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Background: Acute ischemic stroke (AIS) is a major global health threat 
associated with high rates of disability and mortality, highlighting the need for 
early prognostic assessment to guide treatment. Currently, there are no reliable 
methods for the early prediction of poor prognosis in AIS, especially after 
mechanical thrombectomy. This study aimed to explore the value of radiomics 
and deep learning based on multimodal magnetic resonance imaging (MRI) 
in predicting poor prognosis in patients with AIS who underwent mechanical 
thrombectomy. This study aimed to provide a more accurate and comprehensive 
tool for stroke prognosis.

Methods: This study retrospectively analyzed the clinical data and multimodal 
MRI images of patients with stroke at admission. Logistic regression was 
employed to identify the risk factors associated with poor prognosis and to 
construct a clinical model. Radiomics features of the stroke-affected regions 
were extracted from the patients’ baseline multimodal MRI images, and the 
optimal radiomics features were selected using a least absolute shrinkage and 
selection operator regression model combined with five-fold cross-validation. 
The radiomics score was calculated based on the feature weights, and machine 
learning techniques were applied using a logistic regression classifier to develop 
the radiomics model. In addition, a deep learning model was devised using 
ResNet101 and transfer learning. The clinical, radiomics, and deep learning 
models were integrated to establish a comprehensive multifactorial logistic 
regression model, termed the CRD (Clinic-Radiomics-Deep Learning) model. 
The performance of each model in predicting poor prognosis was assessed 
using receiver operating characteristic (ROC) curve analysis, with the optimal 
model visualized as a nomogram. A calibration curve was plotted to evaluate the 
accuracy of nomogram predictions.

Results: A total of 222 patients with AIS were enrolled in this study in a 7:3 ratio, 
with 155 patients in the training cohort and 67 in the validation cohort. Statistical 
analysis of clinical data from the training and validation cohorts identified two 
independent risk factors for poor prognosis: the National Institutes of Health 
Stroke Scale score at admission and the occurrence of intracerebral hemorrhage. 
Of the 1,197 radiomic features, 16 were selected to develop the radiomics model. 
Area under the ROC curve (AUC) analysis of specific indicators demonstrated 
varying performances across methods and cohorts. In the training cohort, the 
clinical, radiomics, deep learning, and integrated CRD models achieved AUC 
values of 0.762, 0.755, 0.689, and 0.834, respectively. In the validation cohort, 
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the clinical model exhibited an AUC of 0.874, the radiomics model achieved 
an AUC of 0.805, the deep learning model attained an AUC of 0.757, and the 
CRD model outperformed all models, with an AUC of 0.908. Calibration curves 
indicated that the CRD model showed exceptional consistency and accuracy in 
predicting poor prognosis in patients with AIS. Decision curve analysis revealed 
that the CRD model offered the highest net benefit compared with the clinical, 
radiomics, and deep learning models.

Conclusion: The CRD model based on multimodal MRI demonstrated high 
diagnostic efficacy and reliability in predicting poor prognosis in patients with 
AIS who underwent mechanical thrombectomy. This model holds considerable 
potential for assisting clinicians with risk assessment and decision-making for 
patients experiencing ischemic stroke.
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1 Introduction

Stroke, particularly acute ischemic stroke (AIS), is a major global 
health concern. It is not only one of the leading causes of death 
worldwide, responsible for approximately six million fatalities 
annually, but also the primary cause of mortality among residents of 
China (1). AIS accounts for 70% of all cerebrovascular diseases, 
primarily resulting from prolonged or permanent occlusion of 
cerebral vessels, which leads to ischemia and hypoxia in the brain 
tissue, causing localized neurological deficits or permanent loss of 
function (2). This condition is characterized by high rates of morbidity, 
disability, and mortality, with significant implications for patient 
prognosis, which is closely linked to the timeliness and efficacy of 
treatment. Despite substantial efforts by researchers worldwide to 
improve treatment approaches for AIS, including surgical and 
pharmacological interventions, the short-term prognosis remains 
unsatisfactory (3). The epidemiological features of AIS not only pose 
a severe threat to individual health and quality of life but also impose 
a substantial medical and economic burden on both society and 
families, emerging as one of the most pressing challenges in global 
public health.

The treatment of acute cerebral infarction is a complex 
multidisciplinary task that demands close collaboration across 
various departments and stages, with the ultimate goal of delivering 
timely and effective care to patients. Among therapeutic modalities, 
intravenous thrombolysis is widely employed, primarily through 
the administration of agents such as recombinant tissue 
plasminogen activator, urokinase, and tenecteplase, to restore 
blood flow (4). However, despite the ability of intravenous 
recombinant tissue plasminogen activator thrombolysis to alleviate 
symptoms in the short term in most patients, a subset of patients 
still face the risk of functional impairment and hemorrhagic 
transformation. In recent years, endovascular mechanical 
thrombectomy has emerged as a significant advancement in the 
treatment of AIS, particularly in patients with ischemic stroke due 
to large arterial occlusions, and it has been shown to substantially 
improve prognosis. However, some patients have a poor prognosis 
even after mechanical thrombectomy. Regardless of the treatment 
modality employed, early prognosis prediction for patients is of 
paramount importance, as it not only aids in the formulation of 
more precise pretreatment strategies but also facilitates the 

provision of more personalized care (5). Therefore, predicting the 
occurrence and progression of poor prognosis in AIS at an early 
stage and implementing proactive clinical interventions remain the 
central focus of current studies.

