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Study objectives: Evaluate the performance of a novel home sleep apnea test 
with embedded ECG (SANSA, Huxley Medical, Inc.) in the diagnosis of obstructive 
sleep apnea (OSA).

Methods: This prospective multicenter validation study included 340 participants 
who underwent simultaneous polysomnography (PSG) and SANSA recordings 
across 7 clinical sites. Participants were diverse across age, sex, race, skin tone, 
and body mass index. Diagnostic performance was assessed with the apnea-
hypopnea index (AHI) using both Rule 1A and Rule 1B across standard cutoffs 
for mild, moderate, or severe (≥5 events/h), moderate-to-severe (≥15 events/h), 
and severe (≥30 events/h) OSA. The agreement for AHI and total sleep time (TST) 
between SANSA and consensus PSG scores from three independent scorers was 
evaluated using Pearson’s correlation and Bland–Altman analysis. Sensitivity and 
specificity were calculated at each OSA severity level. Performance of participating 
site PSG scores were also evaluated against consensus PSG scores for comparison.

Results: SANSA demonstrated excellent agreement with PSG for most performance 
parameters. AHI correlation was 0.91 (95% CI: 0.89, 0.93) using Rule 1B and 0.90 
(95% CI: 0.87, 0.92) using Rule 1A. Compared to consensus scored PSG, the device 
detected moderate-to-severe OSA using Rule 1B (the primary endpoint) with a 
sensitivity of 88% (95% CI: 81, 93%) and specificity of 87% (95% CI: 82, 91%), while 
site PSG sensitivity was 89% (95% CI: 82, 94%) and specificity was 93% (95% CI: 88, 
96%). SANSA TST highly correlated with PSG TST (R = 0.82, 95% CI: 0.78, 0.85) and 
classified sleep epochs with an accuracy of 87.2% (95% CI: 87.0, 87.5%).

Conclusion: The SANSA home sleep apnea test demonstrated robust diagnostic 
performance for OSA detection including measurement of sleep compared to 
PSG. Its patch morphology and embedded ECG confer ease of use and multi-
diagnostic potential in sleep medicine and cardiology for the detection of OSA 
and cardiac arrhythmias across diverse clinical populations.

Clinical trial registration:  [https://www.clinicaltrials.gov/study/NCT06070389], 
identifier [NCT06070389]
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1 Introduction

Obstructive sleep apnea (OSA) is characterized by repeated upper 
airway obstruction that leads to intermittent hypoxia, intrathoracic 
pressure swings, sympathetic activation, and arousal from sleep. 
Patients most commonly seek care for excessive daytime sleepiness, 
but OSA is also associated with excess mortality and increased risk of 
cardiovascular disease. The compounded effects of OSA are 
particularly implicated in atrial fibrillation and heart failure, where 
disruption of the atrial substrate and adverse hemodynamics 
contribute to disease progression and recurrence (1–10). Despite its 
high prevalence and comorbidity, most of the nearly 1 billion people 
with OSA worldwide remain undiagnosed and less than one in 50 
undergo testing, highlighting the need for more efficient and versatile 
diagnostic tools (11–13).

Polysomnography (PSG) is the gold standard for OSA diagnosis, 
but it is high cost and requirement of a sleep laboratory staffed by 
polysomnographic technologists limit accessibility; additionally, 
insurers are increasingly denying coverage for in lab PSG. Currently 
available home sleep apnea tests (HSATs) are more readily available 
(14) but prone to user error and discomfort, which can affect data 
quality and completeness, resulting in repeat testing and diagnostic 
delays (15, 16). Moreover, most HSATs only measure cardiac 
parameters in the periphery with photoplethysmography (PPG) and 
lack gold standard electrocardiogram (ECG); therefore, HSATs fail 
to provide actionable insights into cardiovascular conditions 
comorbid with OSA, such as arrhythmia assessment or 
hemodynamic parameters to aid in heart failure management. To 
address these limitations, the SANSA device (Huxley Medical, Inc., 
Atlanta, GA) was developed as a simple, single-point-of-contact 
chest patch with multi-diagnostic capabilities (17). The device 
records 10 physiological channels to diagnose and monitor OSA—
including ECG for atrial fibrillation and arrhythmia detection—and 
can also measure hemodynamic parameters associated with heart 
failure progression (18). This comprehensive, multi-diagnostic 
approach could enable simultaneous detection of OSA and 
cardiovascular comorbidities.

