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Background: Ischemic stroke is a disease in which local ischemia and hypoxia 
of brain tissues are caused by obstruction of blood vessels in the brain, which 
in turn triggers brain tissue damage and neurological dysfunction. Recent 
studies have made significant progress in understanding the role of exosomes 
in ischemic stroke. Exosomes exhibit anti-inflammatory, immunomodulatory, 
anti-apoptotic, angiogenic, and neuroregenerative effects, as well as glial scar 
reduction and drug delivery effects in ischemic stroke. However, there is a 
notable gap in bibliometric analyses that focus specifically on this subject. This 
study systematically evaluated the current knowledge and identified emerging 
research trends regarding exosomes in ischemic stroke through a bibliometric 
analysis.

Methods: We retrieved research articles on the role of exosomes in ischemic 
stroke published between 2004 and 2023 from the Web of Science Core 
Collection (WoSCC) database and then conducted a bibliometric analysis using 
VOSviewer, CiteSpace, and the bibliometrix package in the R programming 
environment.

Results: A comprehensive analysis of 374 publications from 38 countries 
revealed a steady increase in research focused on exosomes in ischemic stroke. 
This analysis significantly emphasized the contributions of researchers from 
China and the United States. Key research institutions in this field include Henry 
Ford Health System, Henry Ford Hospital, and Shanghai Jiao Tong University. 
The International Journal of Molecular Sciences is the top journal in terms of 
publication output, and Stroke is the most frequently co-cited journal. This 
extensive study involved 468 authors, the most prolific of whom are Michael 
Chopp, Zhengbiao Zhang, and Liang Zhao, Hongqi Xin is the most frequently co-
cited researcher. The primary areas of investigation are the role of endogenous 
exosomes in initiating and progressing ischemic stroke, as well as the potential 
therapeutic applications of exogenous exosomes.

Conclusion: In the context of ischemic stroke, a recent bibliometric evaluation 
provided a comprehensive analysis of research trends and developments related 
to exosomes. The findings of this study highlight current research frontiers and 
identify significant emerging trends. These findings offer a crucial resource for 
researchers focusing on exploring exosomes.
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Introduction

Ischemic stroke significantly contributes to global mortality 
and disability (1). Treatment options are limited, primarily because 
effective interventions must occur within a short timeframe. This 
often results in suboptimal post-treatment outcomes. Therefore, it 
is crucial to investigate management strategies requiring 
immediate, comprehensive care. Current treatment options for 
ischemic stroke include thrombolytic therapy, mechanical 
thrombectomy, angioplasty, anticoagulant and antiplatelet 
medication use. In addition, various interventional techniques, 
such as stent placement and surgical revascularization, have been 
employed in clinical practice (2). However, it’s important to 
acknowledge that these surgical and interventional methods carry 
risks, and long-term medication use can result in side effects. 
Therefore, there is an urgent need to develop safer and more 
effective alternative treatments. It is particularly crucial to explore 
new strategies for managing ischemic stroke because timely 
intervention and a collaborative approach are essential for 
improving patient outcomes. Exosomes are small, 30- to 
150-nanometer-sized vesicles released by various cell types into 
body fluids, such as blood, urine, saliva, and cerebrospinal fluid, 
they are formed by the fusion of endosomes with the plasma 
membrane, allowing the vesicles to enter the extracellular space. 
Exosomes carry a variety of important biomolecules, including 
lipids, proteins, RNA (especially microRNA and messenger RNA), 
and DNA fragments, all of which are essential for cellular 
communication and many biological processes (3). Almost all cell 
types can produce exosomes, which are characterized by low 
immunogenicity and tumorigenicity, efficient drug delivery, and 
blood–brain barrier crossing (4). Recent studies have shown that 
exosome therapy has neuroprotective and reparative effects in 
ischemic stroke, suggesting that it may be  an effective new 
therapeutic strategy. Meanwhile, studies on using exosomes as 
diagnostic markers and using engineered exosomes as drug 
carriers are emerging. However, there is a gap between animal 
experiments and clinical translation, as well as between laboratory 
results and bedside applications. This paper uses bibliometrics to 
grasp the overall development of exosomes in ischemic stroke, 
reveal research hotspots, predict future research trends, accurately 
locate innovation breakthroughs, and provide “discipline 
navigation” and “cutting-edge insight” for the field, this information 
provides smarter decision support for the research ecology.

Methods

Search strategy

A systematic literature search was performed in the Web of Science 
Core Collection (WoSCC),1 using the following query: 
((TS = “Exosomes”) AND TS = “ischemic stroke”) AND LA = “English,” 
with filters applied for “articles” and “reviews” (Figure 1).

