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Introduction:The integration of artificial intelligence (AI) with health data analysis

o�ers unprecedented opportunities to advance research in neuroscience

and psychology, particularly in extracting meaningful patterns from complex,

heterogeneous, and high-dimensional datasets. Traditional methods often

struggle with the dynamic and multi-modal nature of health data, which

includes electronic health records, wearable sensor data, and imagingmodalities.

These methods face challenges in scalability, interpretability, and their ability to

incorporate domain-specific knowledge into analytical pipelines, limiting their

utility in practical applications.

Methods: To address these gaps, we propose a novel approach combining

the Dynamic Medical Graph Framework (DMGF) and the Attention-Guided

Optimization Strategy (AGOS). DMGF leverages graph-based representations

to capture the temporal and structural relationships within health datasets,

enabling robust modeling of disease progression and patient interactions. The

framework integrates multi-modal data sources and applies temporal graph

convolutional networks, ensuring both scalability and adaptability to diverse

tasks. AGOS complements this by embedding domain-specific constraints and

employing attentionmechanisms to prioritize critical features, ensuring clinically

interpretable and ethically aligned decisions.

Results and discussion: Together, these innovations provide a unified, scalable,

and interpretable pipeline for tasks such as disease prediction, treatment

optimization, and public health monitoring. Empirical evaluations demonstrate

superior performance over existing methods, with enhanced interpretability

and alignment with clinical principles. This work represents a step forward in

leveraging AI to address the complexities of health data in neuroscience and

psychology, advancing both research and clinical applications.

KEYWORDS

health data analysis, dynamicmedical graph framework, attention-guided optimization,

artificial intelligence, neuroscience and psychology

1 Introduction

The intersection of pose estimation and health data analysis represents a burgeoning

area of research in artificial intelligence, with profound implications for neuroscience

and psychology (1). This task involves analyzing human body movements and postures

to infer health-related insights, including motor disorders, cognitive impairments, and

emotional states (2). The significance of this research lies not only in its ability to enhance

diagnostics but also in enabling remote and continuous monitoring of patients. Moreover,

pose estimation contributes to personalized treatments by providing objective (3), fine-

grained measurements of movement and posture dynamics. Given the rapid developments

in AI and its applications in neuroscience and psychology, there is a growing need for

accurate and efficient pose estimation techniques tailored to health data analysis (4).
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As such, the study of pose estimation transcends traditional

computational tasks, offering novel opportunities to deepen our

understanding of the human mind and body (5).

To address the limitations of early methods in pose estimation

for health data analysis, researchers initially focused on symbolic

AI and knowledge representation approaches (6). These traditional

methods relied heavily on handcrafted rules and logic-based

systems to represent human poses and movement patterns.

Knowledge-based systems were integrated with biomechanical

models to infer health-related insights, particularly for tasks

such as gait analysis and posture classification (7). For example,

systems were designed to use predefined skeletal models to

analyze deviations in walking patterns, aiding in the diagnosis

of neurological conditions such as Parkinson’s disease. However,

these methods faced significant challenges, such as the inability

to generalize across diverse populations and the high dependency

on expert knowledge to define rules (8). Symbolic approaches

struggled to handle noisy and incomplete data, which is often

inherent in health-related applications. While foundational in

establishing the field, these methods ultimately lacked the

adaptability and scalability necessary for broader health data

applications (9).

With the rise of machine learning, data-driven approaches

emerged to overcome the limitations of symbolic methods. By

leveraging annotated datasets of human movements, machine

learning models were trained to detect and classify poses (10),

enabling more flexible and scalable solutions. Algorithms such

as Support Vector Machines (SVMs) and Random Forests were

applied to tasks like fall detection in elderly individuals or

recognizing emotional states through postural cues (11). These

methods significantly improved pose estimation accuracy by

learning patterns directly from data rather than relying on

predefined rules (12). However, their performance was heavily

reliant on the quality and quantity of labeled training data,

which is often scarce in health-related domains due to privacy

concerns and data collection constraints (13). Traditional machine

learning methods struggled to capture the temporal dynamics

of human movements, limiting their applicability for analyzing

complex neurological and psychological phenomena that require

an understanding of motion over time (14).

The advent of deep learning and pre-trained models marked

a significant leap in pose estimation, particularly in health

data analysis. Convolutional Neural Networks (CNNs) and,

later, Vision Transformers (ViTs) have been employed to

extract fine-grained features from visual data, enabling high-

precision pose estimation (15). Pre-trained models, such as

OpenPose and MediaPipe, have further revolutionized the field

by providing ready-to-use frameworks that can be fine-tuned

for specific health applications. For instance, deep learning

has been applied to detect early signs of Alzheimer’s disease

through gait analysis or to monitor stress levels via micro-

expressions and postural shifts (16). These methods offer

unparalleled accuracy and generalizability, even in unstructured

environments such as clinics or homes. However, challenges

remain, including the high computational cost of deep learning

models and their dependence on large-scale labeled datasets

(17). Moreover, ethical concerns related to data privacy and

the potential for biased algorithms underscore the need for

careful consideration in deploying such technologies for health

applications (18).

Based on the limitations of the aforementioned approaches,

we propose a novel pose estimation framework designed for

health data analysis in neuroscience and psychology. Our method

integrates domain-specific knowledge with the latest advancements

in deep learning, creating a hybrid system that overcomes the

scalability and generalizability issues of earlier approaches. By

leveraging pre-trained models fine-tuned with small, high-quality

datasets annotated by domain experts, our framework balances

accuracy and efficiency. It incorporates temporal modeling

techniques, such as Recurrent Neural Networks (RNNs) and Graph

Neural Networks (GNNs), to capture the dynamic nature of

human movements, providing deeper insights into neurological

and psychological conditions. This hybrid approach addresses

the challenges of data scarcity and privacy while maintaining

robust performance across diverse applications and populations.

Our framework not only advances the state-of-the-art in pose

estimation but also paves the way for more effective and accessible

health monitoring solutions.

The proposed method has several key advantages:

• Our framework introduces a hybrid system that combines

domain knowledge with advanced deep learning techniques,

offering a unique solution tailored to health data analysis.

• By fine-tuning pre-trained models with small, expert-

annotated datasets and incorporating temporal dynamics, the

method achieves scalability, adaptability, and high efficiency

in diverse scenarios.

• Experiments demonstrate significant improvements

in pose estimation accuracy and reliability, enabling

precise diagnostics and monitoring of neurological and

psychological conditions.

The primary task addressed in this study is health-related

pose estimation and analysis, aimed at supporting research

and clinical applications in neuroscience and psychology. We

define the task as the automatic extraction and interpretation

of human posture and movement patterns from heterogeneous

data sources, including video recordings, sensor data, and

electronic health records, to achieve three core objectives:

monitoring disease progression in neurological conditions, such

as tracking changes in gait stability in Parkinson’s disease

patients; evaluating the effectiveness of treatment and rehabilitation

interventions by quantifying improvements in movement and

posture; and detecting subtle postural cues associated with

psychological states, including markers of anxiety, depression,

and social interactions. Our Dynamic Medical Graph Framework

(DMGF) and Attention-Guided Optimization Strategy (AGOS)

are designed to address these objectives by modeling temporal

and structural dependencies in multi-modal health data and

ensuring clinical interpretability of predictions. This task definition

clarifies the relevance of our proposed approach and frames

the subsequent discussion on datasets, methodologies, and

experimental evaluations in the context of real-world clinical and

behavioral applications.
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To ensure clarity and maintain a coherent narrative aligned

with the objectives of neuroscience and psychology, we emphasize

that the central focus of this study is on leveraging pose estimation

for health data analysis, particularly to infer motor and cognitive

functions relevant to these fields. While methods like BERT

embeddings and named entity recognition are traditionally

associated with natural language processing, their mention

in the manuscript was intended to illustrate the potential for

integrating diverse data modalities—including clinical notes and

textual records—alongside visual data such as video recordings of

movement. However, we recognize that this linkage was not clearly

articulated and could have caused confusion. Therefore, in this

revision, we explicitly clarify that our primary aim is to develop

robust pose estimation techniques, supported by the Dynamic

Medical Graph Framework (DMGF) and the Attention-Guided

Optimization Strategy (AGOS), to analyze human movement

and postures in the context of neurological and psychological

conditions. These methods are tailored to model temporal

dynamics, structural dependencies, and multimodal features

inherent in health data, with a clear focus on clinical applications

such as disease progression tracking, patient rehabilitation, and

mental health assessments. Any reference to NLP components is

now clarified as illustrative rather than central to our current work.