Previous work has reported the design and development of SANSA 
and its automated algorithm to detect OSA (17). The goal of the 
current study is to compare SANSA’s diagnostic performance to gold-
standard in laboratory PSG in a large, prospective, multicenter cohort.

2 Methods

2.1 Study design and participants

Across seven American Academy of Sleep Medicine (AASM) 
accredited clinical sites, individuals undergoing PSG for suspected 
OSA were also monitored simultaneously with the SANSA device 
during a single night of recording. This study was approved by a 
central institutional review board, conformed to the Declaration of 
Helsinki, and was registered on ClinicalTrials.gov (NCT06070389).

2.2 Inclusion and exclusion criteria

Enrolled patients were known or suspected to have OSA based on 
an assessment by, or under the direction of, a board-certified sleep 
specialist. Typical symptoms included excessive daytime sleepiness, 
habitual loud snoring, witnessed apneas, or gasping during sleep. 
Participants were eligible if they were at least 18 years of age, able to 
provide informed consent, and willing to undergo simultaneous data 
collection with the SANSA device and PSG. Consistent with diagnostic 
clinical practice guidelines for HSAT, exclusion criteria included 
diagnosed hypoventilation, severe chronic obstructive pulmonary 
disease (COPD), significant non-respiratory sleep disorders (narcolepsy 
or parasomnias with sleep behavior that was injurious, erratic, or could 
lead the subject to leave the bed), neuromuscular disorders associated 
with respiratory muscle weakness, chronic supplemental oxygen use, 
pregnancy, and the presence of cardiac implantable electronic devices 
or severe congestive heart failure (less than 45% ejection fraction) (19). 
Participants were also excluded for the presence of chest deformities 
interfering with sensor placement, skin injuries, and adverse reactions 
to medical-grade adhesives.

2.3 Clinical procedures

Participants were screened for eligibility by physician investigators 
during routine clinic visits or from the PSG schedule on enrollment 
days based on coordinator and device availability. Prior to overnight 
recording in the sleep laboratory, written informed consent was 
obtained, vital signs were recorded, and questionnaires assessing 
sleep-related symptoms and risk factors, including the STOP-BANG, 
DOISNORE50, and Epworth Sleepiness Scale were obtained (20–22). 
PSG and SANSA recordings were collected simultaneously during a 
single overnight recording in sleep laboratories accredited by 
AASM. PSG signals were acquired in accordance with the technical 
specifications described in the AASM Manual for the Scoring of Sleep 
and Associated Events (Version 2.6) (23). PSG channels included 
oximetry, pulse rate, airflow via thermistor and nasal pressure 
transducer sensors, thoracic and abdominal respiratory inductance 
plethysmography (RIP THO and RIP ABD), electroencephalography 
(EEG), electromyography (EMG), electrocardiography (ECG), and 
electrooculography (EOG). Data collection utilized either the Alice 
(Philips-Respironics, Pittsburgh, PA) or Grael (Compumedics, 
Charlotte, NC) PSG systems.

Each PSG study was manually scored by three independent 
Registered Polysomnographic Technologists (RPSGTs) from a core 
scoring laboratory to ensure a robust ground truth PSG score with 
known interscorer reliability. Each PSG study was also scored by a 
scorer at the local participating site. All scoring followed the AASM 
Manual for Scoring of Sleep and Associated Events (Version 2.6), 
employing Rule 1A (3% desaturation or arousal) and 1B (4% 
desaturation) criteria to score hypopneas. SANSA raw data was 
processed using only the automated scoring algorithm without review 
by a sleep technologist or physician. The severity of sleep apnea was 
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categorized using standard clinical cutoff thresholds: AHI ≥ 5 for mild, 
moderate, or severe OSA; AHI ≥ 15 for moderate-to-severe OSA; and 
AHI ≥ 30 for severe OSA. Only the diagnostic portions of split-night 
polysomnograms were included in analysis. The three scores from the 
core laboratory RPSGTs were used to establish a consensus PSG score 
that was used as the ground truth for all analyses. For continuous 
measures of AHI and total sleep time (TST), the consensus PSG score 
was defined as the mean of the three core RPSGT scores. For categorical 
measures of diagnostic classifications, the consensus PSG score was 
defined as agreement between 2 out of 3 individual scorers on a 
classification (e.g., if 2 of 3 scorers classified a participant as positive for 
a particular severity condition then the participant was positive for that 
condition). Consensus scoring for epoch-level sleep/wake classification 
was determined using a similar approach.

