT 51.2 ± 33.4 m 56.6 ± 39.8 m

66 Dinesh (80) 2011 61 ± 12 56 ± 15 7 7 tDCS C FMA-UE 33 ± 20 m 28 ± 28 m

67 Fusco (81) 2014 56.4 60 5 6 tDCS C FMA-UE NR NR

68 Kim (82) 2010 55.3 ± 16.4 62.9 ± 9.2 6 7 tDCS C FMA-UE 34 ± 27.1d 22.9 ± 7.5d

69 Oveisgharan (83) 2017 52.1 ± 12.8 65.3 ± 16.5 10 10 tDCS C FMA-UE ARAT 2.1 ± 3d 3.8 ± 5.8d

70 Pinto (84) 2021 45.6 ± 12.1 48.1 ± 9.4 31 29 tDCS C FMA-UE FMA-LE 1-411d 1-411d

71 Prathum (85) 2022 58.67 ± 3.7 56.83 ± 3.58 12 12 tDCS C FMA-UE FMA-LE 15.5 ± 2.6 m 16.33 ± 3.3 m

72 Rossi (86) 2013 66.1 ± 14.3 70.3 ± 13.5 25 25 tDCS C FMA-UE 9.8 ± 2.4d 9.5 ± 2.8d

73 Lazzaro (87) 2014 71.71 ± 5.25 66.43 ± 5.96 7 7 tDCS C ARAT 2.71 ± 0.42d 2.57 ± 0.81d

74 Kim (88) 2024 65.78 ± 12.6 57.13 ± 9.49 9 8 tDCS C BBS NR NR

TG, treatment group; CG, control group; FMA-UE, Fugl-Meyer Assessment for Upper Extremity; ARAT, Action Research Arm Test; FMA-LE, Fugl-Meyer Assessment for Lower Extremity; BBS, Berg Balance Scale. tDCS, transcranial direct current stimulation; C, 
conventional rehabilitation; MIT, motor imagery therapy; FES, functional electrical stimulation; MT, mirror therapy; AM, acupuncture and moxibustion; CIMT, constraint-induced movement therapy; BCIT, brain-computer interface therapy; VRT, virtual reality 
technology; RRT, robotic rehabilitation therapy; PT, proprioceptive training. NR, no report.
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the corresponding interventions, with line thickness increasing as the 
study count rises.

3.4.1 Fugl-Meyer assessment-upper extremity
A total of 60 studies (13–15, 19, 21–26, 28–36, 38–47, 49–51, 

54–70, 73, 74, 77, 79–86) reported Fugl-Meyer Assessment-Upper 
Extremity (FMA-UE) scores, covering 11 rehabilitation strategies, 
including RRT + tDCS, PT + tDCS, MIT + tDCS, AM+tDCS, 
BCIT+tDCS, tDCS, FES + tDCS, CIMT+tDCS, VRT + tDCS, 
MT + tDCS, and C. The network evidence diagram for FMA-UE 
is illustrated in Figure 3A, while the corresponding league table is 
provided in Table  2. Regarding the enhancement of FMA-UE 
scores, the following interventions showed better therapeutic 
effects compared to C: AM+tDCS (MD: 10.72, 95% CrI: 6.96–
14.75), BCIT+tDCS (MD: 17.76, 95% CrI: 6.63–28.87), 
CIMT+tDCS (MD: 9.04, 95% CrI: 3.66–14.45), FES + tDCS (MD: 
14.7, 95% CrI: 7.08–22.45), MIT + tDCS (MD: 13.2, 95% CrI: 
8.86–17.63), MT + tDCS (MD: 13.08, 95% CrI: 9.79–16.36), 
PT + tDCS (MD: 8.21, 95% CrI: 0.84–15.55), RRT + tDCS (MD: 
7.31, 95% CrI: 1.79–12.94), tDCS (MD: 5.67, 95% CrI: 4.22–7.19) 
and VRT + tDCS (MD: 8.49, 95% CrI: 4.57–12.4). Moreover, 
compared to tDCS alone, the following interventions 
demonstrated better effects: AM+tDCS (MD: 5.05, 95% CrI: 1.42–
8.86), BCIT+tDCS (MD: 12.09, 95% CrI: 1.05–23.08), FES + tDCS 
(MD: 9.04, 95% CrI: 1.49–16.6), MIT + tDCS (MD: 7.53, 95% CrI: 
3.32–11.74) and MT + tDCS (MD: 7.42, 95% CrI: 4.34–10.35). All 
differences were statistically significant.

