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Pediatric epilepsy affects a large proportion of children, with a huge variability in 
seizure onset. Due to complicated etiology, wide range of associated comorbidities, 
and difficulty in obtaining clear physiological data from children, epilepsy 
management in pediatric patients often poses a critical challenge. Importantly, 
around 30% of these patients remain non-responsive to current anti-seizure drugs 
and develop a higher risk of developmental and cognitive delay and, in worse 
situations, premature death. One of the key treatment methods currently used for 
drug-resistant epilepsies is surgical resection of the epileptic foci. However, such 
patients often develop new epileptic foci post-surgery. This, in turn, enhances 
the need for recurrent invasive brain surgeries, impairing the overall quality of life 
in these children. Thus, mechanistic understanding of different types of pediatric 
epilepsy is critical to discovering more targeted molecular approach(es). For a 
long time, the occurrence of epilepsy was considered solely due to the abnormal 
functioning of single ion channels. However, in recent years, a huge number 
of genetic and non-genetic (environmental) factors have been associated with 
different types of pediatric epilepsy. Clinical diagnoses, coupled with a basic 
understanding of molecular and cellular mechanisms using different model systems, 
have been instrumental in unraveling new avenues for modern non-invasive 
targeted pharmacological therapies. Yet, the field has just started to evolve, and 
many challenges and contradictory hypotheses still exist. This comprehensive 
review discusses underlying developmental mechanisms associated with pediatric 
epilepsy. Specifically, we highlight how the PI3K-AKT–MTOR pathway acts as a 
critical node interconnecting the diverse mechanistic strategies, that may eventually 
help overcome the seizure burden in the future.
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1 Introduction: epilepsy in children

Epilepsy is among the most common neurological disorders affecting people of all age 
groups (1, 2). As defined by the International League against Epilepsy (ILAE), epilepsy is one 
meeting any of the following conditions: (a) at least two unprovoked seizures occurring >24 h 
apart; (b) one unprovoked seizure and a probability of further seizures similar to the general 
recurrence risk after two unprovoked seizures; and (c) diagnosis of an epilepsy syndrome 
(3–5). Epileptic seizures are very distinct from just any other non-epileptic seizure event in the 
sense that epileptic seizures occur due to abnormal, excessive, or simultaneous activity of 
“neuronal populations” in the brain, which may or may not have any clinical manifestations. 
Epilepsy syndromes manifested in children are especially complicated, overlapping in nature, 
and multi-faceted to understand. Children with early-onset epilepsy are highly predisposed 
to developmental and cognitive delay and sensory-motor abnormalities since the critical 
period for many neurological functions lies in childhood (6, 7). Further, about 30% of patients 
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suffering from childhood epilepsies are intractable to any regimen of 
current medications (8–10). The combination of associated 
comorbidities and drug resistance negatively influences the patient’s 
quality of life and is also potent in elevating their risk of premature 
death, creating a huge emotional burden on caregivers (11–13). 
Therefore, to fight this challenge and identify potential non-invasive 
therapeutic avenues, studying the underlying mechanisms driving 
pediatric epilepsy is critical.

Historically, epilepsy has always been considered a channel 
protein manifestation. However, advancements in genetic screens have 
identified diverse epilepsy-causing variants, ranging from mutations 
in cellular signaling pathways to the components of circadian rhythm 
(14–19). In this review, we will discuss the model systems that helped 
in identifying the molecular mechanisms underlying pediatric genetic 
epilepsies beyond channelopathies and how these models can 
be instrumental in discovering potential treatment strategies. Further, 
we strongly emphasize the ongoing challenges and controversies in the 
field. Certain common terminologies used throughout the text are 
defined in Table 1.

2 Article types

This is a review article that comprehensively discusses different 
mechanistic aspects of pediatric epilepsy, using different model 
systems and finishing with newer avenues of prospective therapies and 
existing gaps. No specific databases have been used in this manuscript.

3 Current classification of pediatric 
epilepsy

Epilepsy is a multifactorial disorder, caused by genetic and/or 
environmental factors and is classified into different types, each with 
its own etiology, physiological properties, and onset (20). Differential 
diagnoses aid clinicians in classifying the type of epilepsy the patient 
is experiencing, which in turn may help ascertain the therapeutic 
strategy. Historically, epilepsy classification heavily relied on the 
clinical symptoms of the patients. However, this classification system 
has recently undergone a significant change from a symptom-based 
approach to a more sophisticated, multidimensional framework. A 
critical feature of this change is the integration of neuroimaging 
findings, genetic screen data, and etiology (21). The current 
classification system is a hierarchical three-level scheme (21). It begins 
with classifying a seizure type into focal, generalized, and of unknown 
onset/unclear origin, followed by classifying the epilepsy type, 
eventually categorizing as epilepsy syndromes. An epilepsy syndrome 
is defined as, “a characteristic cluster of clinical and 
electroencephalography (EEG) features, often supported by specific 
etiological findings” (4). It has a distinct set of comorbidities, etiology, 
and age of onset, and often has direct consequences for treatment 
and prognosis.

Pediatric epilepsy, defined in this review as those with seizure onset 
before 18 years of age, is generally classified into different types, mostly 
based on the age of seizure onset, set of comorbidities, and known 
etiologies (Figure 1). While there is significant progress in classifying 
pediatric epilepsy, certain limitations still exist. One of the persistent 
challenges is to define the boundaries of epilepsy syndromes. Multiple 

overlaps across categories and one type leading to or influencing the 
predisposition to other types of late-onset epilepsy are evident from 
clinical scenarios. For example, self-limited epilepsy is one of the most 
common and earliest types of epilepsy, accounting for about 25% of all 
pediatric epilepsy (22). Seizures are mostly focal in origin and subside 
within a few weeks or a few years after commencement, hence the 
name ‘self-limited’. Most patients with self-limited epilepsy respond to 
medication; seizures usually resolve by puberty but can occasionally 
occur up to 18 years of age. Interestingly, a proportion of these patients 
show a higher risk of developing developmental and epileptic 
encephalopathy (DEE) or genetic generalized epilepsy (GGE) (23–27). 
DEE is a broad umbrella term comprising many severe epileptic 
syndromes in children, each with its characteristic age of onset. DEE 
patients are characterized by the presence of developmental and 
cognitive impairment; both seizures and underlying etiology are 
suggested to contribute to these issues (28, 29). On the other hand, 
GGE is a broad term used for epilepsies with generalized seizures and 
genetic etiology identified through familial and twin studies (30). It 
constitutes 20–40% of all pediatric epilepsies (31). Considering the 
associated comorbidities and underlying genetic causes, the boundary 
between DEE and GGE often becomes diffused. Even the 
sub-syndromes within GGE (such as absence epilepsy and juvenile 
myoclonic epilepsy) show extensive overlap in terms of etiology despite 
having distinct electroclinical features. These overlapping phenomena 
make us hypothesize that different types of pediatric epilepsy generate 
a continuum of the disorder, considering the age of the patients, disease 
progression, and underlying etiology (Figure 2A).

4 Current challenges in pediatric 
epilepsy

Apart from the diagnostic challenge due to diffused overlapping 
boundaries across different categories, one of the most critical 
challenges in the field of pediatric epilepsy is to combat drug-
resistance. Drug-resistant epilepsy (DRE) is defined as “failure of 
adequate trials of two tolerated, appropriately chosen and used 
antiepileptic drug schedules (whether as monotherapies or in 
combination) to achieve sustained seizure freedom” (32). A large 
proportion of children suffering from early-onset epilepsy are 
non-responsive to current broad-spectrum medications that are 
largely strategized on certain channel proteins (11, 12). Surgical 
removal of dysplastic tissue is currently the only treatment against 
recurrent seizures in these patients (33). However, considering the 
complexity and exceptions, the chance of developing other epileptic 
foci in the future is quite high, thus triggering a vicious cycle of failure 
and recurrence of brain surgeries in these children (34). Parallelly, 
long-term anti-seizure drug therapy may negatively affect their 
cognitive development and increase the risk of premature death (35, 
36). We elaborate on some of these clinical and mechanistic challenges 
in the following subsections.