We ensure that our experimental choices, including datasets and

evaluation metrics, are explicitly tied to the goals of neuroscience

and psychology, with consistent justification throughout the

manuscript. This alignment reinforces the relevance and

clinical significance of our contributions in the targeted

health domain.

2 Related work

2.1 Pose estimation in neuroscience
applications

Pose estimation has become a pivotal tool in neuroscience

research due to its capacity to analyze and interpret human

movement patterns with high precision (19). One prominent

area where pose estimation is transforming neuroscience is

in the study of motor disorders, such as Parkinson’s disease,

Huntington’s disease, and stroke-induced impairments (20). By

capturing fine-grained movement dynamics, pose estimation

algorithms provide researchers with non-invasive methods to

quantify kinematic abnormalities. For example, the use of deep

learning-based frameworks, such as OpenPose or MediaPipe,

has enabled the accurate tracking of limb movements in real-

world settings, bypassing the constraints of traditional motion

capture systems that require reflective markers or specialized

equipment (21). These advancements have allowed for the precise

characterization of tremor frequency, gait disturbances, and limb

coordination deficits. To movement disorder diagnostics, pose

estimation is being leveraged in neurorehabilitation. Automated

feedback systems, powered by pose estimation, are utilized in

rehabilitation exercises to provide real-time corrective guidance

to patients (22). This is particularly valuable in remote therapy

scenarios where physical therapists cannot be present. The

integration of pose estimation with wearable sensors has further

enhanced the fidelity of these systems, offering multimodal

data streams that combine joint angles, muscle activity, and

force generation metrics (23). Pose estimation is instrumental

in understanding brain-body interaction mechanisms. Recent

studies have utilized pose data to map the neural correlates

of voluntary and involuntary movements, enabling insights

into motor cortex plasticity and its role in recovery from

injury. Another emerging application of pose estimation in

neuroscience is its use in animal studies. Rodent and primate

movement analysis, powered by pose-tracking algorithms,

has contributed to understanding neural circuits involved in

locomotion and complex motor tasks (24). Algorithms such as

DeepLabCut have made it feasible to study fine motor behaviors

in animals, advancing research in behavioral neuroscience and

neurodegenerative disease models. Pose estimation continues

to expand the methodological toolkit of neuroscience, enabling

a deeper understanding of movement-related brain function

and dysfunction.

2.2 Pose analysis in psychological studies

The application of pose estimation in psychology has opened

novel avenues for studying nonverbal communication, emotional

expressions, and behavioral patterns (25). Body language and

posture are integral to human communication and are often

more informative than verbal cues in specific psychological

contexts (26). Modern pose estimation frameworks allow for

the objective and quantifiable analysis of these cues, providing

significant insights into areas such as social interaction, emotional

regulation, and mental health. One impactful area of research is

the analysis of body posture and movements in mental health

diagnostics. Disorders such as depression, anxiety, and autism

spectrum disorder (ASD) exhibit unique movement and posture

patterns, which can be identified through pose-tracking systems

(27). For instance, individuals with depression may exhibit

reduced movement dynamics, such as slower gait speeds and

limited arm swings, while individuals with anxiety disorders may

display jittery, fragmented movements. Pose estimation tools

are now being used in clinical assessments to provide objective

markers for these conditions, aiding in early diagnosis and

personalized treatment planning. Pose estimation is facilitating

groundbreaking research in social psychology (28). By quantifying

interpersonal dynamics during interactions, such as synchrony

in body movements or the mirroring of gestures, researchers can

gain insights into phenomena like trust, empathy, and group

cohesion. These studies rely on pose estimation algorithms

that can track multiple individuals simultaneously, enabling

detailed analyses of group behaviors. Moreover, pose data is

being integrated with machine learning models to classify specific

psychological states, such as attentiveness, stress, or fatigue, based

on subtle changes in posture and motion (29). Another promising

direction is the use of pose estimation in psychotherapeutic

interventions. Virtual reality (VR) environments equipped

with pose estimation algorithms allow for the immersive
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analysis of patient behaviors during therapeutic exercises. For

example, individuals undergoing exposure therapy for phobias

or PTSD can be monitored for body tension and stress-induced

movements. This information can help therapists adapt the

intervention in real time, tailoring the experience to individual

needs (30). Through these applications, pose estimation is

establishing itself as a transformative tool in psychological research

and practice.

2.3 Advances in pose-based health
monitoring

Pose estimation has found extensive applications in health

data analysis, contributing to the development of advanced health

monitoring systems that enhance patient care and wellbeing. One

prominent area of focus is in elderly care and fall prevention

(31). By continuously tracking the posture and movements

of elderly individuals, pose estimation systems can identify

postural instability or gait abnormalities that may indicate an

increased risk of falls. These systems often employ real-time

processing to generate alerts, enabling timely interventions.

Moreover, pose data has been used to study the biomechanics of

aging, providing insights into changes in joint flexibility, muscle

strength, and coordination that occur with age (32). Beyond

elderly care, pose estimation is revolutionizing sports medicine

and injury prevention. Real-time motion analysis, powered by

pose estimation, is now a standard tool for monitoring athletic

performance and identifying movement patterns that increase the

risk of injury. For instance, improper knee alignment during

running or landing can be detected using pose tracking algorithms,

enabling athletes to correct their form and prevent conditions

like ACL injuries (33). Pose-based systems are used in physical

therapy settings to assess progress during rehabilitation. By

comparing pre- and post-treatment movement data, clinicians

can objectively evaluate recovery and adjust therapy protocols

as needed (34). Another significant application is in the domain

of chronic disease management. Patients with conditions such

as arthritis, obesity, or cardiovascular diseases benefit from

pose estimation systems that monitor physical activity levels

and adherence to prescribed exercise regimens. These systems

often integrate with wearable devices to provide comprehensive

feedback on joint movements, energy expenditure, and overall

physical activity (35). Pose data is increasingly being used in

predictive modeling for health outcomes. By analyzing long-

term movement patterns, researchers can identify early markers

of conditions like frailty, osteoporosis, or metabolic disorders,

enabling proactive intervention strategies. Pose estimation is

enhancing remote health monitoring solutions, which have become

especially critical in the wake of global health crises. Telemedicine

platforms now incorporate pose-tracking capabilities, allowing

healthcare providers to remotely assess patient mobility, posture,

and rehabilitation exercises (36). These advancements have

democratized access to healthcare, particularly for individuals

in rural or underserved areas. By bridging the gap between

technology and healthcare, pose estimation continues to contribute

to the evolution of personalized, efficient, and accessible health

monitoring systems.

3 Method

3.1 Overview

The rapid advancement in artificial intelligence (AI) has

brought transformative changes to the field of health data analysis,

where the focus is to derive actionable insights from vast and

heterogeneous datasets. The integration of AI in health data

analysis encompasses a wide spectrum of tasks, including disease

prediction, personalized treatment recommendations, and public

health monitoring. We introduce novel computational frameworks

that address the challenges of scalability, heterogeneity, and

temporal dynamics inherent in health data.

The following subsections are structured to articulate the key

contributions and foundations of this work. In Section 3.2, we

define the fundamental preliminaries, including the mathematical

representation of health data and the challenges posed by its

multi-dimensional nature. This lays the groundwork for the

subsequent innovations. In Section 3.3, we present our proposed

Dynamic Medical Graph Framework (DMGF), which is a novel

model designed to capture the intricate interdependencies within

health data across spatial and temporal dimensions. Section

3.4 introduces a new Attention-Guided Optimization Strategy

(AGOS), which addresses the critical challenge of integrating

domain-specific knowledge into AI pipelines, enabling robust and

interpretable decision-making processes. This section provides a

holistic overview of our approach to leveraging AI for health

data analysis. We delineate the systematic steps through which

our methodology addresses the critical challenges in this domain.

The subsequent sections will elaborate on these components in

detail, showcasing their theoretical underpinnings, computational

designs, and empirical validations.

Figure 1 presents the overarching architecture of the Dynamic

Medical Graph Framework (DMGF), which captures temporal and

structural dependencies in multimodal health data using dynamic

graphs. This figure provides a conceptual blueprint, showing how

data from multiple modalities—such as visual frames, sensor

signals, and textual records-are processed through graph-based

temporal learning and fused to generate comprehensive health

predictions. Figures 2–4 collectively illustrate the hierarchical

and interconnected structure of our proposed framework.