3.4.2 Action research arm test
A total of 16 studies (29, 36, 38–40, 44, 48, 52, 56, 67, 70, 71, 73, 

79, 83, 87) reported Action Research Arm Test (ARAT) scores, 
involving five rehabilitation strategies: C, BCTT+tDCS, tDCS, 
MT + tDCS, and CIMT+tDCS. The network evidence diagram for 
ARAT is illustrated in Figure 3B, while the corresponding league 
table is provided in Table 2. Regarding the enhancement of ARAT 
scores, the following interventions showed better therapeutic effects 
compared to C: MT + tDCS (MD: 10.44, 95% CrI: 0.25–20.41) and 
tDCS (MD: 4.6, 95% CrI: 0.42–8.82). All differences were 
statistically significant.

3.4.3 Fugl-Meyer assessment-lower extremity
A total of 16 studies (14, 20, 23, 37, 43, 45, 53, 57, 61, 70, 

75–78, 84, 85) reported Fugl-Meyer Assessment-Lower Extremity 
(FMA-LE) scores, involving seven rehabilitation strategies: 
MT + tDCS, FES + tDCS, CIMT+tDCS, RRT + tDCS, C, 
AM+tDCS, and tDCS. The network evidence diagram for FMA-LE 
is illustrated in Figure 3C, while the corresponding league table is 
provided in Table  3. Regarding the enhancement of FMA-LE 
scores, the following interventions showed better therapeutic 
effects compared to C: AM+tDCS (MD: 6.7, 95% CrI: 0.63–12.8), 
MT + tDCS (MD: 7.82, 95% CrI: 1.19–14.57) and tDCS 
(MD: 2.52, 95% CrI: 0.64–4.49). All differences were 
statistically significant.

3.4.4 Berg balance scale
A total of 10 studies (16, 20, 27, 37, 53, 72, 75, 77, 78, 88) 

reported Berg Balance Scale (BBS) scores, involving four 
rehabilitation strategies: CIMT+tDCS, FES + tDCS, C, tDCS, and 

AM+tDCS. The network evidence diagram for BBS is illustrated in 
Figure  3D, while the corresponding league table is provided in 
Table 3. Regarding the enhancement of BBS scores, none of the 
rehabilitation strategies demonstrated statistically significant 
differences in effectiveness.

3.5 SUCRA ranking

The cumulative probability rankings for the four outcome 
measures are presented in Figure 4 and Table 4. The results indicate 
that BCIT+tDCS (SUCRA = 88.34%) is the most effective tDCS-based 
combined intervention for improving FMA-UE scores, followed by 
FES + tDCS (SUCRA = 80.99%), MT + tDCS (SUCRA = 75.83%), 
MIT + tDCS (SUCRA = 75.80%), AM+tDCS (SUCRA = 57.18%), 
CIMT+tDCS (SUCRA = 44.11%), VRT + tDCS (SUCRA = 39.31%), 
PT + tDCS (SUCRA = 39.07%), RRT + tDCS (SUCRA = 31.75%), 
tDCS (SUCRA = 17.39%), and C (SUCRA = 0.23%). Regarding ARAT 
scores, MT + tDCS (SUCRA = 85.96%) demonstrated the best 
efficacy, ranking above CIMT+tDCS (SUCRA = 66.38%), tDCS 
(SUCRA = 51.51%), BCIT+tDCS (SUCRA = 35.38%), and C 
(SUCRA = 10.76%). For FMA-LE scores, MT + tDCS 
(SUCRA = 84.29%) was identified as the most effective intervention, 
followed by AM+tDCS (SUCRA = 76.94%), CIMT+tDCS 
(SUCRA = 55.02%), FES + tDCS (SUCRA = 52.45%), RRT + tDCS 
(SUCRA = 37.57%), tDCS (SUCRA = 36.79%), and C 
(SUCRA = 6.94%). In terms of BBS scores, AM+tDCS 
(SUCRA = 77.16%) ranked highest, followed by CIMT+tDCS 
(SUCRA = 62.47%), FES + tDCS (SUCRA = 55.79%), tDCS 
(SUCRA = 45.19%), and C (SUCRA = 9.39%).