4.1 Comorbidity with neurodevelopmental 
disorders

Up to 40% of cases of intractable pediatric epilepsy demonstrate 
significant association with brain malformations (32, 37). Such 
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epilepsies mostly begin within the first year of life and are often 
accompanied by intellectual delay, motor impairment, and cognitive 
deficits (38). Magnetic resonance imaging (MRI) in such cases reveals 
blurring of white-grey matter demarcation, abnormal cortical 
thickening and folding, enlarged ventricles, and focal malformations of 
cortical development (MCD) (39, 40). Further, electroencephalograph 
(EEG) recordings demonstrate the presence of epileptiform discharges 
from the specific malformed or dysplastic region of the patient’s brain 
(41). However, it is still debatable whether brain malformation is the 
primary cause of epilepsy in such patients. Clinical evidence of extended 
epileptic foci exists beyond the dysplastic sites in the brain, suggesting 
that epileptogenesis can be dissociable from brain malformation (42).

Additionally, impairment of either voluntary or involuntary 
motor function is very common in epilepsy. Epilepsy and motor 
disorders can occur independently, harboring different underlying 
pathophysiology. However, despite having some distinct features, 
many motor disorders can also imitate epilepsy and vice versa (43). 
For instance, besides having other causative factors and comorbidities, 
disorders such as cerebral palsy, muscle dystonia, and ataxia show 

significant association with epilepsy (44). This is mostly because 
epilepsy affects the brain regions that control motor coordination, 
such as the frontal lobe, cortico-striatal connections, and basal 
ganglionic regions (45, 46). To add to complications, motor 
dysfunctions are often difficult to recognize at younger ages due to the 
developing state of the brain. It is seldom clear which problem 
precedes the other and hence, the complexity of diagnosing the 
etiology and eventual treatment increases in these patients.

4.2 Risk of mortality

Severe epileptic episodes or underlying neurological anomalies 
may be  fatal for infants. The underlying mechanisms driving this 
epilepsy-related mortality have not yet been robustly explored, making 
this one of the most critical challenges in the field. Epilepsy that begins 
within the first year of life often predisposes patients to higher 
morbidity potential than children with late-onset epilepsy. More 
dramatically, children with malignant neonatal epilepsy are >12 times 

TABLE 1 Common terminologies in the field of epilepsy [Adapted from Fisher et al. (3)].

Term Definition

Seizure Transient symptoms due to abnormal excessive or simultaneous activity of a neuronal population in the brain, with or without any clinical 

manifestations

Epilepsy A disease of the brain defined by any of the following conditions: (1) At least two unprovoked (or reflex) seizures occurring >24 h apart; (2) one 

unprovoked (or reflex) seizure and a probability of further seizures similar to the general recurrence risk (at least 60%) after two unprovoked 

seizures, occurring over the next 10 years; (3) diagnosis of an epilepsy syndrome. Epilepsy is resolved for individuals who have an age-dependent 

epilepsy syndrome but are now past the applicable age or those who have remained seizure-free for the last 10 years, with no antiseizure medicines 

for the last 5 years

Epileptogenesis A process that includes mechanisms driving functional, structural, or network reorganization changes in the brain that may lead to the development 

of, or progression of, spontaneous seizures and epilepsy.

Status epilepticus Status epilepticus occurs when a seizure lasts more than 5 min or when seizures occur very close together, and the person doesn’t recover 

consciousness between them.

Focal seizures Originating within networks limited to one hemisphere. They may be discretely localized or more widely distributed.

Generalized seizures Originating at some point within, and rapidly engaging, bilaterally distributed networks

Autonomic seizures A distinct alteration of autonomic nervous system function involving cardiovascular, pupillary, gastrointestinal, sudomotor, vasomotor, and 

thermoregulatory functions

Tonic A sustained increase in muscle contraction lasting a few seconds to minutes

Atonic Sudden loss or diminution of muscle tone without apparent preceding myoclonic or tonic event lasting ~1–2 s, involving head, trunk, jaw, or limb 

musculature.

Clonic Jerking, either symmetric or asymmetric, that is regularly repetitive and involves the same muscle groups

Myoclonic Sudden, brief (<100 msec) involuntary single or multiple contraction(s) of muscles(s) or muscle groups of variable topography (axial, proximal limb, 

distal). Myoclonus is less repetitive and less sustained than clonus

Tonic–clonic A sequence consisting of a tonic followed by a clonic phase

Generalized tonic–

clonic (GTC)

Bilateral symmetric or sometimes asymmetric tonic contraction and then bilateral clonic contraction of somatic muscles, that are usually associated 

with autonomic phenomena and loss of awareness. These seizures engage networks in both hemispheres at the start of the seizure

Atypical absence 

seizures

An absence seizure with changes in tone that are more pronounced than in typical absence or the onset and/or cessation is not abrupt, often 

associated with slow, irregular, generalized spike–wave activity

Typical absence 

seizures

A sudden onset, interruption of ongoing activities, a blank stare, possibly a brief upward deviation of the eyes. Usually, the patient will 

be unresponsive when spoken to. Duration is a few seconds to half a minute, with very rapid recovery

Febrile seizures (FS) Seizures occurring in pediatric patients between 6 and 60 months of age, triggered by fevers higher than 38°C (≥100.4°F), without any known 

underlying medical condition such as trauma, CNS infection, neurodevelopmental disorders, genetic mutation, afebrile seizures or predisposition to 

epilepsy.

https://doi.org/10.3389/fneur.2025.1586947
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Lolam and Roy 10.3389/fneur.2025.1586947

Frontiers in Neurology 04 frontiersin.org

more likely to die than children with epilepsy onset at age ≥1 month 
(47). Some epilepsy syndromes affecting children at ≥1 year of age can 
have favorable prognoses. However, others result in medically 
refractory seizures, developmental delay/intellectual disability, and 
other neurologic handicaps (48, 49).

Sudden unexpected death in epilepsy (SUDEP) is the leading 
cause of mortality in children with epilepsy (50). SUDEP is defined as 
“a sudden, unexpected, witnessed or unwitnessed, non-traumatic, and 
non-drowning death in patients with epilepsy with or without 
evidence for a seizure, and excluding documented status epilepticus, 
in which postmortem examination does not reveal a structural or 
toxicologic cause of death” (51). Because most SUDEP incidents are 
unwitnessed, the exact sequence of events remains unknown. 
However, SUDEP nearly invariably happens after a generalized tonic–
clonic (GTC) seizure (refer to Table  1) and is more common in 

patients with genetic epilepsies (52, 53). Additionally, patients with 
refractory epilepsy, early seizure-onset, intellectual disability, and male 
gender demonstrate increased risk (54, 55). Current pathophysiological 
mechanisms behind SUDEP are identified as an interplay among 
cardiac, respiratory, and autonomic nervous systems (56). Recent MRI 
studies have revealed reduced grey matter volume in the thalamus, 
frontal cortex, cerebellum, serotonin-producing neurons in the raphe 
nuclei and brainstem areas, and increased grey matter volume in the 
amygdala, hippocampus, cingulate areas in a significant proportion of 
SUDEP cases (57, 58). However, despite monitoring epileptic patients 
through clinical trials, the mechanism of SUDEP still 
remains unsubstantiated.