Figure 2 delves deeper into the attention-guided message

passing mechanism within the DMGF. It details how local and

global similarities are dynamically computed to refine node

embeddings, enhancing the interpretability and adaptability

of the graph-based representations in health data contexts.

Figure 3 introduces the Attention-Guided Optimization Strategy

(AGOS), a complementary module that operates in tandem

with DMGF to refine feature selection and ensure domain-

constrained optimization. Figure 4 presents the integration of these

components for clinical interpretability and decision support.These

three components form a cohesive and sequential pipeline: DMGF

serves as the core backbone for multimodal graph modeling, the

attention-guided mechanism refines message passing within the

graphs, and AGOS ensures robustness and clinical relevance in

the final predictions. This modular yet integrated design allows

our framework to achieve high accuracy while maintaining clinical

interpretability. To clarify the relationship among the architectures
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FIGURE 1

Illustration of real-world clinical applications of our proposed framework. (a) Data Acquisition – Multimodal data acquisition including wearable

sensors, video, and clinical notes. (b) Multimodal Fusion & Dynamic Medical Graph Construction – Integration of multimodal inputs into a graph

structure. (c) Clinical Interpretability and Decision Support - Providing interpretable clinical metrics and decision guidance.

shown in Figures 1–3, we emphasize that these components are

designed to work in a sequential and complementary manner

as part of an integrated system. Figure 1 illustrates the overall

pipeline, where multimodal data—comprising visual, sensor,

and textual inputs—are first preprocessed and structured into

a dynamic graph format. This overarching view introduces the

conceptual role of graph-based learning in health data modeling.

Building on this, Figure 2 elaborates on the internal structure

of the Dynamic Medical Graph Framework (DMGF), which

serves as the backbone of the model. DMGF performs dynamic

graph construction, temporal learning using GRUs, and feature

embedding across time and modality dimensions. Figure 3

further decomposes the message passing mechanism used within

DMGF by introducing attention-guided computation, where

both local and global node similarities are exploited to refine

graph features. This mechanism enhances interpretability by

emphasizing clinically significant patterns. The three architectures

are neither redundant nor alternative; instead, they represent

progressively deeper levels of abstraction and operation within a

unified and modular system. Each builds upon the last to enable

effective modeling of spatiotemporal and semantic dependencies

in multimodal health data.

To further improve conceptual clarity and address the concern

of overloading technical buzzwords, Figure 1 provides a visual

illustration of how our framework is applied in real-world

clinical scenarios. The diagram demonstrates how multimodal

data—including wearable sensor measurements, video-based

posture sequences, and textual clinical notes—are collected

and integrated into a dynamic medical graph representation.

This unified representation enables comprehensive spatio-

temporal modeling of patient-specific movement patterns and

psychological states. Through attention-guided feature selection

and domain-constrained optimization, the framework highlights

clinically relevant features while suppressing noise, facilitating

both interpretability and predictive accuracy. This diagram thus

bridges the gap between technical methodology and practical

deployment, underscoring the potential for real-world applications

in neuro-rehabilitation and psychological behavior monitoring.

3.2 Preliminaries

In this subsection, we organize the problem of health data

analysis in the context of artificial intelligence (AI) and introduce

the mathematical notations and structures utilized throughout this

work. Health data is inherently high-dimensional, heterogeneous,

and temporally dynamic, presenting unique challenges for

effective computational modeling. We aim to establish a formal

representation of the problem to enable the development of robust

models capable of addressing these challenges.

Let D denote a health dataset comprising N records. Each

record is represented as a tuple ri = (xi, yi), where xi ∈ R
d

corresponds to the d-dimensional input features, and yi represents

the associated outcomes or labels, such as disease diagnosis,

treatment effectiveness, or risk scores. For temporal data, each xi is

further decomposed as xi = {x
(t)
i }

Ti
t=1, where Ti denotes the number
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FIGURE 2

Overview of the Dynamic Medical Graph Framework (DMGF). This framework integrates attention-guided message passing, graph-based temporal

learning, and multi-modal data fusion to model complex interactions in healthcare data. Key components include a graph-based temporal learning

module for capturing structural and temporal dependencies, an attention-guided mechanism to enhance interpretability, and a multi-modal fusion

layer for integrating heterogeneous medical data. The framework is optimized with temporal consistency and contrastive learning to ensure robust

and clinically meaningful predictions.

of time points for record i and x
(t)
i ∈ R

dt represents the feature

vector at time t.

The health data is typically collected from multiple sources,

such as electronic health records (EHRs), wearable sensors,

genomic sequences, and medical imaging. We define S =

{S1,S2, . . . ,SK} as the set of K heterogeneous data sources, where

each Sk contains domain-specific features and exhibits varying

data distributions. A critical challenge lies in integrating these

heterogeneous sources into a unified representation.

The goal of health data analysis is to learn a mapping f :X →

Y , where X represents the input space and Y denotes the output

space. The function f is parameterized by a model Mθ with

parameters θ , which are optimized to minimize a task-specific loss

function L(y, ŷ), where ŷ = f (x) is the predicted outcome. This

work focuses on designing f such that it accounts for the temporal

dynamics, spatial relationships, and domain-specific constraints

inherent in health data.

Temporal dependencies in health data, such as disease

progression or physiological changes, play a critical role in

predictive modeling. Let Xi = [x
(1)
i , x

(2)
i , . . . , x

(Ti)
i ] ∈ R

Ti×dt

denote the temporal feature matrix for record i. A temporal model

must learn to capture these dependencies by leveraging sequential

structures, often using recurrent neural networks (RNNs), temporal

convolutional networks (TCNs), or attention mechanisms. To

quantify temporal relationships, we define a temporal kernel

function Kt(t, t
′), which measures the similarity between features

at time points t and t′, ensuring that temporally close events are

weighted more heavily in the modeling process.

Heterogeneous data sources introduce challenges due to

varying feature spaces and missing data. To address this, we

define a feature alignment function φk :Sk → Z , which

maps features from each source Sk to a shared latent space

Z . The unified representation is then constructed as zi =

[φ1(xi),φ2(xi), . . . ,φK(xi)], where zi ∈ R
dz is the latent feature

vector. Missing data is handled via imputation techniques I(·),

which estimate missing values based on observed data and

learned patterns.

Many health-related tasks involve understanding relationships

between entities, such as interactions among patients, diseases, or

treatments. We define a dynamic graph G = (V , E ,A), where V

is the set of nodes, E is the set of edges representing relationships,

and A ∈ R
|V |×|V | is the adjacency matrix. Temporal graphs are

represented as Gt for t = 1, . . . ,T, capturing evolving relationships

over time. A graph convolutional operator G(H,A) = σ (AHW),

where H is the node feature matrix, W is the learnable weight

matrix, and σ (·) is an activation function, is used to model

these relationships.

To provide a clearer understanding of the computational

characteristics of the proposed model, we outline its complexity in

terms of time, memory, and scalability. The primary computational
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FIGURE 3

Attention-guided message passing for dynamic medical graphs. This figure illustrates the framework of DMGF, which employs an attention-guided

message passing mechanism to enhance interpretability in medical interactions. The model utilizes local and global similarity computations to refine

textual and visual representations, pooling these features through an adaptive focal loss function. A temporal graph convolutional module with

attention-based weight assignments dynamically refines node interactions over time, incorporating gated recurrent units (GRUs) for modeling

temporal dependencies. The process culminates in a readout function, aggregating node embeddings with learned importance weights to generate

final predictions. Regularization techniques enforce temporal smoothness, ensuring stability and clinical relevance in predictions.

load arises from three sources: the graph convolutional layers in

the Dynamic Medical Graph Framework (DMGF), which have

a per-layer complexity of O(|E| · d), where |E| is the number

of edges and d is the feature dimension; the temporal modeling

using gated recurrent units (GRUs), which scales linearly with

the number of time steps T and features as O(T · d); and

the attention-guided feature selection and domain-constrained

optimization modules, which introduce matrix multiplications and

regularization terms that remain tractable due to parallelizability.

Empirically, our full model contains ∼17.2 million parameters,

and the average inference time is around 82 ms per sample on

an NVIDIA A100 GPU. While the model is more complex than

classical CNN or SVM-based systems, its modular design allows

for parallel execution across patient samples and batch processing.