Previous studies have confirmed that factors such as the Alberta 
Stroke Program Early Computed Tomography (CT) Score (ASPECTS), 
patient age, presence of atrial fibrillation, and National Institutes of 
Health Stroke Scale (NIHSS) score are closely associated with the 
prognosis of recovery in patients with stroke (6). Smaller infarct 
volumes, well-developed collateral circulation, and lower NIHSS 
scores typically suggest a better prognosis for patients following 
endovascular treatment. Radiomics has recently emerged as a focal 
point of medical research and clinical practice. Advancements in 
neuroimaging have transcended its traditional role as a diagnostic tool 
and assumed an increasingly critical role in clinical decision-making 
(7). The integration of machine learning with radiomics has ushered 
in a revolutionary transformation in medical diagnostics, with 
successful applications in stroke research, such as the identification of 
acute cerebral infarction lesions based on CT- or magnetic resonance 
imaging (MRI)-derived radiomic features. Deep learning, a subset of 
machine learning techniques, constructs multilayered neural networks 
that can learn complex feature representations from vast datasets (8). 
Traditional stroke diagnostic methods have predominantly relied on 
physicians’ visual interpretation of brain images, whereas deep 
learning enables the automatic extraction of features from brain 
images, thereby assisting clinicians in making more accurate and 
timely diagnoses.

The field of medical diagnosis and treatment is currently faced 
with new opportunities and challenges arising from the integration of 
machine learning and radiomics. Currently, the application of 
MRI-based radiomics in predicting the prognosis of patients with 
stroke remains insufficient, with most studies relying solely on 
diffusion-weighted imaging (DWI) sequences, and the use of deep 
learning models is relatively limited. Considering this, the present 
study aimed to leverage multimodal MRI sequence data from patients 
with AIS, in conjunction with various machine learning algorithms 
and deep learning models, to construct a comprehensive predictive 
model for AIS prognosis after mechanical thrombectomy and assess 
its predictive performance. Through this study, we sought to provide 
a more accurate and holistic tool for the prognostic evaluation of 
patients with stroke.
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2 Methods

2.1 Patients

This retrospective study was approved by the Medical Ethics 
Committee of Quzhou People’s Hospital, which waived the 
requirement for informed consent from the participants. We included 
patients with AIS who underwent brain MRI at the hospital’s radiology 
department between January 2021 and May 2024. The diagnosis of 
AIS in this study strictly followed the current clinical guidelines, and 
all patients met the following criteria: (1) presence of symptoms of 
acute neurological deficit with an NIHSS score ≥2; (2) brain 
MRI-DWI sequence showing acute infarction in the responsible 
vascular blood supply area; and (3) exclusion of other non-vascular 
causes (such as epilepsy and metabolic encephalopathy). The inclusion 
criteria were as follows: (1) patients aged ≥18 years; (2) patients who 
met the diagnostic criteria for AIS; (3) patients who underwent high-
quality MRI scans upon admission with complete clinical data; (4) 
patients who received mechanical thrombectomy treatment; and (5) 
patients who underwent MRI examinations before mechanical 
thrombectomy. The exclusion criteria were as follows: (1) severe liver 
or kidney dysfunction, hematological disorders, or malignant tumors; 
(2) intracranial lesions affecting prognosis, such as trauma or tumors; 
and (3) MRI images with artifacts or other factors that compromised 
image quality. We conducted a retrospective analysis of clinical data 
and biochemical results, including age, sex, smoking history, alcohol 
consumption, and history of hypertension, diabetes mellitus, and 
cardiovascular diseases. Prognostic evaluation at discharge was 
performed using the modified Rankin Scale (mRS), with a score of 
3–6 indicating poor prognosis, and a score of 0–2 indicating good 
prognosis. All enrolled patients underwent ICH imaging evaluation 
prior to mechanical thrombectomy, and the diagnostic criteria were 
based on the following features: abnormal isohyperintense lesions on 
T1WI (excluding vascular artifacts) and hypointensity with peripheral 
hyperintense rings on FLAIR; chronic microbleeds are characterized 
by hypointense lesions. In this study, the clinical guidelines for 
mechanical thrombectomy were strictly followed, and patients with 
ICH (24 h < onset) or a significant mass effect (blood loss > 30 mL) in 
the acute phase were excluded as absolute contraindications. For 
patients with chronic phase microhemorrhage (cerebral 
microhemorrhage < 5 mm) or old hemorrhage, we have established a 
multidisciplinary decision-making process in which at least two 
neurointerventional physicians and one neuroimaging expert jointly 
evaluate the patient’s bleeding stability, lesion location, and vascular 
pathway relationship, and make a comprehensive judgment based on 
the patient’s NIHSS score and clinical indications to decide whether 
they should be  included. A total of 222 patients were randomly 
divided into training and validation cohorts at a ratio of 7:3. In the 
training cohort, clinical features with statistically significant 
differences were selected using logistic regression, and a clinical model 
was developed. The workflow of this study is illustrated in Figure 1.