Beyond SUDEP, the other clinical categories leading to mortality 
in the pediatric population are sudden infant death syndrome (SIDS), 
and sudden unexplained death in childhood (SUDC). Although 

FIGURE 1

Seizure onset for different pediatric epilepsies. Green blocks represent the age range in which different types of pediatric epilepsy show seizure onset. 
The first year of age (0–1 year) has been subdivided into 0 m, 3 m, 6 m, and 9 m of age (m, months). SeLNE, self-limited neonatal epilepsy; SeLIE, self-
limited infantile epilepsy; SeLFNIE, self-limited familial neonatal-infantile epilepsy; SeLECTS, self-limited epilepsy with a centrotemporal spike; SeLEAS, 
self-limited epilepsy with autonomic seizures; COVE, childhood occipital visual epilepsy; POLE, photosensitive occipital lobe epilepsy; EIDDE, early 
infantile developmental and epileptic encephalopathy; EIMFS, epilepsy of infancy with migrating focal seizures; LGS, Lennox–Gastaut syndrome; DEE 
SWAS, developmental and/or epileptic encephalopathy with spike–wave activation in sleep; CAE, childhood absence epilepsy; JAE, juvenile absence 
epilepsy; JME, juvenile myoclonic epilepsy; GTCA, epilepsy with generalized tonic–clonic seizures alone; FS, febrile seizures; MTLE, mesial temporal 
lobe epilepsy.
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causation behind SIDS and SUDC is possibly multifactorial and 
largely unexplained, many reports suggest epilepsy as a potential 
contributing factor to predispose the child towards sudden death 
(Figure 2B).

SIDS is defined as “the sudden and unexpected death of an infant 
under the age of one year that remains unexplained after a thorough 
review of the clinical history and complete autopsy” (59). Some of the 
risk factors of SIDS include male gender, history of febrile seizures (FS), 
and preterm birth (60). Interestingly, like SUDEP and SUDC, many 
cases of SIDS show hippocampal abnormalities (61, 62). However, 
whether these abnormalities correlate to any underlying disorder or 
mortality in the patients is unclear. Interestingly, a significant 
proportion of these SIDS cases have shown underproduction of 
serotonin or downregulation of serotonin receptors (62–65). Some of 
these infants also demonstrated reduced GABA receptor binding (66). 
Whether these clinical features have any impact on the excitation/
inhibition balance of the neurons is worth researching.

SUDC is defined as “the unexpected death of a child over 
12 months of age which appears to be inexplicable even after a detailed 
case investigation” (67). SUDC usually occurs between 1 and 5 years 
of age, and it is the fifth leading cause of death in children. Unlike 
SUDEP, SUDC doesn’t occur after a seizure; however, patients with a 
history of FS have a higher vulnerability (68). A proportion of these 
patients also have hippocampal anomalies (69). Whilst clinical 
evidence suggests a relationship between hippocampal anomalies, FS 
history, and SUDC, the nature of this association is currently unclear.

Although there is awareness of SUDEP, SUDC, and SIDS, the 
etiology and mechanisms behind these sudden deaths are largely 
unknown. Most of the case studies are limited due to the spontaneity 
as well as the rarity of such cases, thus being difficult to model. A 
common link among SUDEP, SUDC, and SIDS could be the history 
of FS and that the brain regions in respiratory and circulatory 
regulation are involved and altered (57, 70). Indeed, abnormal 
breathing patterns, hypoxemia, and hypercapnia are more commonly 
observed, but the correlation is inconsistent (71–73).

4.3 Complex genetic etiology

Many genetic mutations are being identified in association with 
epilepsy; some important ones are listed in Table 2. Around 40–70% 
epilepsy cases show genetic etiology (74, 75). In certain epilepsy types, 
the genetic cause is well known, like SCN1A mutation in Dravet 
syndrome (28, 76). However, in most cases, the genetics are inferred 
based on the familial inheritance pattern. For instance, pediatric 
generalized epilepsies have a strong heritable nature (77), but the 
specific genes responsible for them are not fully known. Unfortunately, 
simple inheritance patterns are very rare in epilepsy. Pediatric epilepsy 
shows complex inheritance with varying expressivity patterns. It is 
often observed that mutations in the same gene can cause variable 
phenotypes in patients. This phenomenon is well characterized in 
patients with SCN1A mutations, which show a range of phenotypes 
from FS to Dravet syndrome (78). It is hypothesized that these 
phenotypes are dependent on mutation severity. Mild missense 
mutations in SCN1A are often identified in FS patients, while more 
severe loss-of-function mutations are associated with severe epilepsies 
such as Dravet syndrome (78, 79). Interestingly, phenotype variation 
is observed even in cases where the mutations are the same. For 
example, patients with mutations in the PI3K-AKT–MTOR pathway 
show a spectrum of developmental and epileptic phenotypes with 
varying severity (80). Mutations in genes coding for MAST 
(microtubule-associated serine/threonine) kinases (MAST1-4), 
upstream of the PI3K pathway, have recently been associated with 
developmental abnormalities, epileptic seizures, and cognitive 
impairment (81–83). Epilepsies related to MAST genes have also been 
categorized within DEE and GGE due to overlapping etiology, thus 
complicating the categorization. Conversely, there are multiple genes 
that are shown to be associated with the same epilepsy syndrome, as 
seen in the case of DEE (84–86). Further contradictions arise when 
genotype–phenotype cannot be correlated directly. For instance, the 
severity of phenotypes in patients with mutation in ciliary gene 
CDKL5 does not solely depend on the primary mutation, but also on 

FIGURE 2

Types of pediatric epilepsies and connection to childhood death. (A) Schematic demonstrating overlapping features of different types of early-onset 
epilepsy. The overlapping sets mark the complexity of the scenario. (B) Genetic generalized epilepsies (GGE) and febrile seizures often make children 
predisposed to various premature death. The size of the circles/ovals is arbitrary and does not indicate the frequency of occurrence or other 
parameters. IGE, idiopathic generalized epilepsy; JME, juvenile myoclonic epilepsy; CAE, childhood absence epilepsy; JAE, juvenile absence epilepsy; 
GTCA, epilepsy with generalized tonic–clonic seizures alone; MTLE, mesial temporal lobe epilepsy; DEE, developmental and/or epileptic 
encephalopathy.
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the interplay between intrinsic and extrinsic factors (87). Such cases 
are difficult to treat and are often intractable.

The varying expressivity of epilepsy phenotype is hypothesized to 
be associated with genetic modifiers (88). Genetic modifiers are gene 
variants or non-coding single nucleotide polymorphisms (SNPs) 
present in a patient, in addition to the primary mutation, that are 
instrumental in modifying the phenotypic outcome in that patient. So, 
the final phenotype is determined by the close epigenetic, genetic, or 
functional interactions between these variants, which breaks the 
dogma of epilepsy being a monogenic disease. We  think that 
identifying such novel epilepsy modifier genes can enhance our 
understanding of the underlying mechanisms.

5 Modeling epilepsy

Despite our understanding of the underlying causes and 
characteristics of various epilepsy syndromes, pediatric epilepsy 
remains a burden on the healthcare and economic sectors, mainly due 
to the predominance of drug-resistance and premature deaths (8–10). 
This emphasizes the importance of investigating the molecular and 
developmental mechanisms underlying early-onset epilepsies, which 
can eventually aid in designing targeted therapeutic strategies. To 

achieve this, epilepsy models that can closely recapitulate the human 
specific features are necessary. An ideal model should show construct 
validity (recapitulation of patient-specific etiology), face validity 
(replication of patient-specific phenotypes), and predictive validity 
(responding to treatments that can be  effective in humans) (89). 
Although epilepsy has been modeled in various non-mammalian 
systems, such as Drosophila, C. elegans, and zebrafish, we consider 
rodents as a stronger candidate for being a model organism for 
epilepsy and neurodevelopmental disorders. This is because mice and 
humans show over 99% genetic homology, and more importantly, they 
show similarity in many stages of neurodevelopment and can undergo 
genetic manipulation to introduce patient-specific mutations for 
testing (90, 91). Currently, several mouse models are being used to 
study epilepsy; herein, we discuss different types of them. Broadly the 
mouse models of epilepsy can be categorized as induced models and 
genetic models.

