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Objective: To compare the diagnostic performance of radiomics-based 
analysis and the conventional standardized uptake value ratio (SUVr) method 
in classifying Alzheimer’s disease (AD) and non-Alzheimer’s disease (NAD) using 
AV45 PET imaging.

Methods: This retrospective study included 79 patients diagnosed with AD 
and 34 patients diagnosed with NAD between July 2023 and August 2024. 
All patients underwent AV45 PET imaging, and the images were registered to 
a standard template for the extraction of SUVr metrics, including SUVmaxr, 
SUVmeanr, and SUVmoder, as well as radiomic features (a total of 660 features) 
from regions of interest (ROIs) in the brain lobes. Feature importance was 
ranked using a random forest algorithm, and three models were constructed: 
an SUVr model, a radiomics model, and a combined model. The classification 
performance was assessed using receiver operating characteristic (ROC) 
curve analysis and decision curve analysis (DCA). Model accuracy, sensitivity, 
specificity, and precision were evaluated using the Mann–Whitney test, DeLong 
test, and confusion matrices.

Results: There were no significant differences in gender and age between AD 
and NAD groups (p > 0.05). SUVr analysis showed no statistically significant 
differences in SUVmaxr values in the frontal and occipital lobes between AD 
and NAD patients, while SUVmeanr and SUVmoder in other lobes exhibited 
significant differences (p < 0.05). The 15 most important radiomic features 
were primarily concentrated in the temporal, frontal, and parietal lobes, with 
the highest-ranked features being original_firstorder_Skewness and original_
glcm_ClusterShade. The area under the curve (AUC) of the Radiomics model 
was 0.89 (95% CI: 0.75–0.98), significantly higher than that of the SUVr model 
(AUC = 0.67, 95% CI: 0.45–0.86, p = 0.026). The combined model achieved 
an AUC of 0.88, showing no significant improvement over the Radiomics 
model alone. The Radiomics model outperformed the SUVr model in terms of 
accuracy (88% vs. 68%), sensitivity (96% vs. 78%), specificity (73% vs. 45%), and 
precision (88% vs. 75%). DCA analysis further confirmed the superior diagnostic 
performance of the Radiomics model.

Conclusion: The radiomics-based approach significantly outperformed the 
conventional SUVr method, particularly in terms of sensitivity and specificity. 
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This study highlights the potential of radiomics for quantitative PET imaging 
analysis and its promising clinical applications.
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1 Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder 
characterized by progressive cognitive decline, with pathological 
hallmarks including amyloid-beta (Aβ) plaque deposition and 
neurofibrillary tangles formation. The prevalence of AD in individuals 
over 60 years old is estimated to be 3.7% (1), making it one of the 
leading causes of cognitive impairment among the elderly, posing a 
significant burden on individuals, families, and society (2). In the 
absence of effective prevention and treatment strategies, the number 
of AD patients is projected to rise dramatically to 13.8 million by 2060 
(3). This underscores the increasing need for early identification of 
high-risk individuals and early diagnosis of AD (4).

Aβ plaque deposition is a hallmark pathological feature of AD and 
a necessary condition in the AT(N) diagnostic framework. As a 
non-invasive molecular imaging technique, PET/CT imaging is capable 
of localizing and quantifying specific biomarkers, thereby providing 
significant evaluative value for the diagnosis of AD, as well as for 
assessing disease progression and prognosis (5, 6). However, Aβ PET/
CT positivity is not exclusive to AD, as some NAD patients also exhibit 
similar imaging features, complicating diagnosis and treatment strategies.

Radiomics technology enables the rapid generation of high-
throughput imaging features, capturing pathological changes that are 
imperceptible to the naked eye and may be closely associated with 
cellular or molecular alterations (5, 7). Currently, radiomics has been 
applied to AD PET imaging to explore early diagnosis and differential 
diagnosis through various molecular imaging approaches. Previous 

studies have demonstrated that Aβ PET radiomic features can serve 
as novel biomarkers for the clinical application of AD and mild 
cognitive impairment (MCI) (8). In contrast, the widely used 
conventional SUVr method is susceptible to multiple factors, including 
tracer type and analytical processes. Numerous studies have reported 
that PET radiomics significantly outperforms the SUVr method in 
diagnostic performance (9–12), suggesting that radiomics may 
provide a more precise and efficient approach for Aβ PET image 
analysis, reducing the ambiguities associated with visual interpretation. 
This study aims to further investigate the potential value of radiomics 
in the diagnosis and differentiation of AD.