2.2 Image acquisition

Magnetic resonance imaging was performed using two distinct 
MRI machines (Siemens Skyra 3.0 T MRI from Germany and GE 
Signa Voyager 1.5 T MRI from the United States). The patient was 

placed in a supine position and continuous scanning was performed 
from the feet to the head, covering the range from the posterior fossa 
to the cranial vertex. Standard cranial MRI protocols encompassing 
axial T1WI, fluid-attenuated inversion recovery (FLAIR), and DWI 
sequences were employed. The repetition times for the 3.0 T MR were 
2719/8600/2000 ms, with echo times of 9/106/57 ms. For the 1.5T 
MR, the repetition times were 488/8000/3543 ms and the echo times 
were 15/100/133 ms. For both MR scanners, the slice thickness was 
5 mm, the field of view was 24 × 24 mm, and the matrix size was 
512 × 512 pixels.

The MRI images were initially subjected to standardization 
procedures, including voxel resampling to 1 × 1 × 1 mm, adjustment 
of window width and level, N4 bias field correction, and normalization 
using Z-scores. Two radiologists, who were blinded to all patient 
information, assessed the MRI images. The axial MRI images of the 
enrolled patients were imported in DICOM format into the 
ITK-SNAP 3.8.0 software1. First, T1WI, FLAIR, and DWI sequences 
of the patients’ images were recorded. Given the challenges in 
delineating stroke lesion boundaries using T1WI and FLAIR images, 
stroke lesions were manually outlined on DWI images while 
considering the reference T1WI and FLAIR images (Figure  2). 
Disagreements were discussed until a consensus was reached. The 
software subsequently fused the region of interest for each image slice, 
yielding three-dimensional structural data of the lesions (volume of 
interest). To ensure the consistency and stability of lesion 
segmentation, 40 randomly selected MRI images from other patients 
were independently assessed by a second radiologist who applied the 
same methodology to outline the lesions and extract radiomics 
features. The intraclass correlation coefficient (ICC) was used to 
evaluate the consistency of the extracted features, with values 
exceeding 0.75 indicating good reproducibility.

2.3 Radiomics procedure

Radiomic features were extracted using the Pyradiomics package 
of Python 4.8.1, yielding 1,197 features for each region of interest. 
Feature type: the extracted image group features include multi-scale 
features after the original image features (Original), wavelet filtering 
(Wavelet) and LoG (Laplacian of Gaussian) filtering 
(σ = 2.0/3.0/4.0/5.0 mm), covering three categories of features: shape, 
first-order statistics, and texture (GLCM/GLRLM/GLSZM/NGTDM). 
The original image features were extracted directly after preprocessing 
(N4 bias correction and normalization), and the unfiltered feature set 
has been explicitly labeled as the “Original” group. To mitigate 
multicollinearity and achieve dimensionality reduction, the least 
absolute shrinkage and selection operator (LASSO) regression model 
was employed to select significant features. The optimal λ value 
corresponding to the minimum binomial deviance was determined 
using five-fold cross-validation, and features with non-zero coefficients 
were retained to form the final feature subset. The radiomics score was 
calculated based on the weighted summation of these features. A 
logistic regression classifier was employed for machine learning to 
construct the radiomic model, which was subsequently validated 

1 http://www.itksnap.org/
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using an independent dataset. The radiomics score was computed 
using the following equation:

 ( )β= ∑ + =Radiomics score · Intercept 0,1,2,3i Xi i

Where Xi represents the radiomic feature values selected by 
LASSO, and βi is the coefficient corresponding to each selected 
feature Xi.

2.4 Deep learning procedure

In this study, we implemented a deep-learning network using the 
“PyTorch” framework in Python 4.8.1. By constructing a deep, 

non-linear convolutional neural network with multiple hidden layers, 
we progressively extracted and combined low-level features to form 
high-level abstract features, thereby simplifying the complex feature 
extraction process that is typical of traditional machine learning 
methods. We selected ResNet, a classical classification network known 
for its core residual structure, as the backbone model. By establishing 
shortcut connections between the earlier and later layers, ResNet 
effectively facilitates gradient backpropagation during training, 
thereby addressing the degradation problem that is inherent in 
traditional deep networks. ResNet101, consisting of 101 layers, is 
considered to have a relatively shallow structure. Building on 
ResNet101, we developed a 2.5D convolutional neural network (CNN) 
model using a residual structure to extract features. Using transfer 
learning, we converted the dataset features into vectors, which were 
then fused through fully connected layers to classify stroke prognosis.

FIGURE 1

Workflow of the study. (A) Study flowchart of participant selection. (B) Workflow of the radiomics and deep learning analysis of AIS.
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In practice, we first identified the slice with the largest stroke area, 
assuming it to be  the nth slice of the input volume. Subsequently, 

we extracted the (n−2), n, and (n + 2) slices for fusion, which were 
then input into the 2.5D CNN model. To enhance the generalizability 
of the model and mitigate overfitting, various data augmentation 
strategies were employed during training, including random 
translation, scaling, rotation, and shearing, as well as the addition of 
Gaussian noise, blurring, and Laplacian transformations. We applied 
L2 regularization to further optimize the model. The model parameters 
were optimized using the Adam algorithm, and all pretrained layers 
were fine-tuned to adapt to the current task. The initial learning rate 
was set to 0.0005, weight decay to 0.0001, and the L2 penalty coefficient 
to 0.01. Once the model achieved optimal accuracy on the test set, 
we  saved all the model weights and validated the model using an 
independent test set.