1 https://webofscience_clarivate_cn.hnucm.opac.vip/wos/woscc/

basic-search

Data analysis

VOSviewer (version 1.6.19) is bibliometric analysis software that 
extracts key information from numerous publications. It is commonly 
used to construct networks of collaboration, co-citation, and 
co-occurrence. In this study, the software performed the following 
analyses: journal and co-cited journal analysis, co-cited author 
analysis, country and institution analysis, and keyword co-occurrence 
analysis. In VOSviewer maps, nodes represent items such as countries, 
institutions, journals, and authors. The size and color of the nodes 
indicate the quantity and classification of these items, respectively. The 
thickness of the lines between nodes reflects the degree of 
collaboration or co-citation between items. In our study, CiteSpace 
was used to plot biplot overlays of journals and to analyze references 
using citation bursts. The R package “Bibliometrix” (version 4.3.2) was 
used for thematic evolution analysis and to construct a global 
distribution network of exosomes in ischemic stroke. Additionally, 
we analyzed the annual publication volume of papers using Microsoft 
Office Excel 2021.

Results

Quantitative analysis of publication

Our investigation identified 358 studies related to exosomes in the 
context of ischemic stroke published over the last two decades. This 
collection comprises 271 original research articles and 87 review papers. 
The data indicate that from 2012 to 2017, the number of publications 
was relatively low, averaging just 5.1 articles per year, which suggests 
that this research area was still in its early stages of development. In 
contrast, from 2018 to 2023, there was a remarkable increase in the 
publication frequency, with an average of 54 articles published annually. 
Notably, in 2020, 53 articles were published, 1.8-fold increase compared 
to previous years. The total number of publications reached 92 by 2023, 
demonstrating a consistent upward trend in research output since 2018, 
especially compared with earlier years.

Country and institutional analysis

A total of 36 countries and 199 academic institutions have 
conducted research on the role of exosomes in ischemic stroke. A 
significant portion of this research originates from Asia, with notable 
contributions from three European countries (Table 1). China was the 
leading contributor, producing 229 publications, accounting for 
59.48% of the total output. The United States was the second-largest 
contributor, with 85 publications (22.07%), Germany and Italy added 
18 (4.6%) and 9 (2.3%) publications, respectively. China and the 
United  States together constitute 81.6% of the total publication 
volume, an analysis of collaborative networks among 48 countries 
reveals strong partnerships, particularly between the two countries. 
Additionally, notable collaborations involve Germany and China, as 
well as Australia partnering with both (Figure 2).

The leading institutions in this field are primarily located in three 
countries, with China accounting for 60% of them. Notable 
contributors include the Henry Ford Health System, Henry Ford 
Hospital, Shanghai Jiao Tong University, and Oakland University. 
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Each institution is responsible for about 13% of the total publications. 
This research focus resulted in the formation of a collaborative 
network of 62 institutions, each of which has published at least three 
papers, this highlights the significant cooperative efforts within this 
area. Key partnerships were formed between Shanghai Jiao Tong 
University, Fudan University, Tongji University, and Central South 
University. Additionally, Auckland University has established 
partnerships with Tianjin Medical University, Harvard Medical 

School, and Massachusetts General Hospital, highlighting the 
interconnected nature of research initiatives in this field (Figure 3).

Journals and co-cited journals

A thorough examination revealed that 178 scholarly journals 
published research on exosomes in the context of ischemic stroke. 

TABLE 1 Top 10 countries and institutions on research on exosomes in ischemic stroke.

Rank Country (region) Publication counts Institution Publication counts (%)

1 China (Asia) 229 Henry Ford Health System (US) 20 (13.07%)

2 USA (North America) 85 Henry Ford Hospital (US) 20 (13.07%)

3 Germany (Europe) 18
Shanghai Jiao Tong University 

(China)
20 (13.07%)

4 Italy (Europe) 9 Oakland University (US) 19 (12.41%)

5 Romania (Europe) 9 Central South University (China) 15 (9.80%)

6 South Korea (Asia) 9 University System of Ohio (US) 13 (8.49%)

7 Iran (Asia) 8 Fudan University (China) 12 (7.84%)

8 Australia (Oceania) 6
Jinzhou Medical University 

(China)
12 (7.84%)

9 India (Asia) 6
Capital Medical University 

(China)
11 (7.18%)

10 Japan (Asia) 6
Nanjing Medical University 

(China)
11 (7.18%)