5.1 Induced epilepsy models

An induced epilepsy model is where seizures are triggered in 
healthy mice by chemical or electrical stimulation of the brain (92). 
This is amongst the oldest strategies and is used extensively in current 

TABLE 2 Summary of different genes and environmental factors implicated in pediatric epilepsies.

Causative factor type Causative factor Type of epilepsy associated with References

Signaling defects kRAS Temporal lobe epilepsy, DEE (283, 284)

BRAF Focal/Generalized epilepsy (285)

NF1 Focal/Generalized epilepsy (286, 287)

PIK3CA, AKT3, PTEN, MTOR Focal/Generalized epilepsy (80, 109, 288)

TSC1, TSC2 Temporal lobe epilepsy (289, 290)

NPLR2, NPLR3 Temporal lobe epilepsy (291)

DEPDC5 Temporal lobe epilepsy (292)

Abnormal neural migration RELN Temporal lobe epilepsy (123, 293)

DCX Temporal lobe epilepsy (198)

LIS1 Temporal lobe epilepsy (294)

Ciliopathy EFHC1 JME (295)

CILK1 JME (223)

CDKL5 JME, DEE (296, 297)

Channelopathy SCN1A DEE, Dravet syndrome, MTLE (76, 291, 298, 299)

SCN2A SeLNE, SeLIE, DEE, Febrile seizures (300–302)

SCN8A SeLIE, DEE, JAE (303–305)

GRIN2A SeLECTS (306)

KCNT1 EIMFS (307)

KCNQ2, KCNQ3 SeLNE, DEE (308–310)

KCNJ10 GGE, MTLE (311, 312)

CACNA1A GGE, DEE (313–315)

CACNA1H GGE (316–318)

HCN1 Febrile seizure, DEE (319, 320)

GABRA1A, GABRG1 Dravet syndrome, CAE, JME (321–325)

SeLNE, self-limited neonatal epilepsy; SeLIE, self-limited infantile epilepsy; SeLECTS, self-limited epilepsy with centrotemporal spike; DEE, developmental and/or epileptic encephalopathy; 
GGE, genetic generalized epilepsy; JME, juvenile myoclonic epilepsy, JAE, juvenile absence epilepsy, EIMFS, epilepsy of infancy with migrating focal seizures; CAE, childhood absence epilepsy.
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research as well. For chemical stimulation, an intracerebral or systemic 
injection of some of the neuroexcitatory drugs is used. Kainic acid is 
one of the first compounds used to recapitulate temporal lobe epilepsy 
(TLE), a common kind of focal epilepsy observed in both adults and 
adolescents (93, 94). It is a glutamate analog, and its administration 
causes neuronal depolarization, particularly in the mouse 
hippocampal region (95). However, patients with TLE also show 
neurological compromise in extrahippocampal regions (96, 97). 
Pilocarpine is often used to produce lesions in neocortical areas along 
with the hippocampus (98). Other compounds like pentylenetetrazol 
(PTZ), strychnine, N-methyl-D, L-aspartate, and penicillin are also 
used as convulsants to model seizures, and loosely epilepsy (92). On 
the other hand, electrical stimulation involves implanting electrodes 
in the region of interest and stimulating them to generate seizure 
outcomes (99). Less invasive methods, such as whole brain stimulation 
via trans-auricular or trans-corneal surface electrodes, are also 
available (100). It is important to note that most of the above-
mentioned induced models exhibit acute seizures. Chronic seizures 
can be induced by kindling wherein mice exhibit spontaneous seizures 
after repeated electrical or chemical stimulation (101). Nevertheless, 
induced models generally do not validate the actual etiology of the 
disorder, especially with respect to a large proportion of pediatric 
epilepsy patients. In this regard, genetic models emerge as a more 
realistic tool to study underlying mechanisms.

5.2 Genetic epilepsy models

Advancements in gene editing technology have allowed 
researchers to integrate many patient-specific gain-of-function or 
loss-of-function genetic mutations in mice. Such models are very 
instrumental in understanding mechanisms as they have high 
construct validity. These models also provide a strong platform, 
allowing preclinical testing of small molecules. Some of the well-
known mouse models of epilepsy include constitutive knockout of 
channel proteins such as SCN1A, SCN2A, SCN8A, KCNA1, GABRA1, 
KCNQ2, and many more (102–105). These models have not only 
helped us to understand the mechanistic aspect of these mutations 
but also the associated behavioral and developmental consequences. 
Parallelly, signaling pathways, especially the PI3K-AKT–MTOR 
pathway, are associated with pediatric epilepsies. Unlike most of the 
ion channels, the constitutive knockout of such pathway genes is 
often embryonically lethal (106–108). Furthermore, a large 
proportion of pediatric epilepsy patients exhibit spontaneous or de 
novo mutations in the pathway genes, where the phenotypic severity 
is often dependent on the developmental timing and regional extent 
of the mutation (109, 110). This further complicates the modeling 
design for such specific genetic variants since a constitutive deletion 
strategy may not mimic the actual scenario in such cases. To 
circumvent this problem, conditional strategies such as Cre-lox or 
FRT-Flp systems are used to induce the patient-specific mutations in 
specific cellular lineages, especially for genes associated with signaling 
pathways like PI3K-AKT–MTOR (111–115). The developmental 
timing of the genetic mutation can be more finely regulated by using 
inducible cre systems (116). Such strategies give more flexibility and 
allow researchers to spatially and temporally control their genetic 
modifications. Moreover, it allows partial manipulation of the genes 
that are important for early embryonic development and are fatal to 

mice if removed. While such conditional lines provide cell lineage 
and variant-specific modifications of the gene of interest, even finer 
focal genetic perturbations are possible in mice. One such example is 
a Pten mouse model, wherein an exogenous viral vector carrying Cre 
has been injected into the hippocampal area in Pten floxed 
background (117). By controlling the dose and injection site of the 
viral vector, one can create a mosaic loss of Pten in the region of 
interest. Another approach is to perform in utero electroporation 
(IUE), where a plasmid DNA targeting the gene of interest is injected 
in utero into the embryonic brain ventricles and then electroporated 
to the region of interest using a pair of electrodes. IUE strategy is 
widely implicated in inducing activating PI3K-AKT–MTOR pathway 
mutations in rodent systems (118–120). IUE strategy provides a 
deeper understanding of the function of a particular gene in a specific 
cellular population. These models are very relevant in studying 
developmental mechanisms underlying MCD-associated epilepsies 
or focal epilepsies, wherein patients often show somatic mosaicism 
(110, 121).

6 Mechanisms underlying epilepsy

Much of our current mechanistic understanding of pediatric 
epilepsy has come from studying model systems (mentioned in the 
previous section). Since the start of the epilepsy field, epilepsy has 
been always mechanistically attributed to mutations in ion channels 
and, in turn, alterations in neuronal excitability and inhibition (122). 
However, research over the past few decades has identified severe 
non-ion channel-associated genes being associated with pediatric 
epilepsy (109, 123–126). These studies highlighted novel mechanisms 
underlying epilepsy beyond ion channels. Herein we discuss some of 
these mechanisms.