2.4 Statistical analysis

SANSA and participating site PSG results were both compared to 
consensus PSG scores as the common reference. Agreement for the 
continuous parameters AHI and TST was evaluated using Pearson’s 
correlation coefficient and Bland–Altman limits of agreement (24). 
The diagnostic performance of SANSA and participating site PSG 
scores was assessed by calculating sensitivity, specificity, positive 
predictive value (PPV), negative predictive value (NPV), and overall 
accuracy at AHI cutoff thresholds of 5, 15, and 30 events per hour 
using both Rule 1A and 1B. Epoch-level agreement for sleep/wake 
classification was evaluated using sensitivity, specificity, and accuracy 
to detect sleep epochs. Interscorer reliability between the three core 
PSG scores was assessed using the intraclass correlation coefficient, 
ICC (A,1) (25). The study sample size was selected to test if SANSA’s 
sensitivity and specificity to detect moderate-to-severe OSA (Rule 1B) 
were both at least 80%. Sample size was determined using the exact 
binomial test with one-sided alpha level of 0.025 and overall power of 
0.85 to evaluate both endpoints. The resulting analysis required 
enrollment of at least 310 evaluable datasets. Consistent with PSG 
validation studies of other HSAT devices, records were pre-specified 
for exclusion from analysis if SANSA or PSG data were 
non-interpretable or constituted technical failure; which included 
equipment detachment or interference, less than 2 h of PSG diagnostic 
recording time, less than 90 min of PSG TST or 60 min of SANSA 

TST, and insufficient signal overlap between PSG and SANSA when 
excluded periods accounted for 30 % or more of total recording time 
(25–27). Records were also excluded if the participant withdrew from 
the study, administrative errors precluded analysis, or the device 
manufacturer’s instructions were not followed. Differences in 
correlation coefficients were evaluated using a z-test on Fisher 
z-transformed coefficients (28). Fisher’s exact tests were used to 
evaluated differences in proportions (29). All statistical analyses were 
performed in Python (3.11.6).

3 Results

3.1 Study population

A total of 441 participants were enrolled following the inclusion 
and exclusion criteria, of which 340 were included in the final analysis 
group. Figure 1 reports record exclusion for pre-specified reasons 
after enrollment, as described in the methods above. Of the 340 
records in the final analysis, participating site PSG scores were 
unavailable for 160 using Rule 1A and 24 using Rule 1B because the 
collecting site only scored using one criterion due to local payer and 
clinic policy. These datasets were excluded from comparisons 
involving PSG site scores.

Participants were predominantly middle aged (mean 55.4, SD 
15.3) and overweight (mean BMI 33.5, SD 8.7); both sexes were well 
represented (46.8% male, 53.2% female) (Table 1). Participant race 
was predominantly white (67.9%) and black (27.4%). All categories 
of the Fitzpatrick skin tone scale were included with lighter skin 
tones (1–3) representing 74% of participants and darker skin tones 

FIGURE 1

Consort diagram.

TABLE 1 Patient demographics.