3.6 Two-dimensional clustering analysis

The two-dimensional clustering analysis for the four outcome 
measures is shown in Figure 5. As depicted in Figure 5A, MT + tDCS 
(SUCRA = 75.83%/85.96%) demonstrated significant efficacy in 
improving both FMA-UE and ARAT scores. FMA-UE evaluates upper 
limb motor ability in PSSS, while ARAT assesses arm mobility. 
Together, these two scales comprehensively reflect upper limb 
function in PSSS. Figure  5B indicates that AM+tDCS 
(SUCRA = 76.94%/77.16%), FES + tDCS (SUCRA = 52.45%/55.79%), 
and CIMT+tDCS (SUCRA = 55.02%/62.47%) exhibited notable 
effectiveness in enhancing FMA-LE and BBS scores. FMA-LE 
evaluates lower limb motor ability in PSSS, while BBS assesses lower 
limb balance. Together, these two scales provide a comprehensive 
reflection of lower limb function in PSSS. In summary, MT + tDCS 
(SUCRA = 75.83%/85.96%) may represent the optimal intervention 
for upper limb dysfunction in PSSS, while AM+tDCS 
(SUCRA = 76.94%/77.16%) may be  the most effective strategy for 
improving lower limb function in PSSS.

3.7 Publication bias

The funnel plots for the four outcome measures are shown in 
Figure 6. In Figures 6A,C,D, the plots appear symmetrical overall, 
with only a few data points falling outside the funnel. It suggests a low 
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FIGURE 2

Quality assessment of included studies.
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likelihood of publication bias for the FMA-UE, FMA-LE, and BBS 
outcomes. However, in Figure 6B, a lot of data points fall outside the 
funnel, indicating a higher probability of publication bias for the 
ARAT outcome. To further assess whether the publication bias in 
ARAT outcomes was significant, we conducted Begg’s test. The result 
of Begg’s test showed that p  = 0.910 (p  > 0.05), indicating a low 
likelihood of publication bias for the ARAT outcome.

3.8 Regression analysis

As shown in Table 5, the results of the regression analysis between 
intervention effects and publication year indicate that the credible 
interval for all four outcome measures do not cross zero. This suggests 
that publication year is not a moderating factor influencing the 
treatment effects of the intervention strategies.

3.9 Convergence diagnostics

The convergence diagnostics and the trace and density plots are 
presented in Figures  7–10. We  evaluated the convergence and 

stability of the model by drawing convergence diagnostic maps and 
trajectory density maps. Before 70,000 iterations, the convergence 
diagnostic plots and trace plots had converged, and the potential 
scale reduced factor tended to approach 1. The density plots was a 
smooth curve with a normal distribution, and the Bandwidth value 
approached 0, indicating satisfactory convergence and good 
stability of the model.

4 Discussion

This network meta-analysis (NMA) incorporated 74 randomized 
controlled trials (RCTs) with a total of 4,335 people suffering from 
stroke-related symptoms (PSSS) and nine tDCS-based combined 
intervention strategies. The network meta-analysis (NMA) results 
indicated that brain-computer interface therapy (BCIT) + tDCS 
(SUCRA = 88.34%) was the best intervention for enhancing upper 
limb motor ability in PSSS. For arm mobility and lower limb motor 
ability, mirror therapy (MT) + tDCS (SUCRA = 85.96%/84.29%) 
demonstrated the best efficacy, while acupuncture and moxibustion 
(AM) + tDCS (SUCRA = 77.16%) was the most effective for 
enhancing balance ability. The two-dimensional clustering analysis 

FIGURE 3

Network evidence diagrams (A) FMA-UE; (B) ARAT; (C) FMA-LE; (D) BBS. FMA-UE, Fugl-Meyer Assessment for Upper Extremity; ARAT, Action Research 
Arm Test; FMA-LE, Fugl-Meyer Assessment for Lower Extremity; BBS, Berg Balance Scale. tDCS, transcranial direct current stimulation; C, conventional 
rehabilitation; MIT, motor imagery therapy; FES, functional electrical stimulation; MT, mirror therapy; AM, acupuncture and moxibustion; CIMT, 
constraint-induced movement therapy; BCIT, brain-computer interface therapy; VRT, virtual reality technology; RRT, robotic rehabilitation therapy; PT, 
proprioceptive training.
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TABLE 2 League table of FMA-UE and ARAT.