6.1 Mechanisms involving ion channels: 
channelopathy

Several studies have associated either voltage- or ligand-gated ion 
channels with monogenic epilepsies, where the seizure onset coincides 
with the temporal expression of the affected channel during 
development (127–131). Mutations in ion channels are involved in 
different types of pediatric epilepsies, such as self-limiting epilepsies, 
generalized epilepsies, epileptic encephalopathies and FS (Table 2). 
Channel proteins and epilepsy by itself is a huge topic to cover; and 
has been discussed in vast lengths in several reviews and book 
chapters previously. In this review, we  are only providing a brief 
overview of the mechanistic relevance of different channel mutations 
causing epilepsy; further elaboration is beyond the current focus of 
this review.

Voltage-gated sodium channels (NaV) allow voltage-dependent 
influx of Na+ ions to initiate neuronal depolarization; different genetic 
mutations in these channels can affect the functioning in varied ways 
(132). For instance, mutations in the inactivation gate domain of NaV 
causes the channel to close slowly or incompletely during the 
depolarization period, leading to an excessive influx of Na+ ions inside 
the neuron, making it intrinsically hyperexcitable (133, 134). In 
contrast, mutations that allow channels to recover faster from the 
inactivation state cause increased firing frequency. Some also lower 
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the action potential threshold, causing neuronal hyperstimulation 
(133). NaV loss-of-function mutations found in inhibitory 
interneurons, in turn, can result in disinhibition in neural networks 
(Figure 3) (135). Again, voltage-gated potassium channels (KV) are 
critical for neuronal repolarization and bringing the membrane to the 
resting state. KV mutations can alter the electromechanical coupling 
in the channel, preventing it from sensing voltage (136); this results in 
repetitive neuronal firing and altering excitation/inhibition balance. 
Apart from the propagation of action potential, voltage-gated ion 
channels, such as voltage-gated calcium channels, trigger 
neurotransmitter release from presynaptic boutons. Genetic variants 
in a family of voltage-gated calcium channels are also associated with 
epilepsy (137, 138).

Ligand-gated ion channels are typically found on the postsynaptic 
membranes or dendritic spines and play a vital role in signal reception. 
Mutations in these channels alter the ligand binding affinity and are 

implicated in epileptogenesis (139). For instance, mutant acetylcholine 
receptors get activated and remain open at abnormally lower levels of 
acetylcholine, causing hyperexcitability (140). Some mutations also 
impair the assembly or reduce current flow through ion channels, 
potentially increasing the net microcircuit excitability (141, 142). Not 
all mutations lead to altered biophysical properties of a channel. Some 
biophysically silent mutations keep the structural configuration 
undisturbed. However, their subcellular localization, expression levels, 
or affinity to the cytoplasmic interactor proteins may alter, disrupting 
membrane properties. Indeed, this feature is very well characterized 
in NMDA and AMPA receptors, which play important roles in long-
term potentiation (LTP) and long-term depression (LTD) (143, 144). 
Patients harboring mutations in these receptor genes develop seizures, 
along with developmental and cognitive comorbidities (145–147). 
Similarly, there are molecules which aid in physical connection of 
synapses, primarily belonging to the neurexin-neuroligin family. 

FIGURE 3

Network excitation in healthy and epileptic brain. (A) In a healthy brain, excitatory neurons (ENs) generate a balanced output due to feedback/
feedforward inhibition from interneurons (INs). (B) In epileptic patients with channel mutations, this inhibition is reduced due to hypoexcitability or 
impaired action potential propagation in interneurons, or (C) ENs become inherently hyperexcitable or have a lower threshold for action potentials. 
These events can occur independently or together, leading to network hyperexcitation. ENs, excitatory neurons; INs, interneurons; IPSP, inhibitory 
postsynaptic potential; GOF, a gain of function; LOF, loss of function; NaV, voltage-gated sodium channel; KV, voltage-gated potassium channel.
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Mutations in both have been associated with epilepsy (148, 149). 
Expression of neurexin-neuroligin proteins was reported to 
be increased in epileptic patients (150). Interestingly, this family of 
proteins was originally associated with neuropsychiatric conditions 
like autism spectrum disorder (ASD) (151). However, its newly 
identified role in epilepsy may provide insights into uncovering shared 
mechanisms between epilepsy and ASD.

Most of these mechanistic insights gained impetus from studying 
structural-biochemical properties and electrophysiological features of 
the channel proteins in various model systems, such as cell lines, 
oocytes expressing channel variants, and artificial modeling which are 
far away from the actual human condition (141, 142, 152). 
Unfortunately, studying isolated molecules or cells does not reveal the 
full picture, considering epilepsy is a network phenomenon. Another 
major caveat was that most channel-related research has an extreme 
bias toward neuronal activity, neglecting the potential roles of other 
neural cell types. Research over the past few decades has proven the 
importance of glia in modulating synaptic modulation and 
transmission by uptaking/redistributing ions, glucose, and water 
molecules at the synapse (153–155). In fact, patients with mesial 
temporal lobe epilepsy (MTLE) often carry mutations in inwardly 
rectifying potassium channels (KCNJ10) and water channels (AQP4), 
that are abundantly expressed in astrocytes (156–158). Our 
understanding of neuron-astrocyte interaction and its association 
with epilepsy currently remains limited. However, this association is 
gaining more and more relevance toward developing novel anti-
epilepsy strategies.

6.2 Mechanisms involving proliferation and 
maturation of neural cells

Besides channelopathies, multiple gene variants in critical 
signaling pathways, specifically PI3K-AKT–MTOR and RAS–RAF–
ERK pathways, have been identified as epileptogenic (159, 160). These 
pathways are highly conserved across evolution and interact with each 
other to promote critical processes like cell growth, proliferation, 
differentiation, and apoptosis, as well as the generation of different 
neural cell types and synapses (161–168) (Figure 4). Mutations in one 
such pathway often impair the regulation of other pathways, causing 
variable consequences downstream. Since global homozygous deletion 
in the components of PI3K-AKT–MTOR and RAS–RAF–ERK 
pathways mostly caused embryonic lethality in animal models, recent 
studies have used brain-specific conditional genetic deletion via either 
in utero electroporation or recombination techniques to study the 
effects. Genetic null mutants of Depdc5, Pten, NF1, Tsc1, and Tsc2 and 
in utero electroporation models for Akt, Kras, Braf, and Rheb 
recapitulate the range of clinical phenotypes, either fully or partially 
(119, 169–176). Here, we emphasize a few of these models which 
aided in understanding the mechanism behind pediatric epilepsy. Pten 
is one of the negative regulators of the PI3K-AKT–MTOR pathway, 
and its selective removal from the murine hippocampus resulted in 
spontaneous seizures (177). This model has also shown increased 
activation of the MTOR pathway. Further, gain-of-function mutations 
in PI3K or loss-of-function mutations in TSC1/TSC2 in the initial 
stages of brain development (radial glial cells, or RGCs) also resulted 