FIGURE 1

Publications screening flowchart.
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The International Journal of Molecular Sciences was the leading 
publication, accounting for 8.42% of the total output with 15 articles. 
Stem Cell Research & Therapy published 9 articles (5.05%), while 
Stroke and Translational Stroke Research contributed 8 (4.49%) and 
7 articles (3.93%), respectively. Among the top  10 journals, the 
Journal of Nanobiotechnology had the highest impact factor at 10.6, 
closely followed by the Journal of Controlled Release at 10.5. A 
detailed literature review identified 27 journals, each with at least 
two relevant publications, which facilitated the creation of a citation 
network map (Figure  4A). This figure shows that leading 

international journals in the field of molecular science, such as 
Stroke, the Journal of Cerebral Blood Flow and Metabolism, and the 
International Journal of Molecular Sciences, demonstrate significant 
citation interactions within the established network. As shown in 
Table 2, four of the 10 most frequently cited journals surpassed 400 
citations. Notably, Stroke leads the list with a co-citation count of 
1,042, followed by the Journal of Cerebral Blood Flow and Metabolism 
(co-citations = 475), PLoS One (co-citations = 436), and the Journal 
of Extracellular Vesicles (co-citations = 408). In addition, the Journal 
of Extracellular Vesicles had the highest impact factor (IF = 15.5), 

FIGURE 2

Geographical distribution of exosome research on ischemic stroke.

FIGURE 3

Visualization of institutions for research on exosomes in ischemic stroke.
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followed by the Proceedings of the National Academy of Sciences of the 
United States of America (IF = 9.4). As shown in Figure 4B, Stroke 
exhibits positive co-citation associations with the Journal of Cerebral 
Blood Flow and Metabolism, PLOS One, and the Journal of 
Extracellular Vesicles, among others. This reflects the trend toward 
interdisciplinary cooperation and technological integration. The 
dual-map overlay of academic journals illustrates citation trends, 
with cited journals positioned on the left and co-cited journals on 
the right (5). The main citation path indicated by the orange line, 
reveals that research in the areas of Molecular/Biology/Immunology 

primarily references works from the Molecular/Biology/Genetics field 
(Figure 5).

Co-cited authors and co-cited references

A total of 2,271 researchers have studied exosomes in the context 
of ischemic stroke. The top  10 authors among these contributors 
published 18, 10, 10, 10, and 10 articles, respectively (Table  3). 
Through the co-citation analysis, 13,032 authors were identified. Five 

FIGURE 4

Visualization of journals (A) and co-cited journals (B) on research on exosomes in ischemic stroke.
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of these authors had a co-citation frequency of more than 100 
(Table  3). Leading this count was Xin H. Q., who received an 
impressive total of 367 citations, following Xin H. Q. was Zhang 
Z. G. with 129 citations, and Chen J. L. closely trailed with 124 
citations. Furthermore, a co-citation network was established for 
authors cited at least 30 times (Figure 6B). This network highlights 
significant collaborative relationships, particularly between Xin 
H. Q. and Chen J. L., and between Xin H. Q. and Zhang Z. G.

Over the last 20 years, researchers have identified 17,271 co-cited 
studies pertaining to exosomes in the context of ischemic stroke. 
Within the top 10 most frequently co-cited references (Table 4), each 
publication received a minimum of 47 citations, with one reference 
surpassing 90 citations. These 10 articles demonstrate a changing 
research trend on exosomes: research on exosome is shifting from 
basic studies (existence, composition) to applications in disease 
treatment (e.g., stroke). This reflects basic research moving to clinical 

TABLE 2 Top 10 journals and co-cited journals for research of exosomes in ischemic stroke.

Rank Journal Publication 
counts

Impact 
factor (IF)

JCR Co-cited journal Co-citation 
counts

Impact 
factor (IF)

JCR

1
International Journal 

of Molecular Sciences
15 4.9 Q2 Stroke 1,042 7.8 Q1

2
Stem Cell Research & 

Therapy
9 7.1 Q2

Journal of Cerebral Blood 

Flow and Metabolism
475 4.9 Q2

3 Stroke 8 7.8 Q1 PLoS One 436 2.9 Q3

4
Translational Stroke 

Research
7 3.8 Q2

Journal of Extracellular 

Vesicles
408 15.5 Q1

5
Frontiers in 

Neuroscience
7 3.2 Q3

International Journal of 

Molecular Sciences
346 4.9 Q2

6
Journal of 

Nanobiotechnology
7 10.6 Q1 Scientific Reports 335 3.8 Q3

7
Experimental 

Neurology
6 4.6 Q2

Stem Cell Research & 

Therapy
325 7.1 Q2

8
World Journal of Stem 

Cells
6 3.6 Q3 Stem Cells 299 4 Q2

9
Frontiers in Cellular 

Neuroscience
6 4.2 Q3

Translational Stroke 

Research
282 3.8 Q2

10
Journal of Controlled 

Release
6 10.5 Q1

Proceedings of the 

National Academy of 

Sciences of the 

United States of America

280 9.4 Q1

FIGURE 5

Dual-map overlay of journals on research on exosomes in ischemic stroke.
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TABLE 3 Top 10 authors and co-cited authors on research of exosomes in ischemic stroke.