MD 95% CrI

ARAT AM+tDCS 7 (−4.72, 18.57) −10.72 

(−14.75, 

−6.96)

−1.68 (−8.26, 

4.71)

4 (−4.54, 12.29) 2.47 (−3.19, 8.02) 2.35 (−2.55, 

7.01)

−2.51 (−10.98, 

5.67)

−3.41 (−10.26, 

3.32)

−5.05 

(−8.86, 

−1.42)

−2.23 (−7.72, 

3.01)

FMA-UE

BCIT+tDCS −17.76 

(−28.87, 

−6.63)

−8.7 (−20.95, 

3.54)

−3.04 (−16.37, 

10.35)

−4.54 (−16.29, 

7.24)

−4.68 (−16.13, 

6.74)

−9.53 (−22.88, 

3.77)

−10.45 (−22.81, 

2.09)

−12.09 

(−23.08, 

−1.05)

−9.27 (−20.99, 

2.4)

2.64 (−6.58, 

12.37)

C 9.04 (3.66, 14.45) 14.7 (7.08, 

22.45)

13.2 (8.86, 17.63) 13.08 (9.79, 

16.36)

8.21 (0.84, 

15.55)

7.31 (1.79, 12.94) 5.67 (4.22, 

7.19)

8.49 (4.57, 12.4)

−4.78 (−19.83, 

10.97)

−7.38 

(−20.49, 

5.66)

CIMT+tDCS 5.69 (−3.58, 

14.94)

4.15 (−2.64, 

10.99)

4.04 (−2.17, 

10.14)

−0.83 (−9.93, 

8.25)

−1.75 (−9.43, 

6.05)

−3.38 

(−8.75, 2.03)

−0.56 (−7.16, 

6.02)

FES + tDCS −1.53 (−10.19, 

7.14)

−1.64 (−9.82, 

6.41)

−6.5 (−17.18, 

4.06)

−7.41 (−16.88, 

2.09)

−9.04 

(−16.6, 

−1.49)

−6.23 (−14.77, 

2.25)

MIT + tDCS −0.12 (−5.35, 

4.99)

−4.97 (−13.62, 

3.53)

−5.89 (−12.97, 

1.23)

−7.53 

(−11.74, 

−3.32)

−4.71 (−10.53, 

0.96)

−7.81 (−20.37, 

5.48)

−10.44 

(−20.41, 

−0.25)

−3.04 (−18.24, 

12.54)

MT + tDCS −4.88 (−12.86, 

3.17)

−5.78 (−12.14, 

0.82)

−7.42 

(−10.35, 

−4.34)

−4.59 (−9.49, 

0.33)

PT + tDCS −0.9 (−10.07, 

8.41)

−2.54 

(−9.98, 5)

0.28 (−8.05, 8.58)

RRT + tDCS −1.64 

(−7.43, 4.11)

1.19 (−5.72, 7.91)

−1.95 (−10.8, 

7.36)

−4.6 (−8.82, 

−0.42)

2.81 (−9.67, 

15.16)

5.84 (−3.48, 

14.86)

tDCS 2.82 (−1.14, 6.68)

VRT + tDCS

FMA-UE, Fugl-Meyer Assessment for Upper Extremity; ARAT, Action Research Arm Test; tDCS, transcranial direct current stimulation; C, conventional rehabilitation; MIT, motor imagery therapy; FES, functional electrical stimulation; MT, mirror therapy; AM, 
acupuncture and moxibustion; CIMT, constraint-induced movement therapy; BCIT, brain-computer interface therapy; VRT, virtual reality technology; RRT, robotic rehabilitation therapy; PT, proprioceptive training.
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showed that MT + tDCS (SUCRA = 75.83%/85.96%) was the optimal 
tDCS-based rehabilitation strategy for treating upper limb motor 
dysfunction in PSSS, while AM+tDCS (SUCRA = 76.94%/77.16%) 
was the best tDCS-based rehabilitation strategy for improving lower 
limb motor dysfunction in PSSS.

BCIT+tDCS was identified as the most effective intervention for 
improving upper limb motor ability in PSSS. BCIT is an advanced 

communication system that integrates hardware and software, 
enabling the extraction, decoding, and translation of brain motor 
intention signals into commands that control external devices, thus 
facilitating direct brain-environment interaction (89, 90). BCIT has 
been widely used in the rehabilitation of upper limb motor ability in 
PSSS. Wang et al. (91) reported that BCIT could further enhance 
upper limb motor function in PSSS when combined with conventional 

TABLE 3 League table of FMA-LE and BBS.