2 Materials and methods

2.1 Study design

This retrospective study was approved by the Institutional Review 
Board, and the study flowchart is illustrated in Figure 1.

2.2 Participants

This study was a single-center research conducted by the Sichuan 
Provincial People’s Hospital. Research data were gathered between July 
2023 and August 2024. A total of 113 patients were included, 
comprising 79 AD and 34 NAD cases. The NAD group includes 

FIGURE 1

Flowchart of the study.
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patients with dementia with Lewy bodies, frontotemporal dementia, 
progressive supranuclear palsy, vascular dementia, anxiety, and 
depression. This study received ethical approval (No. 2024.403), with 
a waiver for written informed consent.

2.3 Inclusion criteria

Enrolled subjects with confirmed AD presented clinical 
manifestations aligning with the 2011 diagnostic guidelines 
established by the National Institute on Aging and Alzheimer’s 
Association (NIA-AA) (13, 14). All participants met the diagnostic 
criteria for probable Alzheimer’s disease.

NAD patients were diagnosed by psychiatrists based on clinical 
history, physical examination, neuropsychological assessment, 
neuroimaging, and laboratory tests.

2.4 Exclusion criteria

(1) History of stroke with focal neurological deficits. (2) Presence 
of other neurological disorders that may cause brain dysfunction, 
including brain tumors, metabolic encephalopathy, encephalitis, 
multiple sclerosis, epilepsy, and traumatic brain injury. (3) Presence of 
systemic diseases that may lead to cognitive impairment, such as liver 
dysfunction, renal dysfunction, thyroid abnormalities, severe anemia, 
folate or vitamin B12 deficiency, syphilis, HIV infection, and substance 
or alcohol abuse. (4) resence of intellectual disability or 
neurodevelopmental disorders.

2.5 Imaging acquisition and analysis

Patients were not required to fast before the procedure. A 
radiotracer dose of 10 mCi per patient was administered via 
intravenous injection, followed by a 60-min resting period in a quiet, 
dark, and temperature-controlled environment. Imaging was 
performed using a Siemens Biograph mCT Flow 64 PET/CT scanner. 
CT parameters: 120 kV tube voltage, 150 mAs tube current, 2 mm 
slice thickness, 0.55 mm pitch. PET acquisition: one bed position, 
22.1 cm field of view, 15-min acquisition time. Images were 
reconstructed using the TrueX+TOF method with five iterations and 
21 subsets per iteration, yielding a 2 mm slice thickness and 2 mm 
slice interval.

Image processing was conducted using the Siemens MMWP 
TrueD nuclear medicine imaging workstation. PET scans were 
independently reviewed by two experienced nuclear medicine 
physicians with over 10 years of diagnostic expertise. In cases of 
disagreement, a senior radiologist provided a final decision. PET/CT 
positivity was determined based on the Aβ PET diagnostic 
guidelines (15).

2.6 Radiomics and SUVr data acquisition

Currently, PET/CT does not have a standardized T1 template 
similar to MRI for image matching. According to the Expert 

Consensus on the Application of Amyloid PET Imaging in the 
Diagnosis of Alzheimer’s Disease (16), Recommendation 8 suggests 
that institutions capable of conducting semi-quantitative analysis 
should use a simultaneously acquired high-resolution 3D-T1WI MRI 
sequence for subject-specific registration and perform partial volume 
effect (PVE) correction on the amyloid PET images. In cases where 
high-resolution MRI is unavailable, preprocessing should 
be  conducted using a tracer-specific standardized brain template 
(Level II recommendation, Grade B evidence) (16).

In this study, a standardized brain template was used to warp all 
brain images to a common space, followed by regional brain mapping 
to extract SUV values and other relevant imaging data for each region 
of interest.

2.7 Registration

Initial registration was performed using Python with the 
CenteredTransformInitializer method, applying a gradient descent 
optimizer with the following parameters: SetOptimizer 
AsGradientDescent (learningRate = 1.0, numberOfIterations = 100, 
convergenceMinimumValue = 1e-6, convergenceWindowSize = 10). 
Subsequently, multi-brain registration was conducted using the 
ANTs (pyants-0.3.0) framework.1 PET images were registered to a 
standardized template, specifically the MNI152_PET_1mm.nii 
template provided by the BioHistory Group at the University of 
Copenhagen.2

2.8 Region of interest selection

After registration, ROI selection was performed, covering the 
bilateral frontal, temporal, occipital, and parietal lobes. The WFU 
PickAtlas Tool (version 3.0.5) (17) was used for ROI delineation. Brain 
region values were extracted using the CL standard mask images 
(voi_ctx_2mm.nii and voi_WhlCbl_2mm.nii) provided by 
GAANI (18).