FIGURE 4

Cascade of neurogenesis and gliogenesis in developing mouse brain. The schematic of a coronal hemi-section of a developing mouse cortex shows 
that the initial phase of brain development involves the expansion of the progenitor pool (neuroepithelial cells and RGCs). This is followed by the 
formation of neurons (neurogenesis) and glia (gliogenesis) either directly (from RGCs) or indirectly (from IPCs). Newly formed neurons migrate toward 
the pial surface with the help of radial glial projections and occupy in an inside-out fashion (late-born neurons occupy upper layers, and early-born 
neurons occupy deep layers). CR cells regulate this radial migration process. Neurogenesis and gliogenesis are followed by synaptogenesis and 
functional network formation. RGCs, radial glial cells; IPCs, intermediate progenitor cells; CR cells, Cajal–Retzius cells; CP, cortical plate; IZ, 
intermediate zone; SVZ, subventricular zone; VZ, ventricular zone; E, embryonic; P, postnatal.
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in seizures in the early stages of life (111, 178–180). Many chemically 
induced epilepsy models also show alteration in the PI3K-AKT–
MTOR pathway (181). Mechanistically, Pten, Pik3ca, Tsc1, and Tsc2 
mouse models have demonstrated that pathway hyperactivation 
results in increased cell proliferation, cellular hypertrophy, dendritic 
hypertrophy, and aberrant axonal growth (111, 171, 173, 182). Besides 
these cell-autonomous changes, the affected cell influences the 
development and function of the adjacent non-mutated cells (118, 
183). Similar mechanisms have been identified in mouse models 
harboring mutations in the RAS pathway (176, 184). We hypothesize 
that the mutations in these critical signaling pathways not only alter 
the synaptic properties but also alter the numbers and diversity of the 
excitatory/inhibitory neurons in the neural network, leading to 
network hyperexcitability. Moreover, these mutants also modeled the 
coexisting MCDs such as megalencephaly, hydrocephalus, and 
hippocampal/cortical dysplasia along with epilepsy, thus accurately 
mimicking the clinical scenario (111, 171, 173). This strongly suggests 
that disruption of neurodevelopmental processes is central to both 
MCDs and epileptogenesis. Besides cell growth and proliferation, 
MTOR activity critically maintains cellular autophagy and vesicular 
trafficking, thus, in turn, regulating neurotransmitter release, synaptic 
recycling, and mitochondrial homeostasis (185). Indeed, reduced 
cellular autophagy is reported in conditional knockout models for 
Pten and Tsc1 (186). However, it remains disputed whether it is a cause 
or an effect (187, 188). Translation and surface expression of many ion 
channels are also dynamically regulated by PI3K-AKT–MTOR and 
RAS–RAF–ERK pathways (189). Pathway misregulation can alter the 
surface expression of these proteins and, in turn, cellular excitability, 
making this a plausible explanation for connecting signaling pathways 
to epilepsy.

The above-mentioned mechanisms suggest that suppression of 
this pathway using MTOR inhibitors should rescue the phenotype. 
Unfortunately, use of inhibitors such as rapamycin and its analogs 
showed limited success in curbing epilepsy in both mouse models as 
well as patients (190, 191). An instrumental study using the clinically 
relevant Pik3ca genetic models demonstrated that activating Pik3ca 
mutation causes intrinsic neuronal hyperactivity in mice, which is, in 
turn, acutely suppressible by PI3K and/or AKT but not MTOR 
inhibition (192). These findings suggest that MTOR hyperactivation 
is not always the sole direct reason behind these epilepsies and 
possibly explain the reason behind the partial or complete failure of 
rapamycin analogs and other MTOR inhibitors in treating epilepsies 
of all kinds. The mouse models also revealed that the underlying 
mechanism behind the emergence of epilepsy in such pathway-related 
mutations traces back to abnormal neurogenesis and gliogenesis (111, 
159, 174, 175, 192). This re-emphasizes the importance of early 
developmental processes in determining brain circuitry and expands 
epileptic mechanisms beyond channelopathies. As we will see in the 
upcoming sections different components of these pathways are 
involved in different intracellular signaling beyond MTOR-driven 
cell growth.

6.3 Mechanisms involving neural migration

Neural migration to specific zonal layers of the brain is crucial for 
making appropriate axonal connections and synaptic maturation 
(Figure 4). Many genes are involved in regulating these processes, such 

as RELN, DCX, LIS1, ARX, TUB1A, and FLNA. Mutations in these 
migration-related genes often result in lamination defects and epilepsy 
in humans (193–197). Here, we  focus on reelin (RELN) and 
doublecortin (DCX), whose functions with respect to neural 
migration and epilepsy are more elucidated. DCX is an X-linked 
microtubule-associated protein; patients with DCX mutations have 
structural cortical malformations, often associated with epilepsy 
(194). Specifically, these patients are mosaic for DCX mutations, such 
that a proportion of neurons migrate successfully in the cortex, while 
the mutant ones fail and accumulate in subcortical regions (193, 198). 
This abnormal neuronal localization impacts the formation of 
functional networks and consequently leads to epileptogenesis. 
Interestingly, studies on resected human brain samples demonstrated 
fewer Reelin+ and DCX+ cells in MTLE-hippocampal sclerosis patients 
and chemically-induced seizure models (199–202). Rodent models of 
clinically relevant DCX mutations displayed impaired migration of 
hippocampal granule cells and spontaneous seizures (203, 204). A 
double-null model for DCX and Doublecortin-like kinase 1 was 
epileptic and exhibited more severe migration abnormalities in 
cortical projection neurons and inhibitory interneurons (205, 206). 
Similarly, Reelin is involved in neural migration, especially during the 
early period of embryonic neurogenesis and hippocampus formation. 
At this stage, Reelin is expressed in Cajal–Retzius cells that play 
instrumental roles in the inside-out layer formation of the neocortex 
as well as in hippocampal lamination. Indeed, focal malformations in 
cortex and hippocampal lamination defects are observed in patients 
with RELN mutations (207, 208). These patients also exhibit 
intractable epilepsy (209). Similar phenotypes were also observed in 
the Reeler mouse mutant (210). Later in development, reelin is also 
expressed in inhibitory GABAergic interneurons, which are important 
for regulating network excitability as well as synaptic maturation of 
hippocampal granule cells (211–213). Reduction in the interneuron 
number due to RELN mutation is hypothesized to cause network 
hyperexcitability (202, 214). However, this hypothesis is debatable as 
many clinical reports lack proper age-matched controls. In a recent 
retrospective pediatric brain study, no change was observed in the 
Reelin+ cell number in the hippocampus of epileptic human brains as 
compared to that of age-matched controls (215). Moreover, variability 
in immunohistochemistry results is common due to differential post-
processing time for human brains (216, 217). On the other hand, 
commonly used rodent models, like kainic acid-induced rat seizure 
model, are complex to analyze; kainic acid itself induces death of 
hippocampal neurons. To complicate further, Reelin is known to be an 
upstream regulator of PI3K and RAS pathways (218). So, alteration in 
the reelin expression may have consequences with respect to cell 
proliferation and maturation; but these associations are yet to 
be  proven. Taking together, it remains to be  determined whether 
neuronal migration defects directly lead to epilepsy.

6.4 Mechanisms involving genesis and 
function of cilia: ciliopathy

Ciliary genes have recently been associated with epilepsy. There 
are two types of cilia present in the brain: primary/nonmotile cilia and 
secondary/motile cilia. Primary cilium is a specialized organelle found 
in almost all neural cells that senses and reacts to most of the signals 
and external environmental cues (219, 220). These cilia are rich in 
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signaling receptors and ion channels, which are essential for brain 
growth and function (219). Therefore, it is no surprise that mutations 
in the genes involved in ciliary maturation and function cause 
neurodevelopmental disorders including epilepsy. Clinical studies 
have reported that a significant proportion of patients with juvenile 
myoclonic epilepsy (JME) harbor mutations in the genes involved in 
primary cilia formation, like CILK1, EFHC1, and CDKL5, while 
reduced number of primary cilia was identified in surgically resected 
brain samples of focal cortical dysplasia (FCD) patients (220–225). 
Such clinical findings hint at the role of primary cilium in 
epileptogenesis (Figure 5). However, the precise mechanistic relation 
between primary cilia dysfunction and epilepsy is yet to be known. 
Animal models indicate the importance of primary cilium in neural 
cell proliferation, differentiation, migration, and synaptogenesis (226, 
227). Considering that primary cilia are like signal sensors for a cell, 
their loss possibly makes neurons insensitive to external cues such as 
neuromodulators and causes epilepsy (Figure  5). However, a few 
contradictory reports challenge this hypothesis. A mouse model 
harboring a patient-specific variant in CILK1 was epileptogenic, while 
another study on that identical variant failed to identify any epileptic 
behavior in mice (223, 228). Such contradictory results prevent us 
from confirming the direct correlation between ciliopathies and 
epilepsy. Nevertheless, the field of primary cilia is gaining momentum 
in the field of epilepsy. Very recent high-resolution electron 
microscopy data from human brain slices have shown that primary 
cilia are diverse in their shape, size, and microtubule architecture 
depending on the cell type and brain regions, which in turn can 
diversify the signaling competencies (229). This structural range of 
primary cilia provides each neuron or glial cell with a unique barcode 

of access to the surrounding neural network which influences the 
overall network excitability. Hence, primary cilia have now been 
considered an integral component of the synaptic signaling and 
neural connectome.