2.5 CRD model establishment and 
statistical analysis

This study integrated clinical, radiomics, and deep learning 
models to construct a comprehensive multivariate logistic regression 
model, designated the CRD (Clinic-Radiomics-Deep Learning) 
model. A personalized nomogram was then generated to visualize the 
model, and decision curve analysis (DCA) was applied to quantify 
the net benefit across varying thresholds, thereby assessing the 
practical applicability of the CRD model. Clinical data were analyzed 
using Python 4.8.1 and SPSS version 26.0. For normally distributed 
data, the results are presented as mean ± standard deviation (x ± s) 
and were analyzed using independent t-tests. For non-normally 
distributed data, the median and interquartile range are reported, and 
comparisons were made using the Mann–Whitney U test. Categorical 
data are presented as frequencies (percentages) (n [%]), and 
comparisons were performed using chi-square tests. Logistic 
regression analysis was used to develop the predictive model, and the 
area under the receiver operating characteristic curve (AUC) was 
used to evaluate the predictive capability of the model. The DeLong 
test was employed to compare the AUCs of multiple models, DCA 
was used to evaluate the clinical utility of the model, and the optimal 
model was visualized as a nomogram. Calibration curves were used 
to assess the accuracy of the nomogram predictions, with statistical 
significance set at p < 0.05.

3 Results

3.1 Baseline characteristics

A total of 222 patients diagnosed with AIS were included in this 
study in a 7:3 ratio, with 155 patients in the training cohort and 67 in 
the validation cohort. Table 1 shows that there were no significant 
differences between the training and validation cohorts in terms of 
age, sex, NIHSS score at admission, hypertension, diabetes, 
cardiogenic diseases, smoking, drinking, or intracerebral hemorrhage 
(ICH) (p > 0.05). Table 2 indicates that the clinical data comparisons 
between the two cohorts were analyzed using independent t-tests or 
chi-square tests, with p < 0.05 considered statistically significant. Two 
independent risk factors for poor prognosis were identified: NIHSS 
score at admission and ICH.

FIGURE 2

Based on the manually delineated regions of interest for patients 
with stroke, (A–C) represent the T1WI, FLAIR, and DWI sequences, 
respectively.
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3.2 Radiomics and deep learning models

Using univariate logistic regression analysis and LASSO regression 
for dimensionality reduction, 16 of the 1,197 radiomic features were 
selected to construct the radiomics model. These features included 14 
shapes, 234 first-order features, 286 features from the gray-level 
co-occurrence matrix (GLCM), 208 from the gray-level run length 
matrix (GLRLM), 208 from the gray-level size zone matrix, 182 from 
the gray-level dependence matrix, and 65 from the neighborhood gray 
tone difference matrix. The ICC was >0.75. Based on the LASSO 
regression model, the optimal λ obtained from five-fold cross-
validation was used to select the best radiomic features with non-zero 
coefficients. The distribution of the LASSO coefficients for these 
features is shown in Figure 3.

3.3 CRD model

The AUC analysis of the specific indicators revealed varying 
degrees of performance across the different methods and cohorts 
(Figure  4). In the training cohort, the clinical, radiomics, deep 
learning, and CRD models achieved AUC values of 0.762, 0.755, 0.689, 
and 0.834, respectively (Table 3). In the validation cohort, the clinical 
model exhibited an AUC of 0.874, the radiomics model achieved an 
AUC of 0.805, the deep learning model attained an AUC of 0.757, and 
the CRD model again outperformed all other methods with an AUC 

of 0.908. These findings suggest that the CRD model exhibited the 
most consistent and robust performance in distinguishing between 
classes, with significantly superior AUC values compared to the other 
methods in both the training and validation cohorts.

The calibration curve revealed that the CRD model demonstrated 
exceptional consistency and calibration in predicting poor stroke 
prognosis and actual results (Figure 4). The Hosmer–Lemeshow test 
showed that P was > 0.05, indicating that there was no significant 
difference between the predicted and true values. DeLong’s test 
indicated that in the training cohort, the CRD model outperformed 
both the clinical and deep learning models (p = 0.01 and p = 0.001, 
respectively). In the validation cohort, the CRD model surpassed the 
radiomics and deep learning models in terms of predictive 
performance (p = 0.01 and p = 0.008, respectively; Figure 5). Figure 5 
also shows the DCA for the four models, with the CRD model 
achieving the highest net benefit compared with the radiomics, deep 
learning, and clinical models. Using the CRD model, a visual 
nomogram (Figure 5) was constructed to estimate the risk of a poor 
prognosis. As illustrated in the nomogram, the NIHSS score at 
admission was the most influential factor in the scoring system.

4 Discussion

AIS is a non-communicable disease that severely threatens 
public health and is characterized by high incidence, disability, 

TABLE 1 Patients’ baseline characters of our cohorts.