Rank Authors Publication counts Co-cited authors Co-citation counts

1 Chopp, Michael 18 Xin, H. Q. 367

2 Zhang, Zheng Gang 10 Zhang, Z. G. 129

3 Hermann, Dirk M. 10 Chen, J. L. 124

4 Liang, Jia 10 Doeppner, T. R. 105

5 Zhao, Liang 10 Thery, C. 101

6 Yang, Guo-Yuan 9 Otero-Ortega, L. 88

7 Shi, Yijie 9 Zhang, Y. 80

8 Chen, Yanfang 8 Tian, T. 68

9 Zhang, Zhijun 8 Li, Y. 65

10 Xin, Hongqi 7 Yang, J. L. 63

FIGURE 6

Top 15 references with strong citation bursts. The red bars indicate high citations in that year.

TABLE 4 Top 10 co-cited references on research of exosomes in ischemic stroke.

Rank Co-cited reference Citations

1 Xin H. Q., 2013, J Cerebr Blood F Met, v33, p. 1711 93

2 Doeppner T. R., 2015, Stem Cell Transl Med, v4, p. 1131 73

3 Xin H. Q., 2017, Stroke, v48, p. 747 72

4 Valadi H., 2007, Nat Cell Biol, v9, p654 61

5 Xin H. Q., 2013, Stem Cells, v31, p. 2737 58

6 Tian T., 2018, Biomaterials, v150, p. 137 52

7 Zhang Z. G., 2019, Nat Rev Neurol, v15, p. 193 49

8 Xin H. Q., 2012, Stem Cells, v30, p. 1556 48

9 Yang J. L., 2017, Mol Ther-Nucl Acids, v7, p. 278 47

10 Song Y. Y., 2019, Theranostics, v9, p. 2910 47
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applications. Initially focused on cell biology, research on exosome 
involves neuroscience, material science, clinical medicine, and other 
disciplines, reflecting a transformation from a single field to 
multidisciplinary cross-fertilization.

Reference with citation bursts

This study used CiteSpace to identify 15 pivotal publications 
characterized by citation bursts, which are notable spikes in citations 
within a specific period of time (Figure 6). The red bars in the figure 
denote the periods of increased citation activity that transpired from 
2012 to 2021. The paper by Doeppner T. R. et  al., regarding 
extracellular vesicles and their role in stroke recovery exhibited the 
most pronounced citation burst from 2017–2020, with an intensity of 
12.11, proposing standardized protocols or efficacy enhancement 
strategies for stem cell transplantation that will serve as technical 
benchmarks for subsequent studies. A study by Xin et al., conducted 
from 2015 to 2018, focusing on exosomes and neurovascular plasticity 
post-stroke, recorded the second highest burst intensity of 11.55. The 
five high-bursts of literature published by Xin H. Q.’s team between 
2012–2017 (e.g., Stem Cells, 2012) all focused on the mechanisms of 
stem cell transplantation for the repair of cerebral ischemia, suggesting 
that this direction was an early research hotspot. After 2018, the 
studies were more inclined to clinical validation (e.g., Otero-Ortega 
L., 2018) and molecular mechanisms (e.g., Zhang T. L., 2017), 
reflecting the transition of the field from fundamentals to applications.

Hotspots and frontiers

The analysis of co-occurring keywords highlights key research 
trends. Table 5 shows that “extracellular vesicles” and “mesenchymal 
stem cells” were the most cited keywords, each referenced more than 
30 times, indicating their importance in ischemic stroke research. A 
study of keywords mentioned five or more times using VOSviewer 
(Figure  7A) revealed six clusters: the green cluster included 
extracellular vesicles, mesenchymal stem cells, microglia, angiogenesis, 
and stem cells; the red cluster covered exosomes, stroke, microRNA, 
and the blood–brain barrier; the blue cluster featured exosomes, 
angiogenesis, and neuroprotection; the yellow cluster consisted of 

ischemic stroke, microglia, inflammation, and neurogenesis; the 
purple cluster related to cerebral ischemia, miRNAs, and pyroptosis; 
and the cyan cluster involved autophagy, apoptosis, and oxidative 
stress. The trend analysis in Figure 7B shows that, from 2004 to 2019, 
research primarily focused on functional recovery and ischemic 
conditions. In contrast, after 2021, the focus has shifted to 
understanding the pathogenesis and therapeutic potential of 
exosomes, especially in aging, extracellular vesicles, and neural 
stem cells.