MD 95% CrI

BBS AM + tDCS −6.7 (−12.8, 

−0.63)

−2.5 (−11.12, 

6.28)

−2.66 (−12.34, 

7.1)

1.11 (−7.87, 10.17) −4.19 (−12.75, 

4.31)

−4.18 (−10.51, 

2.23)

FMA-LE

8.22 (−2.2, 

18.63)

C 4.21 (−1.96, 

10.44)

4.05 (−3.45, 11.7) 7.82 (1.19, 14.57) 2.51 (−3.45, 8.47) 2.52 (0.64, 

4.49)

2.13 (−13.47, 

17.58)

−6.07 (−17.86, 

5.44)

CIMT + tDCS −0.15 (−9.54, 

9.25)

3.61 (−5.11, 12.29) −1.69 (−10.37, 

6.87)

−1.68 (−7.58, 

4.2)

2.97 (−13.18, 

18.88)

−5.26 (−17.6, 

6.96)

0.83 (−15.1, 

16.71)

FES + tDCS 3.75 (−5.98, 13.49) −1.55 (−11.23, 

8.04)

−1.53 (−8.87, 

5.79)

MT + tDCS −5.3 (−14.31, 3.63) −5.29 (−11.72, 

1.09)

RRT + tDCS 0.01 (−6.21, 

6.31)

4.58 (−6.72, 

15.69)

−3.64 (−7.88, 

0.39)

2.42 (−8.4, 

13.29)

1.6 (−10.02, 13.18) tDCS

FMA-LE, Fugl-Meyer Assessment for Lower Extremity; BBS, Berg Balance Scale; tDCS, transcranial direct current stimulation; C, conventional rehabilitation; AM, acupuncture and 
moxibustion; CIMT, constraint-induced movement therapy; FES, functional electrical stimulation; MT, mirror therapy; RRT, robotic rehabilitation therapy.

FIGURE 4

Cumulative probability ranking charts (A) FMA-UE; (B) ARAT; (C) FMA-LE; (D) BBS. FMA-UE, Fugl-Meyer Assessment for Upper Extremity; ARAT, Action 
Research Arm Test; FMA-LE, Fugl-Meyer Assessment for Lower Extremity; BBS, Berg Balance Scale. tDCS, transcranial direct current stimulation; C, 
conventional rehabilitation; MIT, motor imagery therapy; FES, functional electrical stimulation; MT, mirror therapy; AM, acupuncture and moxibustion; 
CIMT, constraint-induced movement therapy; BCIT, brain-computer interface therapy; VRT, virtual reality technology; RRT, robotic rehabilitation 
therapy; PT, proprioceptive training.
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rehabilitation therapy, compared to conventional rehabilitation alone. 
Additionally, meta-analyses conducted by Nojima et al. (92) and Li 
et al. (93) confirmed the superior efficacy of BCIT-based training over 
traditional rehabilitation in improving upper limb function in PSSS 
patients. In recent years, significant progress has been made in BCIT-
based rehabilitation for motor function recovery in PSSS, and 
integrating BCIT with other rehabilitation strategies appears to be a 
promising and innovative approach. For instance, BCIT combined 
with robotic rehabilitation therapy (94) and BCIT combined with 
functional electrical stimulation therapy (95) have shown enhanced 
therapeutic effects. The development of these BCIT-based 
combination therapies supports the findings of this study, which 
identified BCIT+tDCS as the most effective strategy for improving 
upper limb motor ability in PSSS. Anodal tDCS applied before BCIT 
may pre-activate the ipsilesional hemisphere and excite the ipsilesional 
motor cortex, thereby facilitating faster BCIT activation and 
enhancing characteristic brain signals (96). Furthermore, tDCS 
creates a favorable neural environment, which may promote motor 
learning and enhance BCIT-induced motor learning capacity (97). 
BCIT, incorporating visual, auditory, and motor feedback, 
continuously reinforces motor imagery within the brain, providing 
peripheral visual, auditory, and proprioceptive feedback to the central 
nervous system. This process strengthens positive feedback loops, 
reinforces correct motor patterns, and promotes the reconstruction of 
damaged neural pathways, leading to enhanced therapeutic outcomes 
beyond those achieved with tDCS alone (98). Moreover, both BCIT 
and tDCS directly stimulate the central nervous system, enhancing 
neuroplasticity. Their combined application may produce a synergistic 
effect, maximizing cortical excitability and neuroplasticity, which 
could further improve upper limb motor ability in PSSS.