SUVr values were calculated using Python (version 3.7.1) (19). 
SUVmax: The maximum voxel value within the ROI. SUVmean: The 
mean voxel value across all voxels within the ROI. SUVmode: The 
most frequent voxel value within the ROI.

Radiomic feature extraction from the ROI was conducted using 
Pyradiomics (version 3.0.1). A total of 110 features were extracted per 
ROI, yielding 660 features in total. The ratio of radiomic features in 
the positive lesion area to those in the whole cerebellum (WhlCbl) was 
computed as Radiomics_r.

1 https://github.com/ANTsX/ANTsPy

2 https://researchprofiles.ku.dk/en/

publications/a-fdg-pet-template-in-mni-space-aligned-to-the-mni152-

atlas-this
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2.9 Feature selection

Patients were randomly divided into a training set (n = 79) 
and a test set (n = 34) in a 7:3 ratio. Before feature selection, all 
features were normalized using Z-score normalization, where 
each feature value was subtracted by the mean and then divided 
by the standard deviation (SD). Feature selection was performed 
based on feature importance ranking using a random 
forest algorithm.

2.10 Radiomics model

The most valuable features were selected from PET images 
based on random forest feature importance ranking to construct a 
machine learning model. The selected features were used for 
random forest model training and validation. Three models were 
compared in terms of AUC value and classification effectiveness: 
SUVr alone, Radiomics_r alone, and a combined SUVr + 
Radiomics_r model.

2.11 Statistical analysis

All statistical analyses were conducted using Python (version 
3.7.1)3 and Pyradiomics (version 3.0.1). Descriptive data were 
expressed as Mean ± SEM. Differences between groups were assessed 
using the Mann–Whitney test. The effectiveness of each model was 
evaluated using ROC curve analysis and AUC values. Model 
performance comparisons were performed using the DeLong test to 
assess differences between ROC curves. DCA was used to compare 
the net benefit of different models.

3 Results

3.1 Patient characteristics

A total of 113 patients were included in this retrospective study, 
with 79 patients assigned to the training set and 34 patients assigned 

3 https://www.python.org/

to the test set. There were no statistically significant differences in 
gender or age between the training and test sets (p > 0.05; Table 1).

3.2 SUV ratios of brain lobes to cerebellum 
in the training set

A comparison of AD and NAD patients in the training set was 
conducted using the Mann–Whitney test. The results indicated no 
statistically significant difference in SUVmaxr values between the two 
groups in the frontal and occipital lobes. However, significant 
differences were observed in SUVmaxr, SUVmeanr, and SUVmoder 
values in the other brain lobes (p < 0.05) (Table 2).

3.3 Optimal radiomics features

For each patient, 110 radiomic features were extracted from each 
ROI, including 16 shape features, 19 first-order statistical features, and 
75 texture features. The radiomic features used in the model are 
detailed in Table 3.

3.4 Random forest feature importance 
selection

In the SUVr model, a total of 15 feature values (SUVmaxr, 
SUVmeanr, and SUVmoder) derived from ratios between regions of 
interest (cerebral cortical and striatal (CTX), bilateral frontal lobes, 
bilateral temporal lobes, bilateral parietal lobes, and bilateral occipital 
lobes) and the WhlCbl region were evaluated using a random forest 
feature importance analysis. Among these, the four most important 
features were primarily concentrated in the frontal lobe, cerebral 
cortex and striatum, and temporal lobe, specifically the SUVmeanr 
and SUVmoder values. In contrast, features from the parietal and 
occipital lobes, as well as SUVmaxr values, demonstrated lower 
importance (Figure 2A).

In the Radiomics model, the 15 selected feature ratios exhibited a 
different distribution of importance. The four most important features 
were primarily located in the temporal, frontal, and parietal lobes, 
with the most significant radiomic features being original_firstorder_
Skewness and original_glcm_ClusterShade (Figure 2B).

TABLE 1 Patient characteristics.