Discussion

General information

Between 2004 and 2011, there were no publications concerning 
exosomes in the context of ischemic stroke (Figure 8). The immaturity 
of exosome isolation and purification technology, as well as the 
insufficient sensitivity of detection technology, makes it difficult to 
study the mechanism of action in depth. During the period when the 
biological function of exosomes was not well understood in academia, 
research hotspots did not focus on the application of exosomes in 
ischemic stroke. Insufficient multidisciplinary cross-fertilization and 
difficulties in clinical translation limited the research and application 
of exosomes in this field, indicating that there is an obvious gap in 
research linking these two fields during this period. From 2012 to 
2017, the output of academic papers remained modest, with an 
average of about 5.1 publications per year, suggesting that exosome 
research is still in its infancy in this particular field. From 2012 to 
2017, the number of academic papers published annually averaged 
about 5.1, suggesting that exosome research is still in its infancy. In 
contrast, from 2018 to 2023, there is a significant increase in published 
academic papers, averaging about 54 papers per year. A notable peak 
occurred in 2020, with 53 papers published, an 80% increase compared 
with 2019. Additionally, the number of published papers increased 
significantly to 92 in 2023. Over the past 6 years, the annual growth 
rate of research on exosomes and ischemic stroke has continued to 
increase, indicating a growing interest in this area that portends 
significant progress and increased academic attention.

The exploration of exosomes in the field of ischemic stroke, 
starting from the discovery of intercellular communication carriers 

TABLE 5 Top 20 keywords on research of exosomes in ischemic stroke.

Rank Keywords Counts Rank Keywords Counts

1 Exosomes 128 11 Inflammation 16

2 Ischemic stroke 104 12 Neuroinflammation 16

3 Stroke 74 13 Neurogenesis 13

4 Exosome 61 14 Blood–brain barrier 13

5 Extracellular vesicles 51 15 miRNA 12

6 Mesenchymal stem cells 31 16 Neuroprotection 11

7 MicroRNA 25 17 Biomarkers 11

8 Angiogenesis 25 18 Acute ischemic stroke 11

9 Microglia 20 19 Microvesicles 10

10 Stem cells 17 20 Oxidative stress 10
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and gradually revealing their multi-mechanism roles, has opened new 
avenues for the treatment of ischemic stroke, demonstrating the 
potential for clinical translation and moving towards clinical 
application. Since the discovery of the neurorestorative mechanism of 
exosomes in the early 2010s, research on exosomes in the treatment 
of ischemic stroke has gone through several phases of elucidation of 
molecular mechanisms, validation of animal models, and recent 
preliminary exploration in early-stage clinical trials, making exosomes 
a very promising option for therapeutic applications, especially in the 
treatment of ischemic stroke (Figure 9). As shown in Figure 8, the 

number of articles published each year about exosomes in ischemic 
stroke increased suddenly from 2019 to 2020. This increase is related 
to the outbreak of the novel coronavirus epidemic, which accelerated 
the application of exosomes in ischemic stroke therapy by promoting 
demand for mRNA delivery technology. This accelerated the research 
of inflammatory mechanisms and clinical translation, pushing 
exosome research from “basic exploration” to “clinical translation,” 
especially in the field of ischemic stroke, this has led to an upgrade in 
treatment concepts and technical tools. Technological breakthroughs 
and resource reorganization driven by crises can lead to 

FIGURE 7

Keyword cluster analysis (A) and trend topic analysis (B).
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interdisciplinary changes. To transform emergencies into sustainable 
drivers of innovation, there is a need for interdisciplinary 
collaboration, clinical orientation, and the development of a resilient 
research ecology. China and the United States are leaders in exosome 
research focused on ischemic stroke, with China ranking among the 
top countries in this field. Among the top 10 research organizations, 
52.91% are in China, followed by the United States (34.63%) and 
New  Zealand (12.41%). China and the United  States dominate 
exosome research in ischemic stroke due to their significant 
advantages in basic research, technological innovation, clinical 
application, interdisciplinary cooperation, resource integration, policy 
support, and financial investment. Notably, China has significant 
collaborations with both the United States and Germany. Australia has 
also collaborated with both Germany and China.

Shanghai Jiao Tong University, Fudan University, Tongji 
University, and Central South University are among the research 

institutions that have formed strong partnerships. Institutions such as 
Auckland University, Tianjin Medical University, Harvard Medical 
School, and Massachusetts General Hospital have maintained active 
international partnerships. Despite the sizable number of papers from 
Central South University, its collaborative network is limited, 
highlighting the need for greater international cooperation. Therefore, 
to accelerate exosome research related to ischemic stroke, research 
institutions around the world should strengthen their collaboration.

A significant portion of the literature concerning exosomes in the 
context of ischemic stroke has been published in the International 
Journal of Molecular Sciences (IF = 4.9, Q1), highlighting their 
significance within this research domain. Among the journals with the 
highest impact factors, the Journal of Nanobiotechnology (IF = 10.6, 
Q1) holds the leading position, closely followed by the Journal of 
Controlled Release (IF = 10.5, Q1). Co-citation analysis revealed that 
the most cited journals were high-impact Q1 publications, 

FIGURE 8

Annual output of research of exosomes in ischemic stroke.