MT + tDCS is considered one of the effective combined treatment 
approaches for improving arm mobility and lower limb motor ability 
in PSSS patients. Mirror Therapy (MT), as a neurorehabilitation 
technique, uses visual illusions created by mirror reflection, imitation, 
and motor imagery, allowing the brain to perceive the movement of 

the affected limb as normal (99, 100). Although this process 
theoretically may involve the activation of the mirror neuron system, 
thereby facilitating functional recovery of the affected side, it should 
be noted that the RCTs included in this study did not provide direct 
neuroimaging or electrophysiological data to support this mechanism. 
Therefore, we describe this mechanism as a potential explanation. In 
fact, the multisensory stimulation provided by MT not only potentially 
activates the mirror neuron system (101), but also enhances the 
excitability of the primary motor cortex (M1) (102), promotes cortical 
reorganization, and improves motor cortex plasticity through repeated 
high-intensity visual feedback, thereby mitigating the phenomenon of 
“learned non-use” of the affected limb. Furthermore, MT emphasizes 
bilateral symmetrical movements, which helps to more widely activate 
the motor cortex, facilitating the activation of residual motor pathways 
on the affected side (103, 104), thereby promoting motor recovery. In 
PSSS, an interhemispheric imbalance is often observed, wherein the 
affected hemisphere exhibits reduced excitability, while the unaffected 
hemisphere exerts excessive inhibition via the transcallosal pathway 
(105). Anodal tDCS enhances the excitability of the affected M1 and 
corrects the pathological interhemispheric inhibition, which may 
contribute to the restoration of lower limb motor ability and arm 
mobility. Considering that patients with PSSS often exhibit reduced 
excitability in the affected hemisphere and excessive inhibition from 
the healthy hemisphere, anodal tDCS may help correct this 
interhemispheric imbalance by enhancing the excitability of the 
affected M1, thus playing a positive role in improving both arm 
mobility and lower limb motor function (21). Applying anodal tDCS 
prior to MT may pre-activate the relevant brain regions, creating a 
more favorable neural environment for subsequent mirror neuron 
activation, thereby enhancing the efficiency of neural network 
reorganization (21).

AM combined with tDCS has been recognized as an effective 
combined therapeutic strategy for improving balance function in 
PSSS. Acupuncture and moxibustion (AM) is a therapeutic approach 
based on traditional Chinese medicine principles, involving the 
insertion of needles at specific angles into the body and applying 
techniques such as twisting and lifting to stimulate targeted areas for 
therapeutic effects. AM  can enhance excitability in brain regions 
affected by pathological changes, promote the establishment of 
collateral cerebral circulation, rapidly alleviate vascular spasms, 
induce vasodilation, reduce vascular resistance, and increase cerebral 
blood flow. These effects contribute to alleviating ischemia in brain 
tissues surrounding the lesion, rescuing ischemic but functionally 
impaired neurons, and accelerating central nervous system repair and 
reconstruction (106). However, the proposed mechanisms underlying 
AM  are primarily based on traditional theories and preliminary 
literature, lacking direct evidence from modern neuroimaging studies. 
Therefore, these mechanisms remain hypothetical and warrant further 
investigation through contemporary mechanistic research. The 
combination of tDCS and AM may further enhance neuroplasticity 
and functional recovery through synergistic effects. tDCS modulates 
cortical excitability, increasing activity in the damaged motor cortex 
while inhibiting excessive excitability in the unaffected hemisphere, 
thereby restoring interhemispheric balance. Meanwhile, 
AM  stimulates specific acupoints, activating intracerebral neural 
networks, improving local blood circulation, and facilitating the 
release of neurotrophic factors, collectively promoting central nervous 
system repair (57). Additionally, AM reduces pain, alleviates muscle 

TABLE 4 Cumulative probability ranking table.