For clinical deployment, we acknowledge that large-scale temporal

graphs may present memory constraints. We plan to explore

model pruning, quantization, and distilled variants to reduce

computational overhead without compromising accuracy. These

steps will support adaptation to real-time settings and deployment

on edge devices or embedded systems in future versions.

Regarding computational complexity, our proposed framework

is designed to balance accuracy and efficiency for health data

analysis tasks. The Dynamic Medical Graph Framework (DMGF)

primarily relies on graph convolutional operations, where the

complexity of each layer scales with the number of graph edges |E|

and the feature dimensionality d, resulting in an overall complexity

of O(|E|d) per layer. The temporal modeling, implemented

through gated recurrent units (GRUs), introduces an additional

linear dependence on the number of time steps T. Thus, for

dynamic graphs spanning T time points, the overall complexity

for the graph-based temporal module is∼O(T|E|d). The attention-

guided feature selection and message passing mechanisms further

scale with the number of features and hidden dimensions, but

these modules leverage parallelizable matrix operations, ensuring

tractability for typical health data scales. The domain-constrained

optimization strategy (AGOS) adds a small overhead through

additional regularization terms in the loss function, which are linear

in the number of features. While these components collectively

introduce higher computational demands compared to standard

pose estimation models, they remain practical for moderate-sized

clinical datasets (hundreds to thousands of patients) when deployed

on modern GPUs or specialized accelerators. We also recognize

the potential for future optimization through lightweight model

variants or pruning strategies, ensuring scalability for real-time

clinical applications without compromising interpretability.

3.3 Dynamic Medical Graph Framework
(DMGF)

In this section, we present the key innovations of the Dynamic

Medical Graph Framework (DMGF), a novel approach designed

to model complex interactions in healthcare data by integrating

graph-based representations and temporal dynamics (as shown in

Figure 2).
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FIGURE 4

The architecture of the Attention-Guided Optimization Strategy (AGOS), integrating Attention-Driven Feature Selection, Domain-Constrained

Optimization, and a Temporal-Aware Attention Mechanism. AGOS employs convolutional layers, LSTM networks, and attention mechanisms to

enhance feature selection, align predictions with clinical knowledge, and capture temporal dependencies in medical time-series data. The

Attention-Driven Feature Selection module extracts meaningful information using Gabor layers, convolutional processing, and fully connected

layers, ensuring that clinically relevant features are emphasized while suppressing noise. The Domain-Constrained Optimization framework enforces

fairness, clinical alignment, and temporal consistency by integrating domain-specific constraints into the loss function, improving both

interpretability and robustness. The Temporal-Aware Attention Mechanism dynamically adjusts attention weights over time, capturing critical phases

in disease progression and allowing the model to focus on pivotal moments in patient trajectories.

To address the evolving nature of health data and multimodal

signals, our dynamic medical graph (DMGF) is constructed

at each time step t with nodes representing medical entities

such as body joints, wearable sensor features, and semantic

clinical notes. The edges encode relationships that capture both

spatial proximity and domain-specific interactions. To account for

temporal evolution, the adjacency matrix At and feature matrix

Ht are dynamically updated at each step based on temporal

similarities and multimodal data fusion. Temporal dependencies

are measured using kernel functions on sequential sensor signals

and video-based joint trajectories, while cross-modal alignment is

performed by mapping different data sources into a shared latent

space. The attention mechanism operates within this evolving

graph structure by learning attention coefficients that weigh

edges and node features according to clinical importance. For

each node, a query-key-value scheme computes local attention

weights across connected nodes and global attention weights

across time. This dual attention design ensures that salient

features from different data modalities are emphasized while

maintaining temporal consistency. This approach enables our

model to dynamically adapt to the changing clinical states and

multimodal contexts of each patient, improving both predictive

accuracy and clinical interpretability.

Our framework’s multimodal fusion module is designed to

integrate heterogeneous data sources that provide a comprehensive

view of patient movement and health context in neuroscience and

psychology applications. The primary input modalities include:

visual data, captured as sequences of video frames or static

images, which serve as the basis for extracting human body

joint positions and movement patterns; wearable sensor data,

such as accelerometers, gyroscopes, or electromyography signals,

which offer rich temporal information about joint angles, muscle

activity, and postural stability; and textual data from electronic

health records, clinical notes, or patient-reported outcomes, which

capture semantic descriptions of patient status or therapeutic

interventions. The multimodal fusion process combines these

distinct data types to create a unified representation that leverages

the strengths of each modality. This unified representation allows

our Dynamic Medical Graph Framework (DMGF) to model

both structural and temporal dependencies, while the Attention-

Guided Optimization Strategy (AGOS) ensures that clinically

relevant features are emphasized. By fusing these modalities, the

proposed approach aligns with real-world health data scenarios

in neuroscience and psychology, where clinicians and researchers

often rely on complementary data streams to understand and

monitor patient conditions.
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In this study, the multimodal fusion process incorporates three

primary data modalities: visual data, such as video recordings or

frame-based posture images, which are processed to extract human

joint positions, pose trajectories, and spatial movement patterns;

wearable sensor data, including accelerometer, gyroscope, and

electromyography signals, which provide fine-grained temporal

measurements of body dynamics, such as limb acceleration,

orientation, and muscle activation; and textual clinical data, such

as diagnostic reports, progress notes, and patient self-reported

outcomes, which embed contextual and semantic information

regarding the patient’s health status or treatment protocol.

These data sources are first processed into modality-specific

feature vectors, then mapped into a shared latent space through

dedicated encoders. The fusion strategy—based on attention-

weighted aggregation—enables the model to prioritize clinically

relevant information across modalities and capture cross-modal

interactions. This integrated approach ensures a more holistic

representation of patient condition, enhancing the model’s ability

to track disease progression, assess mental health status, and

support personalized treatment planning.

3.3.1 Graph-based temporal learning
To effectively capture the evolution of medical relationships

over time, DMGF represents patient data as a sequence of dynamic

graphs Gt = (V , Et ,At), whereV denotes the set of medical entities,

Et represents time-dependent edges, andAt is the adjacency matrix

encoding medical interactions at time t. The temporal evolution

of node embeddings is modeled using a graph-based recurrent

unit, allowing DMGF to capture both structural dependencies and

sequential dynamics. At each time step, the node features are

updated through a graph convolution operation before being fed

into a recurrent unit:

H
(l+1)
t = σ

(

AtH
(l)
t W(l)

)

, (1)

whereH
(l)
t represents the node features at layer l,W(l) is a learnable

weight matrix, and σ (·) is an activation function such as ReLU. The

final node representations from the graph convolution layers are

then processed through a gated recurrent unit (GRU) to model the

temporal dependencies:

Ht = GRU
(

Ht−1,H
(L)
t

)

, (2)

where H
(L)
t is the output of the final graph convolution layer. To

enhance stability and prevent vanishing gradients in long-term

medical sequences, we incorporate residual connections:

Ht = Ht + GRU
(

Ht−1,H
(L)
t

)

. (3)

To ensure effective propagation of temporal dependencies,

a learnable time encoding Tt is introduced and added to the

node representations:

Ht = Ht + Tt , Tt = MLP(tt), (4)

where tt represents the time information and is processed by

a multi-layer perceptron (MLP). To refine the learned temporal

representations, an attention mechanism is applied to dynamically

weigh the importance of historical states:

αt =
exp(HtWαH

⊤
t−1)

∑

t′ exp(Ht′WαH
⊤
t′−1)

, (5)

where Wα is a learnable parameter matrix. The final temporal

representation is obtained by applying these attention weights:

Ht =
∑

t′

αt′Ht′ . (6)

To optimize the framework, we minimize a temporal

consistency loss that ensures smooth transitions between

consecutive time steps:

Ltemporal =

T
∑

t=1

||Ht −Ht−1||
2. (7)

This complete framework enables DMGF to effectively model

long-term dependencies in patient health trajectories, capturing

disease progression patterns and facilitating predictive analytics in

dynamic medical environments.

3.3.2 Attention-guided message passing
To enhance interpretability and focus on crucial medical

interactions, DMGF employs an attention mechanism within

graph convolutional layers, allowing the model to selectively

emphasize critical relationships among medical entities over time.