Even less information is known about motile cilia dysfunction and 
epilepsy. Motile cilia, present on brain ependymal cells, play an 
integral role in the circulation of cerebrospinal fluid. Recent studies 
indirectly suggest that blockage of fluid flow underlies epilepsy 
development (19, 230). This disrupted flow of cerebrospinal fluid is 
attributed to impaired development and function of ependymal cilia. 
However, the ciliopathy field is still in its infancy due to the cilium’s 
high structural complexity and diverse functional range based on cell 
type and developmental stage. Interestingly, the PI3K-AKT–MTOR 
pathway is very central to this process as well. Crosstalk between the 
PI3K-AKT–MTOR pathway and cilia is evident, with defects in the 
pathway function having adverse effects on the cilium length or even 
the development of ependymal cells (231–233). However, no direct 
role of MTOR-related ciliopathy in epilepsy has yet been established. 
Nonetheless, it opens a new avenue for understanding epilepsy and 
related neurodevelopmental disorders.

6.5 Epilepsy and association with sleep and 
body clock

Beyond direct mechanisms through ion channels or 
neurotransmitters, novel anti-epilepsy therapies can also be developed 
by studying body homeostasis and body cycles, including sleep and 
wakefulness. Epilepsy and sleep have been bidirectionally associated 

FIGURE 5

Potential role of primary cilia in epilepsy. Primary cilia sense the presence of extracellular cues via signaling receptors. This leads to a cellular cascade 
that may lead to activation/inactivation of a set of genes. These transcriptional changes can alter the docking or recycling of surface proteins which 
include signaling receptors and ion channels. In epilepsy, the absence of primary cilia is observed in a proportion of cells. This makes cells insensitive to 
“cilia-mediated signal sensing.” Making aberrant regulation of ion channels which may tweak the excitation/inhibition balance. Dotted arrows indicate 
the proposed pathways.
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with each other for centuries (Figure 6). In other words, epilepsy can 
cause sleep problems in patients while sleep deprivation may trigger 
certain types of epilepsy (234, 235). Especially children with epilepsy 
have been documented for poor sleep quality, increased nocturnal 
awakenings, early morning awakenings, difficulty in falling asleep, 
and/or excessive daytime sleepiness. Certain epileptic seizures occur 
consistently during specific stages of sleep–wake cycles, suggesting a 
strong correlation between the two. Even with respect to the risk of 
mortality, most cases of SUDEP and SIDS occur during sleep, with 
SIDS specifically linked to the rapid eye movement (REM) sleep stage 
(56, 236, 237). In other cases, increased synchronous neuronal firing 
during non-REM (NREM) sleep may make the brain more susceptible 
to seizure activity, while inhibition of thalamocortical synchrony 
during REM lowers the epileptiform brain activities (238, 239). This 
association is often taken as an advantage to diagnose seizure 
activities. For instance, sleep deprivation is used before EEG recording, 
both in epilepsy models and pediatric patients, to evoke heightened 
neuronal activity (111, 240).

The underlying reason behind this interesting connection may 
be aligned to changes in neurotransmitter levels, intracellular and 
extracellular ionic balance, alterations in the duration of sleep stages 
and in brain wave frequencies, ineffective feedback loops, and other 
possibilities (241, 242). Some reports also link sleep disruption and 
pediatric epilepsy through stress and induced neuroinflammation, 

marked by altered expression of inflammatory mediators and glial 
activation (243, 244). Further, the glymphatic system, a recently 
discovered waste clearance system of the central nervous system, is 
being considered as a potential mechanism connecting sleep and 
many neurological disorders including epilepsy, such that its 
dysfunction may account for the common association between 
disturbed sleep or sleep deprivation and increased seizure risk (245–
247). This phenomenon, in turn, can critically disrupt normal brain 
development and cognition, more prominently if it begins at early 
stages in neonatal and pediatric populations (241). Although recent 
studies are trying to understand the effect of current anti-seizure 
drugs on the glymphatic system (248), there are a lot of open questions 
that remain unaddressed.

Curbing sleep issues is proving a good way to attenuate the 
severity of seizure episodes in children, thus becoming potential 
avenues for anti-epilepsy therapies. Certain anti-epileptic drugs 
have analgesic effects that help to alleviate sleep quality in some 
pediatric patients. Administration of melatonin, an endogenous 
hormone that inhibits brain excitability and induces balance in 
sleep–wake cycles and circadian rhythms, is found to 
be neuroprotective and anti-convulsant in nature in both patients 
and mouse seizure models (242, 249–251). The mechanism is based 
on the activation of two high-affinity G protein-coupled melatonin 
receptors, MT1 and MT2, which provide beneficial effects on 

FIGURE 6

Interconnection of epilepsy with body rhythms and sleep. (A) Summary diagram representing the close association between sleep deprivation and 
epilepsy. Schematic demonstrates a patient suffering from either sleep deprivation or epilepsy triggers a higher risk of SUDEP. (B) Sleep deprivation in 
rodents is induced by changing the environment or application of stress. (C) Some of the common molecular and physiological mechanisms 
underlying sleep deprivation and epilepsy are shown. (D) Close association of sleep deprivation and epilepsy introduces a novel therapeutic angle.
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regulating the circadian and sleep pathways without the baggage of 
side effects seen due to regular use of sleep medications (252). Slow-
release melatonin and its agonists are currently being considered as 
sources of novel, efficacious therapeutics against certain types of 
epilepsies and sleep disorders (242, 252, 253). Parallelly, core 
circadian proteins, BMAL1 and CLOCK, have been shown to 
influence excitability and seizure threshold by regulating the 
PI3K-AKT–MTOR pathway (243, 254–257). Studies also reveal a 
feedback loop where MTOR activates BMAL1 via phosphorylation 
(254). Epilepsies associated with PI3K-AKT–MTOR pathway-
related brain malformations also show a dysregulation of the 
expression of core circadian genes, thus making them excellent 
therapeutic targets for treating this specific type of epilepsies (258, 
259). Consequently, the therapeutic possibilities for optogenetics 
and chronotherapy are actively being considered to treat seizures, 
especially those that are known to have a circadian sleep component 
as an underlying mechanism. Finally, given the considerable 
proportion of DRE in children, we  feel an obvious treatment 
strategy would be  toward advancements in personalized anti-
epileptic treatment paradigms, using the time-dependent 
information relevant to the individual patient. This information 
may include times of day that witness the greatest occurrence of 
seizures of the highest levels of epileptogenicity in relation to sleep, 
wakefulness, and other body rhythms (242, 260).