Variable

Age (Mean, SD)—yr (55.4, 15.3)

Male (N, %) (159, 46.8)

Race (N, %)

  American Indian/Alaska Native (1, 0.3)

  Asian (5, 1.5)

  Black (93, 27.4)

Native Hawaiian/Other Pacific Islander (0, 0)

  White (231, 67.9)

  Other (10, 2.9)

  Missing (0, 0)

Race (N, %)

  Hispanic (14, 4.1)

  Non-Hispanic (326, 95.9)

Weight (Mean, SD)—kg (97.2, 26.7)

BMI (Mean, SD)—kg/m2 (33.5, 8.7)

Fitzpatrick Scale (Mean, SD) (2.4, 1.4)

STOP-BANG Score (Mean, SD) (4.3, 1.7)

DOISNORE50 (Mean, SD) (5.5, 1.6)

Epworth Sleepiness Scale (Mean, SD) (9.0, 5.1)
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TABLE 2 AHI endpoints.

Rule 1A Rule 1B

SANSA Site PSG SANSA Site PSG

Correlation, R 0.90 (0.87, 0.92) 0.88 (0.84, 0.91) 0.91 (0.89, 0.93) 0.96 (0.94, 0.96)*

Bias 1.8 (0.6, 3.0) 1.6 (0.1, 3.1) 0.3 (−0.8, 1.3) −0.4 (−1.2, 0.4)

Lower LoA −20.4 (−22.5, −18.3) −18.0 (−20.5, −15.4) −18.9 (−20.7, −17.1) −14.6 (−16.0, −13.2)

Upper LoA 23.9 (21.8, 26.0) 21.2 (18.7, 23.7) 19.4 (17.6, 21.2) 13.8 (12.4, 15.2)

Cutoff AHI 5 Se 0.96 (0.93, 0.98) 0.95 (0.89, 0.98) 0.94 (0.90, 0.96) 0.94 (0.90, 0.97)

Sp 0.55 (0.44, 0.65) 0.53 (0.38, 0.67) 0.71 (0.62, 0.79) 0.88 (0.81, 0.94)*

PPV 0.85 (0.81, 0.89) 0.84 (0.77, 0.89) 0.86 (0.81, 0.90) 0.94 (0.89, 0.97)*

NPV 0.85 (0.73, 0.93) 0.79 (0.62, 0.91) 0.86 (0.77, 0.92) 0.89 (0.82, 0.94)

Acc 0.85 (0.81, 0.89) 0.83 (0.76, 0.88) 0.86 (0.82, 0.89) 0.92 (0.89, 0.95)*

Cutoff AHI 15 Se 0.93 (0.88, 0.96)* 0.79 (0.69, 0.87) 0.88 (0.81, 0.93) 0.89 (0.82, 0.94)

Sp 0.74 (0.67, 0.81) 0.85 (0.77, 0.92)* 0.87 (0.82, 0.91) 0.93 (0.88, 0.96)

PPV 0.80 (0.73, 0.85) 0.83 (0.73, 0.90) 0.81 (0.73, 0.87) 0.88 (0.81, 0.94)

NPV 0.90 (0.84, 0.95) 0.82 (0.73, 0.89) 0.93 (0.88, 0.96) 0.93 (0.89, 0.96)

Acc 0.84 (0.79, 0.88) 0.82 (0.76, 0.88) 0.88 (0.84, 0.91) 0.91 (0.88, 0.94)

Cutoff AHI 30 Se 0.87 (0.78, 0.93) 0.97 (0.85, 1.00) 0.82 (0.71, 0.90) 0.91 (0.81, 0.97)

Sp 0.89 (0.84, 0.93) 0.95 (0.90, 0.98)* 0.95 (0.92, 0.97) 0.98 (0.95, 0.99)

PPV 0.76 (0.67, 0.83) 0.83 (0.69, 0.93) 0.82 (0.71, 0.90) 0.91 (0.81, 0.97)

NPV 0.94 (0.90, 0.97) 0.99 (0.96, 1.00)* 0.95 (0.92, 0.97) 0.98 (0.95, 0.99)

Acc 0.88 (0.84, 0.91) 0.96 (0.91, 0.98)* 0.92 (0.89, 0.95) 0.96 (0.93, 0.98)*

This table displays AHI-related endpoints and their 95% confidence intervals (Clopper-Pearson) for SANSA and site PSG using Rule 1A and Rule 1B. An asterisk indicates significantly greater 
performance for the same scoring rule (z-test on Fisher z-transformed correlation coefficients and Fisher’s exact test for proportions). Acc, accuracy; AHI, apnea–hypopnea index; NPV, 
negative predictive value; PPV, positive predictive value; PSG, polysomnography; Se, sensitivity; Sp, specificity.