FIGURE 9

The evolution of exosomes in ischemic stroke applications.
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underscoring the quality and global recognition of research in this 
field. The majority of published studies are found in journals dedicated 
to molecular biology and related fields, whereas clinical research 
journals feature relatively few articles. This suggests that the 
investigation of exosomes in the context of ischemic stroke is 
predominantly at the fundamental research level.

Chopp, Michael is the most published authors with 18 articles, 
closely followed by Zhang, Zheng Gang, Hermann, Dirk M and Liang, 
Jia, who each published 10 articles. Notably, 9 of the 18 articles 
authored by Chopp, Michael were devoted to the therapeutic 
significance of microRNAs (miRNAs) and various bioactive 
compounds found in exosomes in promoting stroke recovery. Their 
research showed that miR-27a, which is found in exosomes or small 
extracellular vesicles (sEVs) from cerebral endothelial cells (CEC-
sEVs) in ischemic brain tissue, plays a crucial role in promoting axon 
growth and aiding brain remodeling. Additionally, a collaborative 
review by Zhang et al. highlighted the essential role of miRNAs in 
brain repair via exosome-mediated cellular communication. The 
review suggests that exosomes play a vital role in brain remodeling and 
offer promising opportunities for treating ischemic brain injury and 
improving neurological function. Dirk M. Hermann’s article titled 
“New Light on the Horizon” in Stroke describes how extracellular 
vesicles (EVs) in the blood can be  a diagnostic tool for transient 
ischemic attack (TIA) and stroke. Liang and Jia highlighted the 
neuroprotective effects and functional improvements associated with 
exosomes, demonstrating their potential as a therapeutic option for 
ischemic stroke through specific antioxidant pathways.

In summary, the studies mentioned above have mainly discussed 
the pathogenesis, diagnosis, and therapeutic role of exosomes in 
ischemic stroke.

MSC-exos

Mesenchymal stem cells (MSCs) have recently received 
significant attention due to their impressive tissue regeneration and 
immunomodulation capabilities, especially in ischemic stroke 
treatment. This increased interest stems from the ability of 
MSC-derived exosomes to cross the blood–brain barrier, their low 
immunogenic profile, and their minimal toxicity (6). Consequently, 
MSCs are being increasingly integrated into clinical trials focused 
on managing ischemic stroke, with numerous studies reporting 
favorable therapeutic outcomes. Consistent evidence shows that 
MSC-based treatments substantially improve recovery following 
ischemic stroke (7–9). MSCs can easily be isolated from various 
sources, such as the umbilical cord, bone marrow, and peripheral 
blood (10). These stem cell-derived exosomes exhibit characteristics 
such as low immunogenicity, reduced risk of tumor formation, 
high transport efficiency, inherent stability, and the capacity to 
traverse the blood–brain barrier (11, 12). Exosome-based therapies 
are still in the early stages of clinical application, but they have 
shown promising therapeutic effects in animal models of ischemic 
cerebrovascular accidents (CVAs) (13). Research indicates that 
exosomes from bone marrow mesenchymal stem cells (BMMSCs) 
can significantly alleviate systemic immune suppression 4 weeks 
after ischemia, they can also promote neurovascular regeneration 
and enhance motor function (14). Additionally, studies have shown 
that exosomes extracted from adipose-derived mesenchymal stem 

cells (ADMSCs) can reduce infarct size, promote neurological 
recovery, enhance corticospinal tract integrity, and promote white 
matter repair in rat stroke models (15). Furthermore, it has been 
shown that exosomes from BMMSCs are effective in reversing 
peripheral immunosuppression after ischemia, thereby promoting 
infarct neurovascular regeneration (16, 17). Exosomes derived 
from neural stem cells reduce volume and enhance recovery 
following stroke (18). In addition to MSC-derived exosomes, 
exosomes from other cell types have also been found to contribute 
to neuroprotection after stroke (19). Webb et al. (18) discovered 
that astrocyte-derived exosomes inhibited the expression of 
TNF-α, IL-6, and IL-1β, which attenuated neuronal damage by 
inhibiting autophagy.

Exosomes and biomarkers

Exosomes are vesicles derived from body fluids, such as serum, 
plasma, and urine. Among their components, miRNAs are among the 
most widely studied (20). Exosomes contain various functional RNA 
molecules, including miRNAs, which reflect the physiological and 
pathological characteristics of the originating cells (21, 22). By 
transferring mature miRNAs to recipient cells, exosomes can 
modulate gene expression and affect various cellular and molecular 
pathways (23). Recent studies have highlighted the role of exosomal 
miRNAs in modulating physiological and pathological processes after 
ischemic stroke, as well as their contribution to brain remodeling by 
enhancing substance transport (24). Therefore, exosomes are 
considered promising biomarkers for early diagnosis and prognosis 
of stroke, as well as potential drug candidates for stroke therapy 
(25, 26).