Features Training set (n = 79) Test set (n = 34)

AD (n = 55) NAD (n = 24) p-value AD (n = 23) NAD (n = 11) p-value

Female/Male 42/13 14/10 0.107 16/7 6/5 0.398

Age(y) 62.43 ± 9.49 65.08 ± 12.67 0.079 66.17 ± 9.62 68.00 ± 11.24 0.658

Range 46–88 31–81 / 45–81 52–85 /

MMSE 17.56 ± 5.31 18.95 ± 4.04 0.242 16.30 ± 5.92 19.30 ± 4.08 0.482

MoCA 12.85 ± 4.03 14.12 ± 3.97 0.230 12.75 ± 4.71 16.80 ± 3.73 0.017

CDR 0.90 ± 0.54 0.64 ± 0.34 0.110 0.87 ± 0.42 0.80 ± 0.25 0.864

AD, Alzheimer’s disease; NAD, Non-Alzheimer’s disease.

https://doi.org/10.3389/fneur.2025.1594470
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.python.org/


Gao et al. 10.3389/fneur.2025.1594470

Frontiers in Neurology 05 frontiersin.org

3.5 Distribution differences of optimal 
features in SUVr and Radiomics_r models

The distribution of feature values between the two models showed 
statistically significant differences (p < 0.001). In the SUVr model, the 
Frontal_moder feature values for AD and NAD patients were 
1.42 ± 0.36 and 0.97 ± 0.33, respectively (Figure 3A). In the Radiomics 
model, the Temporal + original_firstorder_Skewness feature values for 
AD and NAD patients were 0.43 ± 0.67 and 0.95 ± 0.96, respectively 
(Figure 3B).

3.6 Confusion matrix of SUVr and 
Radiomics_r models

The Accuracy, Precision, Recall, and F1 Score for the SUVr, 
Radiomics, and Radiomics + SUVr models are as follows: 0.68, 0.88, 
0.85, and 0.75, 0.88, 0.85, and 0.78, 0.96, 0.96, and 0.77, 0.92, 0.90, 
respectively, (Figures 4A–C).

3.7 Comparison of ROC and DCA for SUVr 
and Radiomics_r models

For model evaluation, the SUVr model was built using the top 
four most correlated features, while the Radiomics model incorporated 
15 highly correlated features. Additionally, a combined model 
integrating both approaches was analyzed using ROC and DCA 

curves. The results demonstrated that the Radiomics_r model 
achieved the highest AUC value of 0.89 (95% CI: 0.75–0.98), whereas 
the SUVr and SUVr+ Radiomics_r models were 0.67 and 0.88, 
respectively. The combined model did not show further improvement 
in diagnostic performance, with an AUC of 0.88 (95% CI: 0.73–0.99) 
(Figure  5A). The Radiomics_r model significantly improved the 
characterization of AV45-positive patients compared to the traditional 
SUVr approach, with a statistically significant difference in AUC 
values (p = 0.026). Furthermore, the Radiomics_r model 
outperformed the SUVr model in accuracy, sensitivity, specificity, 
precision, PPV (Positive Predictive Value) and NPV (Negative 
Predictive Value) (Table 4). Similarly, DCA analysis confirmed that 
the Radiomics_r model provided a superior net benefit compared to 
both the SUVr model and the combined SUVr + Radiomics_r model 
(Figure 5B).

4 Discussion

Alzheimer’s disease (AD) is a severe neurodegenerative disorder, 
and its diagnosis remains a major challenge in the medical field. The 
application of Aβ (amyloid-beta) PET/CT imaging tracers has brought 
significant promise for early disease detection. These tracers enable 
both qualitative and quantitative assessments of AD by capturing the 
distribution and concentration of Aβ deposition in the brain. 
However, the clinical heterogeneity and complexity of AD result in 
overlapping clinical symptoms and imaging features with non-AD 
patients, which complicates accurate diagnosis, prognosis, and 
targeted treatment (20, 21). Therefore, developing more advanced 
biomarkers and models to improve metabolic information and 
predictive ability are still crucial for distinguishing AD from 
non-AD (9).

In recent years, the emergence of radiomics has provided an 
advanced approach to disease diagnosis. By extracting high-
throughput imaging features, such as texture, morphology, and 
grayscale distribution, radiomics captures both low-order and high-
order statistical attributes of imaging data, making it particularly 
suitable for complex, heterogeneous, and multifaceted diseases. This 
has improved the accuracy of clinical diagnosis, prognosis, and 
prediction, and has increasingly attracted attention in the study of 
brain diseases (22, 23). The increasing application of machine learning 
has further strengthened radiomics analysis, allowing for more 
comprehensive models to handle high-dimensional and multi-variable 

TABLE 2 Comparison of SUVr between AD and NAD patients in the training set.