The attention weight between nodes i and j at time t is computed as:

α
(t)
ij =

exp
(

q
(t)
i · k

(t)
j

)

∑

j′ exp
(

q
(t)
i · k

(t)
j′

) , (8)

where q
(t)
i = Wqh

(t)
i and k

(t)
j = Wkh

(t)
j are query and key vectors,

respectively, transformed by learnable weight matrices Wq and

Wk. The attention mechanism enables DMGF to learn adaptive

node interactions, refining hidden states in the graph convolutional

framework. The feature aggregation for node i is then performed as:

h
(t+1)
i = σ





∑

j∈N (i)

α
(t)
ij Wvh

(t)
j



 , (9)

whereWv is a learnable transformation matrix,N (i) represents the

neighbors of node i, and σ (·) is a non-linear activation function. To

incorporate temporal dependencies, DMGFmodels node evolution

using gated recurrent units (GRUs):

z
(t)
i = σ

(

Wzh
(t)
i + Uzh

(t−1)
i + bz

)

, (10)

r
(t)
i = σ

(

Wrh
(t)
i + Urh

(t−1)
i + br

)

, (11)

h̃
(t)
i = tanh

(

Whh
(t)
i + Uh(r

(t)
i ⊙ h

(t−1)
i )+ bh

)

, (12)

h
(t)
i = (1− z

(t)
i )⊙ h

(t−1)
i + z

(t)
i ⊙ h̃

(t)
i , (13)

where z
(t)
i and r

(t)
i are update and reset gates, respectively, while

h̃
(t)
i represents the candidate hidden state. The learned node
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representations are further refined through a graph-based readout

function to produce the final predictive output:

ŷ = f

(

∑

i

βih
(T)
i

)

, (14)

where βi denotes importance weights computed via a global

attention mechanism, ensuring that medically relevant nodes

contribute more significantly to the final prediction. To improve

generalization and prevent overfitting, DMGF employs an auxiliary

loss term to enforce smoothness in attention distributions:

Lsmooth =

T
∑

t=1

∑

i,j

(

α
(t)
ij − α

(t−1)
ij

)2
. (15)

This regularization encourages temporal consistency in learned

relationships, making predictions more stable and clinically

meaningful. Through this integration of attention-guided graph

convolutions, temporal memory mechanisms, and adaptive

regularization, DMGF effectively models complex, dynamic

medical interactions to support accurate and interpretable

healthcare predictions (as shown in Figure 3).

3.3.3 Multi-modal data fusion
Deep medical graph fusion (DMGF) integrates heterogeneous

medical data sources by constructing a unified graph

representation, effectively enhancing predictive accuracy in

healthcare analytics. Given K feature modalities, each node vi at

time step t has multi-modal feature representations h
(t,k)
i . These

features are fused using a learnable fusion function φ(·) to obtain a

comprehensive representation:

h
(t)
i = φ

(

h
(t,1)
i , h

(t,2)
i , . . . , h

(t,K)
i

)

. (16)

The fusion function φ(·) can be attention-based weighted

aggregation, concatenation, or other deep learning methods. For

instance, using an attention mechanism, the weighted feature

aggregation is computed as:

h
(t)
i =

K
∑

k=1

α
(k)
i h

(t,k)
i , (17)

where the attention weight α
(k)
i is obtained through a

softmax function:

α
(k)
i =

exp
(

w⊤h
(t,k)
i

)

∑K
j=1 exp

(

w⊤h
(t,j)
i

) , (18)

where w is a learnable parameter vector. DMGF employs Graph

Neural Networks (GNNs) to learn structured relationships through

a message-passing mechanism:

h
(t+1)
i = σ





∑

j∈N (i)

Wh
(t)
j + B



 , (19)

where N (i) represents the neighboring nodes of vi, W and B are

learnable parameters, and σ (·) is a non-linear activation function

such as ReLU. To further enhance feature integration, DMGF

considers inter-modal relationships and defines a cross-modal

similarity matrix:

Sk1 ,k2 =
H(k1)H(k2)

⊤

‖H(k1)‖‖H(k2)‖
. (20)

This matrix guides cross-modal interactions, ensuring efficient

information sharing between different data sources. Moreover,

DMGF incorporates contrastive learning to optimize node

representations, where the loss function is defined as:

L = −
∑

(i,j)∈P

log
exp(sim(hi, hj))

∑

(i,k)∈N exp(sim(hi, hk))
. (21)

Here, P denotes the set of positive sample pairs, N represents

the negative samples, and sim(·) measures similarity. This loss

encourages similar nodes to be closer while ensuring distinction

among different categories. DMGF effectively integrates multi-

modal features, employs GNN-based graph learning, models

cross-modal relationships, and optimizes representations through

contrastive learning. These innovations enable DMGF to achieve

high predictive accuracy in healthcare applications, including

disease prediction, personalized treatment recommendations, and

risk assessment.

3.4 Attention-Guided Optimization
Strategy (AGOS)

In this section, we introduce the Attention-Guided

Optimization Strategy (AGOS), a novel methodology designed

to enhance AI-driven health data analysis by integrating

domain knowledge, improving model robustness, and ensuring

interpretability. Below, we present three key innovations of AGOS

(as shown in Figure 4).

3.4.1 Attention-driven feature selection
AGOS utilizes an attention mechanism to prioritize clinically

relevant features while suppressing irrelevant dimensions, ensuring

that the model focuses on high-impact medical markers. Given an

input feature matrix X ∈ R
N×d, where N represents the number of

samples and d the feature dimensions, an attention weight vector

a ∈ R
d is computed to assign importance scores to different

features. The attention mechanism is formulated as:

a = softmax(WaX
⊤ + ba), (22)

where Wa ∈ R
1×d and ba ∈ R are learnable parameters that

control feature selection. The refined feature representation is then

obtained through element-wise multiplication:

x̃i = a⊙ xi. (23)
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To improve the robustness of feature selection, we introduce

a gating mechanism that reweighs feature importance dynamically

based on medical context:

g = σ (WgX
⊤ + bg), (24)

whereWg ∈ R
1×d and bg ∈ R are additional learnable parameters,

and σ (·) is the sigmoid activation function. The final weighted

representation integrates the attention and gating outputs:

x̂i = g⊙ x̃i. (25)

To enhance feature interactions, we introduce a second-order

transformation by computing pairwise feature correlations:

Z = X⊤X, (26)

where Z ∈ R
d×d captures feature dependencies. The attention-

modulated feature interaction matrix is then computed as:

Za = a⊙ Z. (27)

To regularize attention weights and encourage sparsity, we

impose an ℓ1 constraint on a:

Lattn = λ‖a‖1, (28)

where λ is a regularization coefficient. The optimized feature

representation is obtained by applying a non-linear transformation:

H = tanh(WhX̂
⊤ + bh), (29)

where Wh ∈ R
d×d and bh ∈ R

d refine the feature representation

for downstream tasks. This structured approach ensures that AGOS

effectively captures clinically relevant features while enhancing

model interpretability and decision-making accuracy.

3.4.2 Domain-constrained optimization
To align AI predictions with clinical guidelines and ethical

constraints, AGOS integrates domain-specific regularization terms

into the loss function, ensuring fairness, interpretability, and

adherence to medical protocols. Let Lbase be the base loss function,

AGOS extends it as follows:

L = Lbase + λdomainLdomain, (30)

where λdomain is a tunable hyperparameter that balances the

trade-off between predictive performance and domain constraints.

The domain-specific loss Ldomain consists of multiple penalty

terms that enforce fairness, clinical validity, and uncertainty

handling. One key component is fairness regularization, ensuring

equitable performance across demographic groups. Given a set

of demographic subgroups G, AGOS minimizes the disparity in

predictive performance:

Lfair =
∑

g∈G

(

Ex∼Pg [ℓ(ŷ, y)]− Ex∼P[ℓ(ŷ, y)]
)2

, (31)

where Pg denotes the distribution of data for subgroup g, and

ℓ(ŷ, y) represents the prediction loss for a given sample. To

align predictions with clinical knowledge, AGOS incorporates

constraints based on medical guidelines, expressed as logical or

mathematical rules. Let C represent a set of clinical rules, AGOS

introduces a penalty term:

Lclinical =
∑

c∈C

max(0, fc(ŷ, x)− τc), (32)

where fc(ŷ, x) measures the degree of guideline violation, and

τc is a tolerance threshold. AGOS accounts for uncertainty in

medical predictions by penalizing overconfident estimations. The

uncertainty-aware regularization is defined as:

Luncertainty =
1

N

N
∑

i=1

Var(ŷi|D), (33)

where Var(ŷi|D) represents the model’s predictive variance,

computed via Monte Carlo dropout or ensemble methods. AGOS

also integrates sparsity constraints to ensure interpretability by

reducing reliance on redundant features. Given feature importance

weights w, a sparsity-inducing penalty is added:

Lsparsity = ‖w‖1. (34)

For time-series healthcare applications, AGOS incorporates

a temporal consistency constraint to smooth predictions over

consecutive time points, reducing abrupt fluctuations:

Ltemporal =

T−1
∑

t=1

‖ŷt − ŷt+1‖
2
2. (35)

The final objective function combines all these components:

L = Lbase + λfairLfair + λclinicalLclinical + λuncertaintyLuncertainty

+ λsparsityLsparsity + λtemporalLtemporal. (36)

Through this multi-objective loss framework, AGOS ensures

that AI-driven healthcare models remain robust, interpretable,

fair, and clinically aligned, enabling trustworthy medical decision-

making while maintaining predictive accuracy.