Exosomal miRNAs are more stable than free miRNAs because 
they are shielded from enzymes and RNases in biological fluids, 
making them less likely to break down (27). The increased stability of 
exosomal miRNAs has made it possible to identify changes in their 
expression over time during disease progression. Additionally, it 
allows these microRNAs to promote sustained cellular signaling 
associated with disease (28, 29). Some researchers have investigated 
whether the transfer of miRNAs via exosomes creates a new 
mechanism of cell-to-cell communication (30). Exosomal miRNAs 
from the central nervous system may carry information from their 
parent cells. In contrast, exosomal miRNAs from injured neuroblasts 
can monitor the condition of brain cells and tissues directly (31–33). 
Recent experiments have revealed substantial changes in the synthesis, 
secretion, and composition of exosomes, suggesting potential new 
targets for disease treatment (34, 35). Exosomes are rich in miRNAs, 
which are more accessible than cellular miRNAs. Deep sequencing 
results indicate that the percentage of miRNAs present in serum 
exosomes is three to four times higher than that in pure serum (36). 
Consequently, exosomes obtained from biological fluids, along with 
their miRNA content, are increasingly recognized as important targets 
for biomarker analysis (37–39). Research suggests that in diseases of 
the central nervous system such as stroke, the sorting mechanisms of 
miRNAs during exosome biogenesis may be disrupted, which in turn 
affects both disease pathogenesis and neuroregeneration (40). 
Consequently, exosomal miRNAs may exhibit greater disease 
specificity than cellular or free miRNAs, they are considered superior 
biomarkers for stroke due to their sensitivity and specificity (41–43).
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Therapeutic and neuroprotective roles of 
exosomes

Exosomes can cross the blood–brain barrier (BBB) or choroid 
plexus, allowing information exchange between the central nervous 
system (CNS) and the peripheral circulation (44). The primary 
mechanism through which exosomes exert their therapeutic effects is 
molecular delivery, specifically via miRNA transfer (45). Exosomes 
facilitate communication between cells and tissues by delivering 
proteins and miRNAs (46). Exosomes regulate gene expression and 
various cellular and molecular pathways by releasing mature 
microRNAs (miRNAs) into recipient cells (47). The unique 
characteristics of miRNAs in exosomes allow them to serve as effective 
drug carriers, they can target the CNS specifically and modulate gene 
expression related to disease. This could guide the development of new 
therapeutic strategies for CNS disorders (48, 49). Exosomes can 
be  administered via several routes, such as nasal, intravenous, 
intraperitoneal, and intracranial, to deliver proteins and RNA to the 
brain (50). This flexibility makes exosome-based drug delivery a 
promising method for treating central nervous system (CNS) diseases 
(51, 52).

Brain recovery after an ischemic stroke is achieved through 
various interconnected processes, such as the formation of new blood 
vessels and neurons, the production of cells that support myelin, the 
activation of mechanisms that prevent cell death, and the engagement 
of the immune response (53, 54). These processes work together to 
enhance the reconstruction of the neurovascular units and restore 
neurological function (55, 56). Research indicates that enhancing 
miR-126 significantly increases the therapeutic effectiveness of 
exosomes obtained from endothelial progenitor cells (EPCs) (57, 58). 
After an ischemic stroke, an insufficient blood supply can cause 
miR-126 to target vascular cell adhesion protein 1 (VCAM-1), thereby 
regulating EPC function and angiogenesis (59). Adipose-derived stem 
cell exosomes are rich in microRNA-181b-5p, which regulates 
angiogenesis after a stroke by inhibiting transient receptor potential 
melastatin 7 (TRPM7) (60). Neuronal exosomes can carry microRNA-
132 (miRNA-132) to endothelial cells, which helps maintain the 
integrity of the blood–brain barrier (BBB) (61). Additionally, 
exosomes from human microvascular endothelial cells contain the 
Dll4 protein, which regulates angiogenesis. The Dll4-Notch signaling 
pathway, which occurs in both endothelial cells and pericytes, is 
essential for angiogenesis and for maintaining the integrity of the 
blood–brain barrier (62).