Intervention FMA-UE ARAT FMA-LE BBS

AM + tDCS 57.18 0 76.94 77.16

BCIT + tDCS 88.34 35.38 0 0

C 0.23 10.76 6.94 9.39

CIMT + tDCS 44.11 66.38 55.02 62.47

FES + tDCS 80.99 0 52.45 55.79

MIT + tDCS 75.80 0 0 0

MT + tDCS 75.83 85.96 84.29 0

PT + tDCS 39.07 0 0 0

RRT + tDCS 31.75 0 37.57 0

tDCS 17.39 51.51 36.79 45.19

VRT + tDCS 39.31 0 0 0

FMA-UE, Fugl-Meyer Assessment for Upper Extremity; ARAT, Action Research Arm Test; 
FMA-LE, Fugl-Meyer Assessment for Lower Extremity; BBS, Berg Balance Scale. tDCS, 
transcranial direct current stimulation; C, conventional rehabilitation; MIT, motor imagery 
therapy; FES, functional electrical stimulation; MT, mirror therapy; AM, acupuncture and 
moxibustion; CIMT, constraint-induced movement therapy; BCIT, brain-computer interface 
therapy; VRT, virtual reality technology; RRT, robotic rehabilitation therapy; PT, 
proprioceptive training.
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spasticity, and promotes muscle strength recovery in the affected 
limbs, which further contributes to improved balance ability in PSSS 
(54). It is noteworthy that all studies involving AM+tDCS were 
conducted in China, and there may be considerable variation in the 
specific acupuncture procedures employed—such as acupoint 
selection, stimulation intensity, needle angle, and frequency of 
manipulation. These differences could influence the therapeutic 
outcomes and limit the generalizability of this combined intervention 
across diverse cultural or clinical settings. Future cross-cultural and 
multicenter studies are warranted, not only to investigate the 

FIGURE 5

Clustering analysis charts (A) FMA-UE and ARAT; (B) FMA-LE and BBS. FMA-UE, Fugl-Meyer Assessment for Upper Extremity; ARAT, Action Research 
Arm Test; FMA-LE, Fugl-Meyer Assessment for Lower Extremity; BBS, Berg Balance Scale. tDCS, transcranial direct current stimulation; C, conventional 
rehabilitation; MIT, motor imagery therapy; FES, functional electrical stimulation; MT, mirror therapy; AM, acupuncture and moxibustion; CIMT, 
constraint-induced movement therapy; BCIT, brain-computer interface therapy; VRT, virtual reality technology; RRT, robotic rehabilitation therapy; PT, 
proprioceptive training.

FIGURE 6

Funnel plots (A) FMA-UE; (B) ARAT; (C) FMA-LE; (D) BBS. FMA-UE, Fugl-Meyer Assessment for Upper Extremity; ARAT, Action Research Arm Test; FMA-
LE, Fugl-Meyer Assessment for Lower Extremity; BBS, Berg Balance Scale.

TABLE 5 Regression analysis between publication year and intervention 
effect.

Outcomes 95% CrI

FMA-UE (−2.5145, 3.213)

ARAT (−9.498, 6.0205)

FMA-LE (−1.0525, 5.551)

BBS (−2.6679, 9.772)

FMA-UE, Fugl-Meyer Assessment for Upper Extremity; ARAT, Action Research Arm Test; 
FMA-LE, Fugl-Meyer Assessment for Lower Extremity; BBS, Berg Balance Scale.
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FIGURE 7

Convergence diagnostic plots, trace plots, and density plots of FMA-UE (A) convergence diagnostic plots; (B) trace plots and density plots. FMA-UE, 
Fugl-Meyer Assessment for Upper Extremity; C, conventional rehabilitation; tDCS, transcranial direct current stimulation; MIT, motor imagery therapy; 
FES, functional electrical stimulation; MT, mirror therapy; AM, acupuncture and moxibustion; CIMT, constraint-induced movement therapy; BCIT, 
brain-computer interface therapy; VRT, virtual reality technology; RRT, robotic rehabilitation therapy; PT, proprioceptive training.

FIGURE 8

Convergence diagnostic plots, trace plots, and density plots of ARAT (A) convergence diagnostic plots; (B) trace plots and density plots. ARAT, Action 
Research Arm Test; C, conventional rehabilitation; tDCS, transcranial direct current stimulation; CIMT, constraint-induced movement therapy; BCIT, 
brain-computer interface therapy; MT, mirror therapy.
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FIGURE 9

Convergence diagnostic plots, trace plots, and density plots of FMA-LE (A) convergence diagnostic plots; (B) trace plots and density plots. FMA-LE, 
Fugl-Meyer Assessment for Lower Extremity; C, conventional rehabilitation; tDCS, transcranial direct current stimulation; AM, acupuncture and 
moxibustion; RRT, robotic rehabilitation therapy; CIMT, constraint-induced movement therapy; FES, functional electrical stimulation; MT, mirror 
therapy.

FIGURE 10

Convergence diagnostic plots, trace plots, and density plots of BBS (A) convergence diagnostic plots; (B) trace plots and density plots. BBS, Berg 
Balance Scale; C, conventional rehabilitation; tDCS, transcranial direct current stimulation; AM, acupuncture and moxibustion; CIMT, constraint-
induced movement therapy; FES, functional electrical stimulation.
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relationship between acupuncture parameters and brain functional 
remodeling using modern neuroimaging techniques, but also to 
explore the acceptability and efficacy of different acupuncture 
modalities in varied cultural contexts. Such efforts would provide a 
more comprehensive foundation for the broader clinical application 
of AM+tDCS.