(4–6) representing 26% (30). STOP-BANG (mean 4.3, SD 1.7), 
DOISNORE50 (mean 5.5, SD 1.6), and Epworth Sleepiness Scale 
scores (mean 9.0, SD 5.1) were consistent with OSA. Medical 
histories were representative of OSA populations, with a higher 
prevalence of hypertension (34.1%), asthma (17.4%), diabetes 
(15.9%), insomnia (8.8%), and arrhythmias (8.6%). A total of 16 
recordings were excluded for insufficient sleep time that were not 
split-night studies (eight due to short sleep time on PSG and eight 
due to short sleep time on SANSA). These participants were similar 
in their medical histories compared to the analysis population and 
a typical sleep disordered breathing clinical population. Two adverse 
events were reported for skin reaction to the medical adhesive 
without sequelae.

3.2 AHI

Results for AHI agreement and diagnostic performance are 
detailed in Table 2 and Figures 2–4. AHI correlation with consensus 
PSG was strong for the SANSA device with the use of Rule 1A 
(R = 0.90) and Rule 1B (R = 0.91), which was consistent with that of 
participating site PSG scores. AHI bias compared to consensus PSG 
was also consistent between SANSA and site PSG using both criteria, 
yet the limits of agreement were narrower for site PSG.

Overall, across AHI cutoff thresholds for Rule 1A and 1B, 
both SANSA and participating site PSG maintained high 

sensitivity to detect OSA, with slightly lower specificity at lower 
AHI cutoffs. Using Rule 1B, SANSA detected moderate-to-severe 
OSA with 88% (95% CI: 81, 93%) sensitivity and 87% (95% CI: 82, 
91%) specificity, which was consistent with site PSG performance 
(versus consensus PSG) of 89% (95% CI: 82, 94%; p = 0.843) 
sensitivity and 93% (95% CI: 88, 96%; p = 0.071) specificity. For 
mild, moderate, or severe OSA, SANSA demonstrated 94% (95% 
CI: 90, 96%) sensitivity and 71% (95% CI: 62, 79%) specificity, 
which was consistent with site PSG sensitivity of 94% (95% CI: 89, 
97%; p = 1.000) but lower than site PSG specificity of 88% (95% 
CI: 81, 94%; p = 0.002).

Using Rule 1A, SANSA detected moderate-to-severe OSA with 
93% (95% CI: 88, 96%) sensitivity and 74% (95% CI: 67, 81%) 
specificity, which was greater than site PSG sensitivity of 79% (95% 
CI: 69, 87%; p = 0.002) but lower than site PSG specificity of 85% 
(95% CI: 77, 92%; p = 0.043). For mild, moderate, or severe OSA, 
SANSA demonstrated 96% (95% CI: 93, 98%) sensitivity and 55% 
(95% CI: 44, 65%) specificity, which was consistent with site PSG 
performance of 95% (95% CI: 89, 98%; p = 0.427) sensitivity and 53% 
(95% CI: 38, 67%; p = 0.862) specificity.

Inter-scorer variability of AHI between the three individual core 
consensus scorers represented by the intraclass correlation coefficient 
was 0.92 for Rule 1A and 0.95 for Rule 1B.

To assess potential bias from exclusions, results were also 
reanalyzed with 35 of the 101 pre-specified exclusions reincluded—
representing all excluded records for which both SANSA and PSG 
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scores were available for comparison. These 35 studies were originally 
excluded for insufficient signal overlap (n = 26), short PSG TST or 
TRT (n = 2), PSG interference with SANSA (n = 5), and IFU 
contraindications (n = 2). Re-inclusion of these records did not 
significantly impact performance for both Rule 1A and Rule 1B 
compared to the dataset containing all pre-specified exclusions 
(Supplementary Table S1).