Neural regeneration and angiogenesis are key processes in 
recovery from ischemic stroke. Research on exosomal miRNAs is 
advancing rapidly, particularly in the field of nerve regeneration. 
Recent studies have demonstrated the ability of exosomal miRNAs to 
positively impact nerve injury by modulating apoptosis, the 
inflammatory response, and regenerative processes in nerve cells. 
These small RNA molecules are important cell-to-cell signaling 
molecules that regulate the growth, survival, and regeneration of 
neurons. Recent studies have shown that, in addition to serving as 
carriers for drug delivery, exosomes regulate signaling pathways 
related to nerve regeneration through the miRNAs they contain. For 
instance, researchers discovered that exosomes from adipose-derived 
stem cells promote Schwann cell proliferation and migration by 
delivering miRNA-22-3p, thereby accelerating the repair of peripheral 
nerve injuries (63). Additionally, another study demonstrated that 

Schwann cell-derived exosomes promote nerve regeneration and 
functional recovery via microRNA-21 (64). Studies have shown that 
exosomes containing miRNA-124 reduce ischemic injury by 
converting neural progenitor cells into neurons (65, 66). Mesenchymal 
stem cell (MSC) exosomes deliver microRNA-133b (miRNA-133b) to 
neurons and astrocytes, this leads to the downregulation of connective 
tissue growth factor (CTGF) and the secondary release of astrocyte 
exosomes, which promote synaptic growth (67). This action reduces 
PTEN levels and increases Akt and mTOR phosphorylation by 
activating TLR7 and NF-κB/MAPK pathways, ultimately promoting 
neurogenesis, neuroplasticity, and oligodendrocytopoiesis after 
ischemic brain injury (68, 69).

Inflammation is a key pathogenic mechanism of post-ischemic 
brain injury and a trigger of secondary injury. Exosomes derived 
from MSCs can ameliorate inflammation after acute ischemia or 
ischemia–reperfusion injury by modulating anti-inflammatory 
molecules (IL-4 and IL-10) and pro-inflammatory cytokines (IL-6, 
TNF-α, and IL-1β), and inhibiting microglia activation (70). 
Exosomes enriched with miR-138-5p or miR-1906 inhibit 
inflammatory signaling pathways and reduce inflammation, thereby 
enhancing recovery after stroke (71–73). Wang et al. (74) reported 
that Fxr2  in ADSC-derived exosomes alleviated iron-induced 
ferroptosis in M2 microglial cells by regulating the expression of 
Atf3/Slc7a11, which suppressed the inflammatory microenvironment 
and improved neurological recovery from brain I/R injury. Research 
shows that exosomes from bone marrow-derived mesenchymal stem 
cells (BMMSCs) can reduce ischemia–reperfusion injury by 
inhibiting inflammation and apoptosis mediated by the NLRP3 
inflammasome (75, 76).

There are many challenges with using exosomes for the treatment 
and diagnosis of ischemic stroke. In terms of cell source, extraction, 
and purification, various cell types have different advantages and 
disadvantages. The extraction methods are time-consuming, costly, 
and complicated. Research on the mechanism of action is insufficient, 
and the synergistic effect is unknown (77). In clinical application, it is 
difficult to guarantee yield quality, and targeting is insufficient, affected 
by individual differences, safety and efficacy need to be verified (78, 
79). In the future, it’s necessary to analyze the heterogeneity in 
conjunction with new technologies, conduct clinical trials to validate 
them and promote their use.

Conclusion

Ischemic stroke is a serious neurological disease with an extremely 
complex pathogenesis, and its core pathology includes multisystem 
disorders such as inflammatory response, apoptosis, oxidative stress, 
and blood–brain barrier disruption. In recent years, exosomes have 
emerged in ischemic stroke research due to their unique intercellular 
communication function.

As nanoscale membrane-structured vesicles, exosomes are 
rich in active molecules such as proteins, lipids, and nucleic 
acids, and different sources of exosomes exhibit different modes 
of action in the stroke process. Neurogenic exosomes carry 
neurotrophic factors and precisely regulate inflammatory and 
apoptotic pathways to achieve neuronal repair and regeneration, 
while immunogenic exosomes play dual roles in early 
inflammatory amplification and late immune remodeling. In 
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addition, the specific molecular markers carried by exosomes 
are expected to overcome the traditional diagnostic limitations 
due to their high specificity and sensitivity, opening a new 
window for early and accurate diagnosis and dynamic 
monitoring of ischemic stroke. However, there are still many 
bottlenecks in current research: the isolation and purification 
technology needs to be innovated to meet the needs of clinical 
translation; the metabolism and molecular regulation 
mechanism of exosomes in the brain needs to be  thoroughly 
analyzed; and the stability, targeting, and safety of exosomes as 
therapeutic carriers need to be  verified in large-scale 
clinical trials.

Although exosomes have the potential to serve as biomarkers and 
therapeutic vehicles in the diagnosis and treatment of ischemic stroke, 
their clinical translation still faces challenges. These challenges include 
standardization, targeted delivery, and large-scale production. In 
order to transition from laboratory research to clinical application, 
multidisciplinary innovation and rigorous, evidence-based validation 
are necessary.
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