Characteristics ALL Validation cohort Training cohort p-value

Age 68.99 ± 12.05 70.39 ± 11.81 68.39 ± 12.14 0.324621

NIHSS at admission 7.41 ± 4.69 7.82 ± 5.49 7.23 ± 4.30 0.491425

Gender 1

  0 98(44.14) 30(44.78) 68(43.87)

  1 124(55.86) 37(55.22) 87(56.13)

Hypertension 0.448426

  0 103(46.40) 28(41.79) 75(48.39)

  1 119(53.60) 39(58.21) 80(51.61)

Diabetes 0.944928

  0 168(75.68) 50(74.63) 118(76.13)

  1 54(24.32) 17(25.37) 37(23.87)

Cardiogenic diseases 0.554017

  0 198(89.19) 58(86.57) 140(90.32)

  1 24(10.81) 9(13.43) 15(9.68)

Smoking 0.966679

  0 147(66.22) 45(67.16) 102(65.81)

  1 75(33.78) 22(32.84) 53(34.19)

Drinking 1

  0 165(74.32) 50(74.63) 115(74.19)

  1 57(25.68) 17(25.37) 40(25.81)

ICH 0.561503

  0 201(90.54) 59(88.06) 142(91.61)

  1 21(9.46) 8(11.94) 13(8.39)
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recurrence, and economic burden. The lifetime risk of stroke is 
notably elevated among individuals aged ≥25 years in China, with 
the recurrence rate in the first year after the initial stroke ranging 
between 9.8 and 23.0% (9, 10). Recurrent strokes are associated with 
high rates of disability and mortality. Although mechanical 
thrombectomy in patients with acute stroke achieves a high 
recanalization rate, a significant proportion of patients still 
experience poor outcomes. Early prediction of the functional 
prognosis allows for timely intervention and rehabilitation, such as 
blood pressure and glucose control, individualized early 
anticoagulation and antiplatelet therapies, and neurocognitive 
rehabilitation, thereby enhancing the patient’s quality of life (11). 
Therefore, early prognostic evaluation is of great significance in 
guiding personalized clinical treatment strategies. Previous studies 
have shown that factors such as age, atrial fibrillation, and NIHSS 
scores are closely associated with stroke prognosis. However, the 
mechanisms underlying functional outcomes after mechanical 
thrombectomy for acute stroke are complex, and the prediction of 
stroke prognosis remains controversial (12).

In recent years, neuroimaging technologies have evolved from 
basic diagnostic tools to play more critical roles, particularly in 
guiding reperfusion therapy and predicting prognosis. Currently, 
AIS is primarily diagnosed using CT and MRI, with DWI and 

FLAIR sequences being particularly sensitive to ischemic stroke 
(13). The DWI sequence, as part of the first-line diagnostic approach 
for acute stroke, is considered the most accurate method for 
assessing infarct volume, and MRI may play a crucial role in 
predicting AIS recurrence. High-signal areas on DWI are typically 
indicative of the core infarct regions (14). Previous studies have 
suggested that the infarct volume in patients with acute stroke 
correlates closely with prognosis, with smaller infarct volumes 
before treatment often being associated with better outcomes. 
However, the manual evaluation of MRI images is inherently 
subjective, and the predictive capacity of traditional imaging 
parameters for stroke prognosis remains limited (15).

In recent years, radiomics has emerged as a prominent research 
area that provides multiparametric, morphological, and functional 
data. Radiomics transcends traditional medical imaging models 
based on morphology and semi-quantitative analysis by utilizing 
high-throughput feature extraction algorithms to quantitatively 
analyze imaging data (16). This approach allows for comprehensive 
exploration and analysis of the hidden information embedded within 
images, thereby optimizing the utility of imaging results and 
supporting personalized treatment strategies in clinical practice. 
Radiomics has demonstrated immense potential as an advanced 
technological tool in the field of oncology. This success can 

TABLE 2 Comparison of patients’ baseline characters for poor prognosis in the training cohort and validation cohort.

Characteristics Training cohort Validation cohort

Good 
prognosis

Poor prognosis P-value Good 
prognosis

Poor prognosis p-value

Age 67.29 ± 12.09 70.28 ± 12.10 0.139155 67.43 ± 11.63 76.86 ± 9.57 0.001881

NIHSS at admission 5.84 ± 3.08 9.63 ± 5.03 <0.001 5.52 ± 3.88 12.86 ± 5.19 <0.001

Gender 0.868411 0.266734

  0 42(42.86) 26(45.61) 18(39.13) 12(57.14)

  1 56(57.14) 31(54.39) 28(60.87) 9(42.86)

Hypertension 0.173769 0.224226

  0 52(53.06) 23(40.35) 22(47.83) 6(28.57)

  1 46(46.94) 34(59.65) 24(52.17) 15(71.43)

Diabetes 0.258194 0.478261

  0 78(79.59) 40(70.18) 36(78.26) 14(66.67)

  1 20(20.41) 17(29.82) 10(21.74) 7(33.33)

Cardiogenic diseases 1 0.804267

  0 89(90.82) 51(89.47) 39(84.78) 19(90.48)

  1 9(9.18) 6(10.53) 7(15.22) 2(9.52)