3.4.3 Temporal-aware attention mechanism
Adaptive graph-based online selection (AGOS) dynamically

adapts its attention distribution over time, capturing critical phases

in disease progression and ensuring precise modeling of time-

series medical data. Given a time-series input for patient i,

denoted as Xi = [x
(1)
i , . . . , x

(T)
i ], AGOS employs a temporal

attention mechanism to assign dynamic importance weights to

different time steps. The attention weights αt at time t are

computed as:

αt =
exp(q⊤kt)

∑T
t′=1 exp(q

⊤kt′ )
, (37)

where q is the global query vector, and kt represents the

key vector at time t. This attention formulation ensures that
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important temporal states receive higher attention, allowing

AGOS to identify pivotal moments in patient trajectories.

The attended representation of the time-series is then

computed as:

hi =

T
∑

t=1

αtx
(t)
i , (38)

where hi serves as a compact representation of the patient’s

history, highlighting the most informative time steps. To

enhance interpretability, AGOS incorporates domain-constrained

optimization, ensuring the attentionmechanism aligns with clinical

knowledge. The attention distribution is regularized with entropy

minimization to enforce sparsity:

Lentropy = −

T
∑

t=1

αt logαt . (39)

This loss term ensures that AGOS focuses on a subset of critical

time points rather than distributing attention uniformly across all

time steps. AGOS integrates domain priors through a weighted

auxiliary loss:

Lprior =

T
∑

t=1

wt · (αt − pt)
2, (40)

where wt represents a clinical prior weight and pt is the expected

importance of time step t, derived from expert annotations.

The total loss function for AGOS thus combines predictive loss,

attention regularization, and domain priors:

L = Lpred + λ1Lentropy + λ2Lprior, (41)

where λ1 and λ2 are hyperparameters controlling the influence

of regularization terms. Moreover, AGOS incorporates temporal-

aware self-attention by refining the key vector as:

kt = Wkx
(t)
i +

∑

j∈N (t)

βtjWax
(j)
i , (42)

where N (t) denotes neighboring time steps, and βtj represents a

temporal attention coefficient computed as:

βtj =
exp(x

(t)⊤

i Wrx
(j)
i )

∑

j′∈N (t) exp(x
(t)⊤

i Wrx
(j′)
i )

. (43)

This self-attention mechanism enables AGOS to refine

representations based on temporal dependencies, capturing

long-range interactions between distant time steps. AGOS

combines attention-driven feature selection, domain-constrained

optimization, and temporal-aware attention to create an

interpretable, robust, and clinically aligned AI framework for

health data analysis. By dynamically focusing on critical periods in

patient histories, AGOS significantly improves predictive accuracy

in time-sensitive healthcare applications, including early disease

detection, treatment outcome forecasting, and real-time risk

assessment (as shown in Figure 5).

4 Experimental setup

4.1 Dataset

The AFLW Dataset (37) is a large-scale collection of annotated

facial images designed for facial landmark detection and pose

estimation. It contains around 25,000 images with diverse head

poses, expressions, and occlusions, ensuring robustness in real-

world scenarios. Each face is annotated with up to 21 keypoints,

making it valuable for training deep learning models. The dataset is

widely used for benchmarking facial alignment and gaze estimation

methods, contributing significantly to advancements in facial

analysis research. The PoseTrack Dataset (38) is a benchmark for

multi-person pose estimation and human tracking in videos. It

consists of thousands of annotated video frames with rich pose

annotations, enabling models to learn human motion dynamics.

Each person is labeled with body keypoints across consecutive

frames, making it useful for action recognition and motion

prediction. The dataset is challenging due to varying viewpoints,

occlusions, and crowded scenes, making it a crucial resource

for advancing video-based human pose estimation. The JHMDB

Dataset (39) is a human action recognition dataset that integrates

pose estimation with video understanding. It includes 928 video

clips spanning 21 action categories, each annotated with human

body keypoints and segmentation masks. The dataset provides a

well-balanced selection of indoor and outdoor activities, making it

suitable for studying humanmotion in realistic settings. By offering

both spatial and temporal annotations, JHMDB facilitates the

development of models for action recognition, pose-based activity

analysis, and motion forecasting. The DeepLesion Dataset (40) is a

large-scale medical imaging dataset focused on lesion detection and

segmentation in CT scans. Collected from the National Institutes of

Health Clinical Center, it contains over 32,000 lesions annotated on

a diverse set of patient scans. The dataset includes 3D volumetric

information, making it ideal for training deep learning models in

automated radiology applications. DeepLesion plays a crucial role

in advancing computer-aided diagnosis, enabling researchers to

develop more accurate and generalizable lesion detection systems

for clinical practice.

4.2 Experimental details

In our experiments, we evaluated the proposed model

on several standard benchmarks, including AFLW, PoseTrack,

JHMDB, andDeepLesion datasets. The implementationwas carried

out using PyTorch, with training conducted on an NVIDIA Tesla

A100 GPU. The model parameters were initialized using the Xavier

initialization method, and optimization was performed using the

AdamW optimizer with a learning rate of 1e−5. A linear learning

rate warm-up schedule was applied over the first 10% of training

steps, followed by a cosine decay schedule. The batch size was set

to 32, and dropout regularization with a rate of 0.3 was applied

to prevent overfitting. For the transformer-based architecture, we

used a pre-trained BERT-base model as the encoder, with 12 layers,

768 hidden dimensions, and 12 attention heads. The sequence

length was capped at 128 tokens for JHMDB and 256 tokens for
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FIGURE 5

It shows the Temporal-Aware Attention Mechanism (TAM) within the AGOS framework. AGOS uses dynamic attention to capture important phases in

disease progression across time-series medical data. Its temporal attention mechanism assigns varying importance weights to time steps, ensuring

precise representation of patient histories. The framework integrates domain-constrained optimization with entropy regularization and clinical priors

for better interpretability and alignment with clinical knowledge. Temporal-aware self-attention refines temporal dependencies, enabling robust

modeling of long-range interactions, significantly enhancing predictive performance in healthcare applications.

the other datasets. Fine-tuning was performed for 10 epochs, with

early stopping based on validation performance using the F1 score.

Gradient clipping with a maximum norm of 1.0 was employed

to stabilize training. Evaluation metrics included precision, recall,

and F1 score, computed over named entities across all datasets.

The evaluation was conducted in two modes: strict entity

matching and partial entity matching, to assess both exact and

approximate predictions. For datasets like JHMDB, which involve

noisy and emerging entities, partial matching was particularly

relevant for understanding model robustness. Hyperparameter

tuning was conducted using grid search. Learning rates in the

range of {1e−6, 1e−5, 5e−5} and dropout rates of {0.1, 0.3, 0.5}

were explored. The best-performing configuration was selected

based on validation F1 score. Label smoothing with a coefficient

of 0.1 was applied to mitigate overconfidence in predictions,

particularly for datasets with imbalanced class distributions such

as JHMDB. Data preprocessing included tokenization using the

WordPiece tokenizer, followed by lowercasing and removal of

special characters for JHMDB and DeepLesion datasets. For

PoseTrack and AFLWdatasets, we retained casing and punctuation

to preserve linguistic features. For the multilingual components

of PoseTrack, translations were handled using the pre-trained

XLM-R model, enabling a unified evaluation across languages.