In this study, BBS was utilized as a primary outcome measure for 
evaluating balance ability; however, the results did not indicate 
statistically significant improvements. Several factors may contribute 
to this outcome. First, the small sample sizes in studies reporting BBS 
outcomes may have limited the statistical power, thereby reducing the 
likelihood of detecting significant effects even in the presence of 
genuine balance improvements. Second, the intervention itself may 
have had a relatively modest impact on balance function compared to 
its effects on upper limb motor ability or other functional domains. 
Finally, the BBS relies on assessor judgment, which may be influenced 
by variability in assessment conditions, patient status, and inter-rater 
differences, potentially contributing to inconsistent results.

Although this study has demonstrated the relative advantages 
of tDCS combined with various rehabilitation interventions in 
improving limb dysfunction among PSSS, the practical 
implementation of these interventions still faces several 
challenges. Firstly, most existing studies have been conducted in 
well-equipped specialized hospitals or rehabilitation centers, 
whereas primary healthcare institutions may lack adequate 
infrastructure, equipment investment, and trained personnel for 
implementation and maintenance. Secondly, data on cost-
effectiveness remain limited, making it difficult to determine the 
economic feasibility of these approaches in resource-constrained 
settings. Lastly, regional disparities in the distribution of 
rehabilitation resources and technological capabilities may 
further impede the widespread adoption of these strategies. 
Therefore, how to balance clinical efficacy and economic costs in 
real-world practice, and how to tailor these interventions to suit 
primary care settings, remain critical issues to be  addressed. 
Future efforts should focus on conducting multicenter studies, 
health economic evaluations, and implementation research to 
assess the feasibility of these interventions under primary care 
conditions and to address potential barriers such as equipment 
procurement and workforce training.

This study has several limitations. Due to the lack of detailed 
information on stroke stages and the degree of motor dysfunction 
in most of the original studies, although our network meta-
analysis provides relative efficacy for each intervention based on 
the existing evidence, these factors may lead to significant clinical 
heterogeneity. This study primarily relied on various clinical 
assessment scales (e.g., FMA, ARAT, BBS) to evaluate 
intervention outcomes. While these tools are widely used in 
clinical practice and offer considerable ease of use and acceptable 
reliability, they are inherently subjective, as they depend on 
observer ratings and patients’ self-performance. In contrast, 
objective indicators such as neuroimaging (e.g., MRI, fMRI) and 
electroencephalography (EEG) can more directly reflect changes 
in brain function and structure. Future research should consider 
integrating neuroimaging, EEG, or other electrophysiological 
data into study designs to provide more robust scientific evidence 
for the clinical application of these interventions. Due to 
insufficient reporting of treatment dosage parameters in 

combined intervention protocols across some included studies, 
we were unable to perform more comprehensive dose–response 
or subgroup analyses. This limitation may constrain the 
interpretation of intensity-efficacy relationships in our findings. 
Some studies have defects such as failure to strictly implement 
blinding or inconsistent procedures during measurements, which 
may introduce bias in the outcome measures and potentially lead 
to an overestimation of the efficacy of tDCS or combined tDCS 
treatment protocols. Therefore, readers should exercise caution 
when selecting intervention protocols. After excluding studies 
with high risk of bias and reanalyzing the data, no significant 
changes in the results were observed, which suggests that the 
findings of this study are stable.

5 Conclusion

BCIT+tDCS was identified as the optimal tDCS-based 
rehabilitation strategy for improving upper limb motor ability in 
PSSS, MT + tDCS was the most effective intervention for 
enhancing arm mobility, MT + tDCS was the best protocol for 
improving lower limb motor ability, while AM+tDCS was the best 
strategy for improving balance ability in PSSS. Furthermore, 
MT + tDCS was the optimal tDCS-based rehabilitation approach 
for treating upper limb motor dysfunction, whereas AM+tDCS 
was the most effective strategy for addressing lower limb motor 
dysfunction in PSSS. Future studies may focus on investigating 
the therapeutic effects of MT combined with tDCS on Berg 
Balance Scale score in PSSS, as well as the effects of AM combined 
with tDCS on Action Research Arm Test score, in order to further 
explore the therapeutic potential of these two 
intervention strategies.
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