Smoking 0.484597 0.824463

  0 62(63.27) 40(70.18) 30(65.22) 15(71.43)

  1 36(36.73) 17(29.82) 16(34.78) 6(28.57)

Drinking 1 0.616132

  0 73(74.49) 42(73.68) 33(71.74) 17(80.95)

  1 25(25.51) 15(26.32) 13(28.26) 4(19.05)

ICH 0.004568 0.105598

  0 95(96.94) 47(82.46) 43(93.48) 16(76.19)

  1 3(3.06) 10(17.54) 3(6.52) 5(23.81)
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be  attributed to the support provided by genomic projects and 
biomolecular research data, which have enabled researchers to apply 
radiomics to tumor imaging and extract valuable insights from it. In 
tumor imaging, the application of radiomics has expanded to include 
the prediction of tissue pathology, tumor grading, genetic mutations, 
patient survival rates, and therapeutic outcomes (17).

However, the application of radiomics is not limited to tumor 
imaging; any digital medical image can benefit from radiomic 
analysis. Inspired by the successful experiences in tumor imaging, 
researchers have begun applying these techniques to 
non-oncological diseases, including cerebral aneurysms, ischemic 
stroke, hemorrhagic stroke, cerebral arteriovenous malformations, 
and demyelinating diseases. MRI radiomics holds significant value 
in predicting the prognosis of patients with AIS who have 
undergone mechanical thrombectomy (18). Studies have shown that 
effective prognostic models can be developed by extracting features 
from DWI sequences and employing support vector machine 
classifiers (19). Additionally, radiomics can be used to analyze the 
source of AIS thrombosis, thereby guiding clinical decisions 
regarding thrombolytic or thrombectomy approaches. In one study 
focusing on the prognosis of patients with stroke undergoing 
mechanical thrombectomy, those with higher NIHSS scores at 
admission typically had a poorer prognosis. Using radiomics 

models, multiple features that were significantly correlated with AIS 
prognosis were identified, including first-order, shape, and texture 
features (20). Among these, the GLCM reflects the homogeneity and 
heterogeneity of lesions, indirectly revealing the potential impact of 
stroke-related changes in heterogeneity on patient prognosis. 
GLRLM, on the other hand, captures the directional and roughness 
aspects of the image texture, where directional textures may exhibit 
longer runs at specific angles. These features capture local 
heterogeneity and gray-level variations in images, providing a more 
accurate and comprehensive radiomic basis for patient prognostic 
evaluation (21).

Wang et  al. (22) extracted 402 radiomics features from DWI 
sequences. Significant differences in age, infarct volume, baseline and 
24-h NIHSS scores, and hemorrhagic status were observed between 
the groups with favorable and unfavorable functional outcomes. 
Eleven radiomic parameters were identified, showing strong predictive 
performance in both the training and validation cohorts, with AUCs 
of 0.69 (0.59–0.78) and 0.73 (0.63–0.82), respectively. A radiomic 
nomogram combining clinical features (age, hemorrhage, and 24-h 
NIHSS score) and radiomic features showed strong discriminatory 
power in the training cohort (AUC = 0.80; 95% confidence interval 
[CI] 0.75–0.86) and was validated in the validation cohort 
(AUC = 0.73; 95% CI 0.63–0.82). This study did not consider the 

FIGURE 3

Utilization of the LASSO algorithm for feature selection. (A) The LASSO model employs five-fold cross-validation to select and fine-tune the 
parameters (λ). (B) Each colored line represents the coefficient of a specific feature, resulting in the final selection of 16 radiomic features (C).
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location and size of the ischemic injury, which may have affected the 
results. Although radiomic features and clinical variables showed high 

specificity, their sensitivity was lower, likely because of the generally 
favorable outcomes in most patients.

FIGURE 4

(A,B) Receiver operating characteristic curves showing that the CRD model exhibited significantly higher AUC values than the other methods in both 
cohorts. (C,D) Calibration curves showing that the CRD model exhibited exceptional consistency and calibration in predicting a poor prognosis for 
patients with AIS.

TABLE 3 Predictive performance of different models to estimate the risk of poor prognosis.

Model Accuracy AUC 95% CI Sensitivity Specificity PPV NPV Cohort

Clinic 0.774194 0.762084 0.6842–0.8399 0.421053 0.979592 0.923077 0.744186 Training

Radiomics 0.703226 0.75546 0.6776–0.8333 0.614035 0.755102 0.59322 0.770833 Training

Deep learning 0.664516 0.689402 0.6040–0.7748 0.77193 0.602041 0.53012 0.819444 Training

CRD 0.780645 0.833691 0.7691–0.8983 0.754386 0.795918 0.68254 0.847826 Training

Clinic 0.791045 0.874224 0.7894–0.9591 0.523809 0.913043 0.733333 0.807692 Validation

Radiomics 0.761194 0.805383 0.6956–0.9152 0.666667 0.804348 0.608696 0.840909 Validation

Deep learning 0.686567 0.756729 0.6258–0.8876 0.809524 0.630435 0.5 0.878788 Validation

CRD 0.791045 0.907867 0.8352–0.9805 0.904762 0.73913 0.612903 0.944444 Validation
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FIGURE 5