7 Limitations of epilepsy models and 
novel advancements

Despite using diverse model systems, researchers continue to face 
challenges ranging from proper disease recapitulation to discovering 
novel therapeutics. The aforementioned induced epilepsy models are 
currently used by large screening consortia, such as the Epilepsy 
Therapy Screening Program, due to the ease and high throughput 
capacity (261). However, some of these inducible agents are known to 
cause neuronal loss and behavioral changes in mice. Moreover, 
chemical or electric stimulation is not a true cause of epilepsy in 
patients, restricting our capacity to extrapolate the findings in a 
human context. Conversely, genetic models recapitulate the genetic 
etiology and physiology of epilepsy to a much greater extent. 
Unfortunately, these models also face major challenges. One such 
challenge is the uneven frequency of spontaneous seizures, causing 
difficulty in assessing the output. The seizure onset in such models can 
also be different from that of actual patients. Besides seizure rarity, 
many models also exhibit absence or non-convulsive seizures, which 
are generally difficult to detect. In contrast to the models with low 
seizure frequency, there are models that suffer from severe and fatal 
seizures. These animals die after one or a few seizures, making them 
not useful for long-term epilepsy research, but may be beneficial for 
understanding SUDEP. Finally, genetic models face serious challenges 
to recapitulate the varying expressivity of epilepsy as seen in patients. 
As mentioned in Section 4, mutations in the same gene can cause a 
range of phenotypes in patients. This signifies the need to study gene 
interactors and modifiers in model systems. Recently, attempts have 
been made to investigate these connections by introducing the same 
mutation into mice of different strains (262–264). These studies have 
reported that the onset and frequency of seizures vary depending on 
the inbred strain used. We consider the introduction of both primary 

and modifier mutations in models as a useful alternative strategy to 
mitigate the challenge and advance our understanding of 
genetic modifiers.

Further, rodents cannot recapitulate certain genetic and 
developmental traits unique to humans regardless of the similarities 
(265). Due to this, not all aspects of human epilepsy can be accurately 
modeled in rodents, leading to unsuccessful preclinical trials. To 
overcome this, researchers have recently started using patient-derived 
induced pluripotent stem cells (iPSCs), brain organoids, and 
assembloids to generate disease-associated cell types for understanding 
the pathophysiology of certain diseases (266, 267). However, genetic 
variability among different iPSC lines and failure in developing the 
complete brain still limit the usefulness of such models (268, 269). 
Combining in vivo rodent models and in vitro human models seems 
a more efficient strategy to shed light on epilepsy. Recently, human-
mouse chimeric brain models, or humanized mice, have been 
generated wherein patient-derived iPSCs are engrafted in different 
regions of the brain (270). This allows the integration of human neural 
cell development and function in vivo, thus aiding the enhancement 
of our understanding of human brain development and epilepsy.

In addition to the limitation of having accurate model systems, a 
major challenge in epilepsy management is pharmacoresistance. 
Despite proper diagnosis and drug treatment, seizures often tend to 
stay unresolved. Unfortunately, little is known about what causes this 
drug resistance. Alteration of the blood–brain barrier or drug targets 
due to SNPs, environmental influence, genetic background, and 
associated comorbidities are some of the hypothetical mechanisms 
underlying DRE (271, 272); however, nothing is yet proven 
preclinically or clinically (273). Some novel therapeutic approaches, 
including vagus nerve stimulation (VNS), responsive stimulation, and 
deep brain stimulation, involve invasive surgical intervention (274–
276). Although these strategies have shown some success in recent 
times, their invasive nature limits their application in pediatric 
patients. On the other hand, an increase in extracellular serotonin 
(5-HT) levels is reported to inhibit various seizure types (277). 
Complementarily, patients with genetic or acquired 5-HT defects are 
more susceptible to SUDEP (278). In fact, stimulation of 5-HT 
receptors beneficially influences certain preclinical epilepsy models 
(279). Clinically, rapamycin and its analogs are currently the only 
pathway-related medications utilized to treat epilepsy noninvasively 
(280, 281). Unfortunately, these drugs work on a specific cohort of 
tuberous sclerosis patients, harboring rare mutations in TSC1/TSC2, 
resulting in overactivating the PI3K-AKT–MTOR pathway (159, 282). 
Recently, a preclinical study has shown that targeting different 
upstream components of the PI3K-AKT–MTOR pathway but not 
MTOR can acutely treat epilepsy, suggesting that epilepsy is more than 
channelopathies and TORopathies (192). This study also suggested 
that developing epilepsy may have distinct acute and chronic 
mechanisms that can differentially respond to the administered 
cocktail of anti-seizure medications. Together, such studies highlight 
the need to further explore different mechanisms underlying pediatric 
epilepsy and to develop a patient-specific therapeutic approach.

8 Discussion

In this review, we have discussed established and evolving cellular 
and molecular mechanisms underlying the development of pediatric 
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epilepsy, emphasizing the use of diverse types of models and their pros 
and cons. Perspectives regarding potential reasons behind refractory 
epilepsy, along with challenges and contradictions in the field, are also 
brought forward.

Novel epilepsy-related gene variants are progressively being 
identified. However, lack of adequate sample size, heterogeneity 
in the cohort, diagnostic biases, and differential genetic and 
geographical backgrounds often lead to confusion in 
understanding the disease manifestation across patient groups. 
For a long time, the cause of epilepsy was considered monogenic, 
primarily based on defects in single ion channel proteins. 
However, it has become evident that epilepsy is not merely a 
channelopathy. Instead, it is multigenic, often involving molecules 
instrumental in cell cycle and signaling, ciliogenesis, and 
biological rhythms. Among all epilepsies, we opine that pediatric 
epilepsies are possibly the most difficult ones to interpret and 
treat for different reasons. First, a child may suffer from multiple 
overlapping epilepsy types, either simultaneously or sequentially, 
as they age. Next, pediatric patients often suffer from one or more 
developmental comorbidities; this may confuse the diagnoses as 
the boundary between cause and effect becomes blurred in such 
cases. Further, causative de novo point mutations can be difficult 
to identify in a newborn. Moreover, the same gene can 
be associated with different types of epilepsy with variable onsets. 
Worst of all, pediatric patients with very early-onset epilepsies are 
non-verbal, extremely mobile, and cannot emote what they are 
experiencing, resulting in added complications and delayed 
detection of the disorder. Parallelly, invasive brain surgeries on a 
few weeks-to-month-old patients are life-threatening and painful. 
In such situations, recent advancements in EEG, high-resolution 
brain imaging, genetic screening, and detection strategies provide 
hope. Our review has highlighted the evolving complexity of 

pediatric epilepsy, its close connection with neurodevelopment 
and cognition, as well as the associated challenges in the field. 
We also put forward the concept that pediatric epilepsy is a part 
of the neurodevelopmental disorder continuum.

Finally, it is interesting to note that there is a deep underlying 
connection between epileptogenesis and the PI3K-AKT–MTOR 
signaling pathway (Figure  7). Be  it the cause or the effect, the 
development of epilepsy is always correlated to the overactivated 
PI3K-AKT–MTOR pathway. As mentioned in different sections of 
the review, this signaling is responsible for various developmental 
processes, such as proliferation, neural differentiation, and 
formation of ion channels and cilia, as well as helps in the 
regulation of the circadian body clock and sleep rhythms. 
Disruption of any of these cellular processes can also perturb the 
pathway functioning as a feedback mechanism, further triggering 
epileptogenesis. Activating mutations of the pathway themselves 
are known to cause a spectrum of neurodevelopmental disorders, 
including epilepsy. These phenomena highlight common nodes in 
the form of small-molecule targets, that can be  utilized in 
developing potential therapeutic strategies. With the advent of 
these new concepts and tools in the epilepsy field, we are presently 
at an exciting juncture to circumvent the current bottleneck of 
drug resistance in children and reduce the need for invasive 
surgeries in order to provide a better quality of life in future 
patients with pediatric epilepsy.
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