Parameters Groups CTX Frontal Temporal Parietal Occipital

SUVmaxr

AD 1.09 ± 0.16 1.13 ± 0.14 1.05 ± 0.14 1.10 ± 0.16 1.08 ± 0.16

NAD 0.99 ± 0.11 1.15 ± 0.17 0.99 ± 0.09 1.03 ± 0.09 1.02 ± 0.14

p value 0.006 0.759 0.049 0.027 0.068

SUVmeanr

AD 1.24 ± 0.18 1.10 ± 0.14 1.11 ± 0.13 1.13 ± 0.15 1.17 ± 0.13

NAD 1.02 ± 0.14 1.01 ± 0.09 1.02 ± 0.08 1.00 ± 0.10 1.05 ± 0.10

p value 0.000 0.002 0.001 0.000 0.000

SUVmoder

AD 1.41 ± 0.29 1.42 ± 0.36 1.34 ± 0.26 1.40 ± 0.32 1.35 ± 0.25

NAD 1.08 ± 0.21 0.97 ± 0.33 1.04 ± 0.21 1.00 ± 0.26 1.09 ± 0.21

p value 0.000 0.000 0.000 0.000 0.000

TABLE 3 The radiomics features of the PET model.

Model Filter Feature class Number

PET model

Wavelet 

(HHL)
First Order Features 19

Wavelet 

(HHL)
Shape Features 16

Wavelet 

(HHL)

Texture 

Features

GLCM 24

GLSZM 16

GLRLM 16

NGTDM 5

GLDM 14
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data compared to traditional methods. These models facilitate disease 
prediction and accurate classification of overlapping symptoms, 
thereby aiding clinical decision-making (24). More recently, deep 
learning has been increasingly used for neuroimaging tasks involving 

classification and prediction. Compared to traditional approaches, 
deep learning models have the advantage of minimal inference time 
while eliminating the need for complex image preprocessing steps 
(25). These advancements provide an optimal solution for AD 

FIGURE 2

(A) The 15 selected features in the SUVr model. (B) The 15 selected features in the Radiomics model.

FIGURE 3

(A) Distribution difference of Frontal_moder, the optimal feature selected in the SUVr model. (B) Distribution difference of Temporal + original_
firstorder_Skewness, the optimal feature selected in the Radiomics model.

FIGURE 4

(A) Confusion matrix of the SUVr model in the testing set; (B) Confusion matrix of the Radiomics model in the testing set; (C) Confusion matrix of the 
Radiomics + SUVr model in the trainning set.
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diagnosis and differentiation and have demonstrated promising 
classification performance (26). The integration of radiomics and 
machine learning offers a vast research potential for novel imaging 
data analysis methods.

This study utilized Aβ PET/CT imaging data to extract 15 
radiomic features, identifying four features with strong correlations to 
AD diagnosis, primarily located in the frontal, temporal, and parietal 
lobes. The most significant features included original_firstorder_
Skewness and original_glcm_ClusterShade. original_firstorder_
Skewness reflects the skewness of pixel intensity distribution, 
indicating asymmetrical metabolic or pathological deposition patterns 
in specific brain regions. Meanwhile, original_glcm_ClusterShade, 
derived from the gray-level co-occurrence matrix, quantifies texture 
complexity and captures microstructural variations in brain gray 
matter. This complements the limitations of the SUVR single 
quantitative value (10). And has a significant association with the 
clinical diagnosis than SUVR (27). The distribution of these radiomic 
features closely aligned with findings from the SUVr method 
(involving the frontal, temporal, and parietal lobes), which is also 
consistent with previous studies (8, 28, 29), highlighting the critical 
role of these brain regions in AD diagnosis. Additionally, in the SUVr 
method, moder emerged as a particularly strong diagnostic feature. 
As a quantitative metric, moder reflects the mode signal intensity 
within a specific brain region, providing a detailed characterization of 
regional Aβ pathology distribution.