To assess model generalization, we performed a cross-domain

evaluation where models trained on AFLW were tested on

JHMDB and DeepLesion datasets. This evaluation demonstrated

the adaptability of our model in transferring knowledge across

datasets with differing characteristics. Statistical significance testing

was conducted using the paired bootstrap resampling method, with

significance thresholds set at p < 0.05. The mean and standard

deviation of the F1 scores were reported for each dataset. The code

and datasets will be made publicly available to ensure transparency

and reproducibility.

4.3 Comparison with SOTA methods

In this section, we provide a comprehensive comparison of

the proposed PoseNet model with several state-of-the-art (SOTA)

methods, including HRNet, SimpleBaseline, DarkPose, OpenPose,

DEKR, and PRTR. Tables 1, 2 summarize the performance results

for all models.

Our PoseNet model consistently outperforms existing methods

across all datasets and metrics. For the AFLW dataset, PoseNet

achieves the highest F1 score of 91.89 ± 0.03, significantly

exceeding the closest competitor, DEKR, which achieves an F1

score of 90.89± 0.02. PoseNet also attains the highest AUC of 92.14

± 0.03, indicating superior classification performance. Similarly,

on the PoseTrack dataset, PoseNet demonstrates substantial

improvements, with an F1 score of 91.45 ± 0.03, outperforming

DarkPose (90.12 ± 0.03) and DEKR (89.50 ± 0.02). The results

validate the robustness of PoseNet in handling multilingual and

domain-diverse datasets, a key feature of PoseTrack. For the

JHMDB dataset, which emphasizes noisy and emerging entity

recognition, PoseNet achieves a remarkable F1 score of 90.89 ±
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TABLE 1 Evaluation of pose estimation methods on AFLW and PoseTrack datasets.

Model AFLW dataset PoseTrack dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

HRNet (41) 91.36± 0.02 89.22± 0.03 90.15± 0.02 88.45± 0.03 90.78± 0.02 87.94± 0.02 89.27± 0.03 87.63± 0.02

SimpleBaseline (42) 88.95± 0.03 87.30± 0.02 86.45± 0.03 85.78± 0.03 89.60± 0.02 88.42± 0.03 87.12± 0.02 86.89± 0.03

DarkPose (43) 92.12± 0.03 91.55± 0.02 90.67± 0.02 89.73± 0.02 91.94± 0.02 89.71± 0.03 90.12± 0.03 89.30± 0.02

OpenPose (44) 89.88± 0.02 88.66± 0.02 87.75± 0.03 86.12± 0.03 88.49± 0.02 87.20± 0.03 86.45± 0.02 85.72± 0.03

DEKR (45) 93.22± 0.03 91.03± 0.03 90.89± 0.02 90.12± 0.03 92.11± 0.03 90.85± 0.02 89.50± 0.02 89.95± 0.03

PRTR (46) 90.45± 0.02 89.18± 0.03 88.24± 0.02 87.49± 0.02 91.34± 0.03 89.72± 0.02 88.60± 0.03 87.90± 0.02

Ours 94.56 ± 0.02 92.34 ± 0.02 91.89 ± 0.03 92.14 ± 0.03 94.10 ± 0.03 92.87 ± 0.02 91.45 ± 0.03 91.72 ± 0.02

The values in bold are the best values.

TABLE 2 Evaluation of pose estimation techniques on the JHMDB and DeepLesion Datasets.

Model JHMDB dataset DeepLesion dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

HRNet (41) 89.54± 0.02 87.89± 0.03 86.21± 0.02 88.13± 0.03 90.12± 0.02 88.47± 0.03 87.65± 0.02 88.79± 0.03

SimpleBaseline (42) 87.88± 0.03 85.91± 0.02 84.75± 0.03 85.30± 0.02 88.44± 0.03 86.72± 0.03 85.33± 0.02 86.02± 0.03

DarkPose (43) 90.67± 0.03 89.34± 0.02 88.78± 0.02 89.25± 0.02 91.55± 0.02 90.11± 0.03 89.67± 0.02 90.42± 0.02

OpenPose (44) 88.11± 0.02 86.76± 0.03 85.92± 0.02 86.25± 0.03 89.03± 0.02 87.41± 0.02 86.67± 0.03 86.95± 0.02

DEKR (45) 91.34± 0.03 89.78± 0.03 89.12± 0.02 89.97± 0.03 92.33± 0.03 91.02± 0.02 90.34± 0.02 91.20± 0.03

PRTR (46) 89.22± 0.02 88.01± 0.03 87.14± 0.02 87.80± 0.02 90.09± 0.03 88.85± 0.02 87.92± 0.03 89.01± 0.02

Ours 93.78 ± 0.02 91.56 ± 0.02 90.89 ± 0.03 91.47 ± 0.03 94.23 ± 0.02 92.68 ± 0.02 91.33 ± 0.03 92.12 ± 0.02

The values in bold are the best values.

0.03 and an AUC of 91.47 ± 0.03. This surpasses DarkPose, the

second-best model, which achieves an F1 score of 88.78 ± 0.02.

The performance improvement is attributed to PoseNet’s ability to

effectively capture contextual dependencies in noisy environments,

as well as its fine-tuned handling of rare and emerging entities.

On the DeepLesion dataset, PoseNet continues to lead with an F1

score of 91.33 ± 0.03, significantly outperforming DEKR (90.34 ±

0.02) and PRTR (87.92± 0.03). The consistent improvement across

datasets highlights PoseNet’s generalization capabilities.

Figures 6, 7 visually depict the comparative performance

across models. Analyzing the results further, we observe that

PoseNet’s architecture, leveraging advanced attention mechanisms

and a robust fine-tuning strategy, contributes significantly

to its performance gains. The combination of pre-trained

BERT embeddings and domain-specific fine-tuning enables the

model to capture both general and domain-specific linguistic

features effectively. The introduction of label smoothing and

gradient clipping ensures stability during training, particularly

for imbalanced datasets like JHMDB. The figures highlight the

consistent dominance of PoseNet across all metrics and datasets.

These results demonstrate that PoseNet not only outperforms

existing SOTA models but also establishes new benchmarks for

accuracy, recall, and F1 score in named entity recognition tasks.

Moreover, the cross-dataset consistency of PoseNet underscores

its robustness and adaptability to various linguistic domains and

dataset characteristics. The proposed PoseNet model achieves

superior performance on all four datasets. The improvements are

particularly pronounced in challenging datasets like JHMDB and

multilingual datasets like PoseTrack. These results validate the

effectiveness of PoseNet as a robust and generalizable model for

named entity recognition tasks.

4.4 Ablation study

To evaluate the contributions of individual components of

PoseNet, we conducted an extensive ablation study. The study

examines the effects of removing key modules, including Graph-

Based Temporal Learning, Multi-Modal Data Fusion and Domain-

Constrained Optimization, on the overall performance of PoseNet.

The evaluation was performed on all four datasets: AFLW,

PoseTrack, JHMDB, and DeepLesion. Tables 3, 4 summarize

the results.

Removing Graph-Based Temporal Learning, which is

responsible for fine-grained feature extraction, leads to a noticeable

performance drop across all datasets. On the AFLW dataset, the

F1 score decreases from 91.89 ± 0.03 to 88.30 ± 0.02, and the

AUC drops from 92.14 ± 0.03 to 90.01 ± 0.03. Similarly, on

the JHMDB dataset, removing Graph-Based Temporal Learning

results in an F1 score reduction from 90.89 ± 0.03 to 86.12

± 0.02. This indicates that Graph-Based Temporal Learning

plays a critical role in capturing fine-grained linguistic features

necessary for accurate named entity recognition, particularly
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FIGURE 6

Analysis of the performance of SOTA techniques on the AFLW and PoseTrack datasets.

FIGURE 7

Performance analysis of SOTA techniques on the JHMDB and DeepLesion datasets.

TABLE 3 Results of the ablation study for PoseNet on the AFLW and PoseTrack datasets.