3.3 TST

Results for TST agreement are detailed in Table 3 and Figure 5. 
TST correlation with consensus PSG was moderately strong for 
SANSA (R = 0.82) but lower than that of site PSG (R = 0.92, p < 0.001). 
Compared to consensus PSG, TST bias was greater and limits of 
agreement were wider for SANSA versus site PSG. Inter-scorer 
variability of TST between the three individual core consensus scorers 
represented by the intraclass correlation coefficient was 0.88. 
Re-inclusion of available pre-specified exclusions resulted in 
comparable TST correlation and wider limits of agreement 
(Supplementary Table S2).

3.4 Sleep/wake classification

The accuracy of epoch-level sleep/wake classification measured by 
SANSA against consensus PSG was 87.2% (95% CI: 87.0, 87.5%). The 
sensitivity and specificity to detect sleep epochs was 95.0% (95% CI: 
94.8, 95.1%) and 62.7% (95% CI: 61.9, 63.5%).

4 Discussion

These results build on previous work by validating the diagnostic 
performance of SANSA in a large, diverse, and prospective population. 
SANSA’s close agreement with PSG combined with its simple, single-
point-of-contact design and capability to detect comorbid 
cardiovascular disorders positions it as an efficient and versatile 
solution to diagnose and monitor OSA.

SANSA provided acceptable diagnostic performance across all 
common OSA severity criteria, which is essential to maintain 
flexibility in current clinical practice given differences between payor 
criteria and treatment protocols at varying severities. In this study, 
SANSA classified moderate-to-severe OSA with high sensitivity and 

FIGURE 2

SANSA AHI-3% Correlation and Bland–Altman comparison against PSG. AHI correlation (A) and Bland–Altman (B) plots of the SANSA multi-diagnostic 
device compared to the PSG consensus score. Corresponding plots are also shown for PSG site scores compared to PSG consensus score (C,D).
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FIGURE 3

SANSA AHI-4% Correlation and Bland–Altman comparison against PSG. AHI correlation (A) and Bland–Altman (B) plots of the SANSA multi-diagnostic 
device compared to the PSG consensus score. Corresponding plots are also shown for PSG site scores compared to PSG consensus score (C,D).

specificity using Rule 1B, which was comparable to participating site 
PSG scores and maintained from SANSA’s previous development 
results. Moderate-to-severe classification performance decreased 
slightly with Rule 1A for both SANSA and participating site PSG 
scores, but remained clinically acceptable and consistent with the 
performance of other HSATs (Sensitivity: 78–91%, Specificity: 
62–76%) (25, 31–33). For mild, moderate, or severe OSA, SANSA 
and participating site PSG scores maintained high sensitivity but lost 
specificity for both scoring criteria, though performance remained 
consistent with or greater than other HSATs for both Rule 1A 
(Sensitivity: 91–97%, Specificity: 35–75%) (31, 32) and Rule 1B 
(Sensitivity: 92–95%, Specificity: 64–80%) (25, 34). Consistent with 
previous reports, this reduced performance for SANSA and 
participating site PSG using Rule 1A was largely attributed to greater 
interscorer variability in PSG scoring compared to Rule 1B due to the 
former including arousals for hypopnea scoring (25, 35, 36).

SANSA’s TST and sleep / wake classification performance were 
also consistent with reports for other HSAT and actigraphy devices 
(25, 37–39). As with all sleep monitoring technologies, higher 
sensitivity to sleep than specificity naturally contributes to better TST 
agreement as sleep efficiency increases. This trend was observed in 

the current study for both SANSA and site PSG compared to 
consensus PSG (data not shown) and aligns with AASM clinical 
practice guidelines to use PSG in patients with severe insomnia and 
other conditions associated with poor sleep efficiency (19). 
Generalizability and transportability of these results across sleep 
medicine practices are supported by the large and diverse enrollment 
across seven geographically distributed sites in both academic and 
community settings. PSG records were collected using site-specific 
PSG protocols and were scored by three independent scorers for 
representative consensus scoring. Participants were well represented 
across age, sex, race, BMI, and skin tone, and included common OSA 
comorbidities of cardiovascular, respiratory, endocrine and other 
sleep disorders. Such high degree of study design diversity exceeds 
that reported by other unattended diagnostic technologies (25, 31, 33, 
34, 40). Comparable operational characteristics after reincluding 
pre-specified exclusions further support stable performance across 
diverse conditions, remaining consistent with or exceeding 
other HSATs.