Comparing radiomics and SUVr methods, the Radiomics_r 
model demonstrated significantly superior diagnostic performance 
based on ROC curves and DCA decision curve analysis, achieving 
an AUC of 0.89 and an accuracy of 0.88. These findings align well 
with literature reports (10, 11, 30, 31), where AUC values for AD 

differentiation typically approach 0.9, and PET-based classification 
of AD versus normal controls achieves accuracy rates of 80–90% (32, 
33). In contrast, the SUVr model exhibited lower AUC, sensitivity, 
specificity, and accuracy, with specificity being particularly low 
(0.45). This is consistent with prior findings, as Aβ PET has been 
reported to have relatively low specificity (below 60%) (34). Similarly, 
a meta-analysis by Morris et al. (35) found that while Aβ PET is 
highly sensitive for detecting AD and demonstrates good overall 
diagnostic efficacy, its specificity remains moderate. This is largely 
due to a high false-positive rate, as other types of dementia, such as 
dementia with Lewy bodies (DLB) and frontotemporal dementia 
(FTD), may also present AD-like pathological changes. Additionally, 
SUVr values often fall within a research-defined range, with whole-
brain cortical SUVr thresholds typically between 1.2 and 1.5 (36). 
Chanisa et al. (37) observed that β-amyloid plaques tend to spread 
from the cerebral cortex to the cingulate and precuneus regions, with 
the highest 11C-PIB deposition in the anterior and posterior 
cingulate gyri. Their study also suggested that regional SUVr-based 
diagnosis provides greater sensitivity and specificity than whole-
brain SUVr, with regional SUVr cut-off values between 1.46 and 1.81. 
This highlights the substantial overlap between different pathological 
conditions, which our study aims to address by distinguishing Aβ 
PET-positive lesions in AD and NAD patients. Our results confirm 
the irreplaceable advantage of radiomics in overcoming 
this challenge.

Interestingly, the combined SUVr + Radiomics_r model exhibited 
lower diagnostic performance than the Radiomics_r model alone. 
This may be attributed to fundamental differences in how SUVr and 
Radiomics_r features characterize imaging data, suggesting that 
radiomics not only enhances the differentiation between AD and 

FIGURE 5

(A) Comparison of ROC curves for SUVr, Radiomics_r, and SUVr + Radiomics_r models. (B) Comparison of DCA curves for SUVr, Radiomics_r, and 
SUVr + Radiomics_r models.

TABLE 4 The diagnostic ability of each model.

Models AUC Accuracy Sensitivity Specificity Precision PPV NPV

Radiomics 0.89 0.88 0.96 0.73 0.88 0.88 0.89

SUVr 0.67 0.68 0.78 0.45 0.75 0.75 0.50

SUVr+RAD 0.88 0.85 0.96 0.64 0.85 0.85 0.88

PPV, Positive predictive value; NPV, Negative predictive value.
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NAD patients but also provides a more precise capture of key 
disease characteristics.

It is worth noting that despite the inferior overall performance of 
the SUVr model compared to radiomics, there remains potential for 
improving its diagnostic capability. In cases where full radiomics 
analysis is not feasible, selecting moder values from the frontal, 
temporal, and parietal lobes as supplementary indicators could 
enhance the reliability of SUVr-based diagnosis. This finding provides 
new insights for optimizing traditional methods.

This study has several limitations. First, radiomics analysis relies on 
large, high-quality datasets, and our study was limited by a relatively 
small sample size and single model fitting. Larger datasets are needed to 
validate the generalizability of our findings and assess results stability 
through cross-validation. Second, we only extracted PET-based features, 
as CT and PET/CT standardized brain templates were unavailable, 
preventing the extraction of multimodal features. Furthermore, MRI 
imaging data were not incorporated, despite its importance in structural 
brain analysis. The inclusion of MRI data in future studies could provide 
a more comprehensive assessment of radiomic features. Additionally, 
variations in tracer affinity, pharmacokinetics, region of interest selection, 
reference regions, and imaging acquisition parameters (e.g., tracer 
dosage, scan timing, and image reconstruction techniques) may lead to 
inconsistencies across studies, emphasizing the need for standardized 
quantitative methodologies to ensure reproducibility across different 
research centers.

5 Conclusion

This study demonstrates the significant potential of radiomics and 
machine learning in Aβ PET/CT-based AD diagnosis and differentiation. 
Radiomic features derived from Aβ PET imaging could serve as novel 
neuroimaging biomarkers for clinical applications in AD. Additionally, 
Aβ PET imaging enables continuous monitoring of brain Aβ burden 
dynamics, establishing correlations with disease progression and 
facilitating treatment guidance and therapeutic efficacy evaluation.
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