(A,B) The DeLong test was applied to both the training and validation cohorts to evaluate the statistical significance of the differences between the 
models. (C,D) DCA curves demonstrating that the CRD model offers the greatest net benefit compared to the clinical, radiomics, and deep learning 
models. (E) A nomogram was constructed for the CRD model based on the NIHSS score at admission, ICH, radiomics score, and deep learning score.
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Liu et  al. (21) divided patients with AIS into recurrent and 
non-recurrent groups based on stroke recurrence within 1  year. 
From the 1,037 radiomic features extracted from the DWI images, 
20 were selected for machine learning models. In the validation 
cohort, LightGBM exhibited the highest level of accuracy. The 
radiomic data yielded a sensitivity of 0.65, specificity of 0.671, and 
AUC of 0.647. The clinical data achieved a sensitivity of 0.7, 
specificity of 0.799, and AUC of 0.735. When combined, the data 
resulted in a sensitivity of 0.85, specificity of 0.805, and AUC of 
0.789. The top factors of the LightGBM model included clinical 
indicators, such as hemoglobin, platelet-to-large platelet ratio, and 
age, along with radiomic features. However, the study used only 2D 
images, limiting the potential of 3D imaging, and may have 
overlooked certain clinical factors. Future research should expand 
the dimensionality of the clinical data.

Compared with traditional methods that solely analyze imaging 
data, radiomics enables a deeper exploration of image information, 
facilitating the transformation of images into higher-dimensional 
data (23). This not only enhances the accuracy of prognostic 
assessments but also provides stronger support for clinical treatment 
decisions. Radiomic features can reflect the gray-level distribution 
within images and the interrelationships between voxels, and quantify 
the heterogeneity within lesions that are invisible to the naked eye, 
thus aiding in the recognition and classification of diseases (24). 
Radiomics has already been employed in stroke-related research, such 
as identifying acute cerebral infarction lesions based on CT- or 
MRI-derived radiomic features, with MRI-based radiomic features 
being particularly useful for assisting with the early diagnosis of post-
stroke cognitive impairment. Previous studies have predominantly 
utilized DWI sequences for image processing and data extraction 
(25). MRI offers superior tissue resolution, demonstrates exceptional 
sensitivity and specificity for diagnosing AIS, and has gained 
widespread clinical recognition. Multimodal MRI, which combines 
conventional and specialized sequences, reflects the 
pathophysiological changes in ischemic brain tissue. Its utility extends 
beyond diagnosis, offering insights into collateral circulation, 
hemodynamics, and molecular metabolism (26). This comprehensive 
approach allows for an integrated evaluation of the cerebral 
parenchyma, cerebrovascular conditions, and cerebral 
hemodynamics, thereby providing a precise reflection of the 
pathological and physiological state of patients with AIS, ultimately 
guiding the development of more personalized and accurate 
treatment strategies.

Deep learning is a pivotal branch within the broader field of 
machine learning. It emulates the learning process of the human 
brain through the construction of multilayered neural networks, 
thereby enabling comprehension and analysis of intricate data (27). 
Compared with traditional machine learning algorithms, deep 
learning models exhibit a superior capacity for representation 
learning and generalization, autonomous extraction of features from 
data, and the generation of higher-level abstract representations (28). 
The fundamental concept of deep learning is the iterative 
transformation of data features through successive layers of neural 
networks, effectively mapping data from a raw, low-level feature space 
to a more advanced, abstract feature space (29). In this process, each 
layer applies a non-linear transformation to the output of the 
preceding layer, thereby extracting increasingly abstract and 
meaningful features. This layered transformation enables 

deep-learning models to address increasingly complex and abstract 
tasks. The success of deep learning can be attributed to the availability 
of vast datasets, formidable computational power, and advanced 
algorithmic models. With the widespread proliferation of the Internet 
and the acceleration of the digitalization process, the volume of data 
available has increased exponentially. Such data provide rich training 
and testing samples, facilitating outstanding performances using 
deep learning models across diverse and complex scenarios. As 
computer hardware continues to evolve and parallel computing 
technologies advance, the training time of deep learning models will 
be significantly reduced, making deep learning more practical for 
real-world applications.

Deep learning is progressively transforming our understanding 
and practice of medicine. Owing to its robust capabilities in feature 
extraction and pattern recognition, deep learning technology has 
instigated revolutionary changes in various facets of medical 
practice, including diagnosis, treatment, and prognostic evaluation. 
For example, CNNs have been extensively applied for the automatic 
analysis of pulmonary CT images, aiding in the detection and 
diagnosis of diseases such as lung cancer. Moreover, deep learning 
models can segment and annotate medical images, facilitating more 
precise localization and measurement of pathological areas (1). In 
addition, deep learning has demonstrated immense potential for 
disease prediction and prevention. By analyzing and learning from 
large-scale medical datasets, deep learning models can identify the 
risk factors and early warning signals associated with 
specific diseases.