In addition to clinically acceptable diagnostic performance, 
SANSA’s patch-based form could streamline diagnostic workflows 
to better manage increasing patient volumes. Its single point of 
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contact on the chest could simplify application and patient 
training—removing the need for multiple belts, wires, tubing, 
fingernail clipping, and nail polish removal. Providing a non-digit 
site for oximetry could also represent a useful alternative for patients 
with vascular insufficiency (e.g., Raynaud’s). Its Holter-like design is 
also familiar to referring cardiologists and primary care physicians, 
which could encourage interdisciplinary collaborations to identify 
undiagnosed OSA. Given the strong association between OSA, atrial 
fibrillation, and heart failure (41, 42)—with studies indicating that 
OSA can increase the risk of developing atrial fibrillation by up to 
four-fold and contribute to the progression of HF (43, 44)—SANSA’s 
multi-diagnostic capabilities align with the growing need to identify 
and manage OSA alongside its common comorbidities. In particular, 
the ability of SANSA to record ECG could support simultaneous 
detection and assessment of atrial fibrillation and other arrhythmias, 
similar to PSG and Holter monitors. The potential to measure 
hemodynamic parameters associated with systolic and diastolic 
dysfunction further support its potential use in assessing heart 
failure progression. For example, both pre-ejection period (the time 
between electrical activation of the heart marked by the R-wave and 
aortic valve opening) and diastolic filling time (the time between 
mitral valve opening and closure) may predict heart failure 

progression in certain HF populations (18, 45). The ability to 
simultaneously monitor and diagnose these multiple comorbid 
conditions from a single point of contact device worn during sleep 
could significantly enhance patient care, allowing for earlier 
detection and more comprehensive management of 
at-risk populations.

This validation study was carefully designed to avoid common 
pitfalls in sleep technology performance evaluations, including 
challenges with AHI rules, selection of optimal AHI cutoffs, and 
selective statistical reporting (48). By clearly defining and using 
both Rule 1A and 1B criteria and reporting results across standard 
AHI thresholds (≥5, ≥15, and ≥30 events/h), this study provides a 
transparent and comprehensive evaluation of SANSA’s 
performance. Furthermore, the inclusion of a large, diverse patient 
cohort—spanning across age, sex, race, skin tone, and BMI—
ensured minority representation in device validation. However, 
this study does have important limitations that should 
be  considered when interpreting this work. This study was 
conducted entirely in an in-lab PSG setting during a single night, 
which has been associated with lower sleep efficiency and the first 
night effect (46, 47). Enrollment in this setting was also logistically 
constrained by coordinator and device availability, a common 

FIGURE 4

SANSA TST Correlation and Bland–Altman comparison against PSG. TST correlation (A) and Bland–Altman (B) plots of the SANSA multi-diagnostic 
device compared to the PSG consensus score. Corresponding plots are also shown for PSG site scores compared to PSG consensus score (C,D).
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FIGURE 5

SANSA TST Correlation and Bland–Altman comparison against PSG. TST correlation (A) and Bland–Altman (B) plots of the SANSA multi-diagnostic 
device compared to the PSG consensus score. Corresponding plots are also shown for PSG site scores compared to the PSG consensus score (C,D).

operational challenge in conducting clinical studies. Further 
investigation is warranted in the home setting and across multiple 
nights. Comparison between participating site and consensus PSG 
scores was also limited by the availability of Rule 1A and Rule 1B 
scores due to payer-motivated local scoring policies at each 
clinical site.

In conclusion, SANSA demonstrated reliable diagnostic 
accuracy for OSA, closely aligning with PSG results while offering a 
less obtrusive, single-point-of-contact design. Its capability to 

capture multiple physiological signals and provide total sleep time 
to calculate the AHI supports its use as a comprehensive tool for 
diagnosing OSA and detecting cardiovascular comorbidities, 
enhancing clinical and home-based diagnostics. These findings 
support SANSA’s role as an efficient addition to routine clinical 
practice, improving diagnostic workflows and patient outcomes in 
OSA management.
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time.
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