As medical technology continues to advance and digitalization 
accelerates, the volume of medical data is growing exponentially. In 
this context, deep learning, a powerful machine learning technique, 
has demonstrated enormous potential for processing and analyzing 
large-scale medical datasets (30). In particular, the application of deep 
learning in stroke diagnosis and treatment has attracted increasing 
attention. Traditional stroke diagnostic methods often rely heavily on 
the clinical experience and subjective judgment of healthcare 
providers. In contrast, deep learning can automatically extract and 
recognize complex features and patterns associated with stroke by 
learning from vast amounts of medical data, thereby enhancing the 
diagnostic accuracy and efficiency. An accurate assessment of the 
infarct core plays a pivotal role in predicting patient outcomes (31). 
Although CT is more convenient, it is not particularly sensitive to 
early infarction changes. To address this issue, Lu et al. (32) developed 
a deep learning model to identify early subtle AISs in non-contrast CT 
scans. Their CNN model effectively captured the deep image feature 
differences between the region of interest and normal tissue and 
successfully identified and localized lesions. Evaluation using the 
AUC, sensitivity, specificity, and accuracy metrics (with 95% CIs) 
showed that the diagnostic performance of the model significantly 
outperformed that of two experienced radiologists. After referencing 
the model, the diagnostic accuracy of the radiologists also showed 
marked improvement, with results highly consistent with the infarct 
lesion volumes obtained from DWI.

In this study, we  developed a 2.5D CNN model based on 
ResNet101, utilizing residual structures to perform feature extraction 
from brain MRI images. Through transfer learning, the dataset 
features were converted into vectors, which were then fused through 
fully connected layers, to ultimately classify stroke prognosis. The 
model weights were saved when the highest accuracy was achieved in 
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the validation cohort, and a deep learning model was subsequently 
constructed based on these parameters. This study introduces a 2.5D 
CNN model designed to extract brain MRI features and fuse 
multimodal information for the precise identification of stroke 
prognosis-related factors. While reducing the scale and parameter 
count of 3D convolution models, multimodal imaging is leveraged to 
ensure comprehensive feature extraction and accurate classification 
outcomes. This model does not require complex preprocessing of raw 
images, and the regions of interest in the images were validated using 
visualization techniques. The 2.5D CNN combines 2D and 3D 
convolutions, offering two distinct approaches for three-dimensional 
image segmentation: one based on 2D networks and the other on 3D 
networks. However, 2D network-based segmentation utilizes only 
in-slice information, whereas the 3D network approach may risk 
overfitting when computational resources are limited. The 2.5D 
method introduces interlayer information to enhance segmentation 
accuracy, considering the spatial information from adjacent layers. 
The fusion of multi-view perspectives and integration of adjacent 
layers as inputs, along with the incorporation of 3D features, 
significantly improved the model’s prediction results.

Magnetic resonance imaging, particularly quantitative 
susceptibility mapping and R2* relaxometry, plays a vital role in 
diagnosing AIS and elucidating its pathophysiology. These techniques 
can quantify iron concentration and myelin volume fraction, 
providing insights into the evolution of iron and myelination status in 
ischemic lesions. One study explored the relationship between iron 
deposition and myelination changes and neurological outcomes in 
patients with AIS. The results showed that patients with branch 
atheromatous disease (BAD) exhibited a higher susceptibility to 
changes, indicating increased iron deposition (33). Changes in NIHSS 
scores were significantly associated with changes in magnetic 
susceptibility values, but not with R2* values. Patients with increased 
iron and demyelination levels showed less improvement in 
neurological outcomes than those with decreased iron and 
remyelination levels. The BAD subtype, characterized by increased 
iron content and demyelination, was associated with worse 
neurological outcomes.

The ischemic penumbra, a region between irreversibly infarcted 
and normal brain tissue, is crucial in acute stroke treatment. Existing 
detection methods, such as 15O-positron emission tomography, are 
considered the gold standard, but are impractical in emergency 
settings. One study investigated the feasibility of using quantitative 
susceptibility mapping to estimate the oxygen extraction fraction for 
detecting the ischemic penumbra in patients with AIS (34). In 11 
patients with a perfusion-core mismatch ratio ≥1.8, the volumes of 
increased oxygen extraction fraction (>51.5%) correlated positively 
with the ischemic penumbra volumes (r = 0.636, p = 0.035) and 
negatively with the 30-day change in NIHSS scores (r = −0.624, 
p = 0.041). The Dice similarity coefficient between the penumbra 
volumes analyzed using both the Dice similarity coefficient and oxygen 
extraction fraction methods was 0.724, indicating high consistency.

This study has several limitations that need to be addressed. First, 
it was a retrospective analysis with an insufficient sample size. Our 
analysis was based on a single-center study and lacked independent 
external validation, which restricted its generalizability. Second, the 
imaging data utilized in the study were obtained at the time of 

discharge, and the duration of clinical trial participation varied across 
cases, potentially limiting the predictive capability of the model in the 
early stages. Third, we did not perform a subgroup analysis of anterior 
and posterior circulation strokes. Given the substantial differences in 
infarction mechanisms and prognostic factors between these regions, 
such an analysis is crucial for uncovering the specific biological 
associations of a model.

5 Conclusion

The CRD model based on multimodal MRI demonstrated high 
diagnostic efficacy and reliability in predicting poor prognoses in 
patients with ischemic stroke. This approach holds considerable 
potential to assist clinicians in the risk assessment and decision-
making processes for patients with AIS.
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