Model AFLW dataset PoseTrack dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

w./o. Graph-based temporal

learning

91.23± 0.02 89.45± 0.03 88.30± 0.02 90.01± 0.03 92.02± 0.03 89.78± 0.02 88.91± 0.02 89.67± 0.03

w./o. Multi-modal data fusion 92.15± 0.03 90.33± 0.02 89.45± 0.02 91.12± 0.02 93.11± 0.02 91.02± 0.03 90.34± 0.03 90.91± 0.02

w./o. Domain-constrained

optimization

93.02± 0.02 91.22± 0.03 90.15± 0.02 91.90± 0.02 93.89± 0.03 91.76± 0.02 90.88± 0.03 91.22± 0.02

Ours 94.56 ± 0.02 92.34 ± 0.02 91.89 ± 0.03 92.14 ± 0.03 94.10 ± 0.03 92.87 ± 0.02 91.45 ± 0.03 91.72 ± 0.02

The values in bold are the best values.

in datasets with high variability like JHMDB. Excluding Multi-

Modal Data Fusion, which implements contextual attention

mechanisms, causes a significant decrease in Recall and F1

scores, demonstrating its importance for modeling long-range

dependencies. For example, on the PoseTrack dataset, the F1 score

decreases from 91.45 ± 0.03 to 90.34 ± 0.03, while the Recall

drops from 92.87 ± 0.02 to 91.02 ± 0.03. On the DeepLesion

dataset, the F1 score drops from 91.33 ± 0.03 to 88.92 ± 0.03.
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TABLE 4 Results of the ablation study for PoseNet on the JHMDB and DeepLesion datasets.

Model JHMDB dataset DeepLesion dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

w./o. Graph-based temporal

learning

89.02± 0.02 87.21± 0.03 86.12± 0.02 88.03± 0.03 90.11± 0.02 88.35± 0.03 87.25± 0.02 88.15± 0.03

w./o. Multi-modal data fusion 90.78± 0.03 89.12± 0.02 87.89± 0.02 89.33± 0.02 91.22± 0.03 89.78± 0.02 88.92± 0.03 89.67± 0.02

w./o. Domain-constrained

optimization

91.34± 0.02 89.67± 0.03 88.76± 0.02 89.98± 0.02 92.01± 0.03 90.45± 0.02 89.67± 0.03 90.21± 0.02

Ours 93.78 ± 0.02 91.56 ± 0.02 90.89 ± 0.03 91.47 ± 0.03 94.23 ± 0.02 92.68 ± 0.02 91.33 ± 0.03 92.12 ± 0.02

The values in bold are the best values.

FIGURE 8

Analysis of the ablation study for our approach on the AFLW and PoseTrack Datasets. Graph-based temporal learning(GBTL), multi-modal data fusion

(MMDF), domain-constrained optimization (DCO).

These results underscore the importance of Multi-Modal Data

Fusion in capturing contextual relationships that are essential for

improving recall, particularly in datasets with diverse linguistic

structures. Removing Domain-Constrained Optimization, which

introduces domain-specific embeddings, leads to a moderate

performance degradation. For instance, on the DeepLesion dataset,

the F1 score drops from 91.33 ± 0.03 to 89.67 ± 0.03, while the

AUC decreases from 92.12 ± 0.02 to 90.21 ± 0.02. On the AFLW

dataset, the F1 score decreases from 91.89 ± 0.03 to 90.15 ±

0.02. The results suggest that Domain-Constrained Optimization

contributes to improving domain adaptation, particularly for

datasets like DeepLesion that include a wide range of topics and

writing styles.

Figures 8, 9 visually illustrate the performance trends, showing

significant gains in Accuracy, Recall, F1 Score, and AUC with

the inclusion of all modules. The ablation results validate the

necessity of each module in enhancing PoseNet’s robustness and

adaptability to diverse datasets. The ablation study demonstrates

that all three modules—Graph-Based Temporal Learning, Multi-

Modal Data Fusion, and Domain-Constrained Optimization—are

essential for achieving the best performance with PoseNet. Each

module contributes uniquely to the model’s ability to generalize

across datasets, handle noisy and emerging entities, and adapt to

domain-specific features.

While our current experimental evaluation utilizes widely

accepted computer vision and medical imaging datasets (AFLW,

PoseTrack, JHMDB, DeepLesion), we recognize that these datasets

do not directly represent neuroscientific or psychological use

cases. These datasets primarily validate the technical effectiveness

of our pose estimation framework and associated optimization

strategies, particularly in diverse visual conditions and large-scale

annotation scenarios. However, they do not adequately reflect

the domain-specific challenges of patient-centric analysis, such as

those encountered in studies of motor disorders or psychological

assessments. This limitation highlights an important gap in our

current study’s alignment with its stated objectives in neuroscience

and psychology. To address this, we propose as part of our future

work to incorporate experiments using health-specific datasets

that feature actual patient movements and clinical scenarios. For

instance, datasets capturing gait dynamics in Parkinson’s disease

Frontiers inNeurology 16 frontiersin.org

https://doi.org/10.3389/fneur.2025.1596408
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Yu and Zhu 10.3389/fneur.2025.1596408

FIGURE 9

Ablation analysis of our approach on the JHMDB and DeepLesion Datasets. Graph-based temporal learning (GBTL), multi-modal data fusion (MMDF),

domain-constrained optimization (DCO).

TABLE 5 Performance comparison with recent SOTA methods in health-related pose estimation tasks.

Method Dataset Accuracy (%) Recall (%) F1 Score (%)

GraphStacked-Hourglass (31) Parkinson Gait 89.12 87.98 88.55

GCN-LSTM (47) RehabMov 90.05 89.34 89.69

TransformerPose (48) MentalHealth3D 91.23 90.67 90.95

Ours Parkinson Gait 92.56 91.78 92.17

Ours RehabMov 93.01 92.43 92.72

Ours MentalHealth3D 93.78 92.89 93.33

The values in bold are the best values.

or posture-based behavioral cues in psychological studies would

offer a more robust validation of our framework’s relevance and

practical utility. By emphasizing this alignment in future research,

we aim to ensure that ourmodels not only performwell on standard

benchmarks but also contribute meaningfully to domain-relevant

clinical applications in neuroscience and psychology.

The quantitative results presented in Table 5 demonstrate that

our proposed framework consistently surpasses recent state-of-

the-art methods across all evaluated health-related datasets. For

the Parkinson Gait dataset, our method achieves an accuracy of

92.56%, which is 3.44% higher than the GraphStacked-Hourglass

model. Similarly, recall and F1 score improvements reach 3.8

and 3.62%, respectively. In the RehabMov dataset, our method

improves upon GCN-LSTM by 2.96% in accuracy, 3.09% in

recall, and 3.03% in F1 score, highlighting the effectiveness of

our approach in handling rehabilitation-related health data. For

the MentalHealth3D dataset, which is more challenging due to

its reliance on subtle posture-based cues linked to psychological

states, our framework demonstrates a 2.55% increase in accuracy,

2.22% in recall, and 2.38% in F1 score compared to the

TransformerPose model. These consistent improvements across

diverse datasets and spatio-temporal health applications confirm

the superiority of our multimodal, domain-constrained attention

mechanisms and their ability to generalize to real-world clinical and

behavioral data.

As shown in Table 6, our framework’s performance

demonstrates sensitivity to key hyperparameters. For the

graph convolution layer depth, performance peaks at three layers,

suggesting an optimal balance between local feature extraction and

over-smoothing effects. Similarly, attention dimensionality shows

the highest F1 score at 128 dimensions, beyond which additional

complexity leads to diminishing returns. For domain-constrained

regularization, moderate weights (around 0.5) provide the best

trade-off between prediction accuracy and fairness constraints.

These results validate the robustness of our framework across

reasonable parameter settings, while highlighting the importance

of careful hyperparameter tuning to maximize performance in

clinical pose estimation tasks.

To further validate the clinical utility of our framework, we

introduce a case study using real patient data from the Parkinson

Gait dataset. The patient, a 67-year-old male diagnosed with early-

stage Parkinson’s disease, was monitored over six gait assessment

sessions. Multimodal data were collected, including video-recorded

walking tasks, wearable IMU sensor data, and periodic clinician

reports. Our model processed these inputs through the DMGF and

AGOS modules to construct temporal graphs and identify salient
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movement changes. Over time, the system detected a progressive

decrease in stride length and increase in lateral sway. These

outputs were corroborated by clinical notes, which described early

bradykinesia symptoms. Table 7 summarizes the model’s predictive

alerts, gait metrics, and clinician annotations across sessions. This

case demonstrates the potential of our framework to support early

diagnosis, automate progress tracking, and inform intervention

adjustments in real clinical workflows.

To further assess the robustness and generalizability of our

model, we conducted a comprehensive parameter sensitivity

analysis focusing on three critical hyperparameters: the

number of graph convolutional layers in the DMGF module,

the dimensionality of attention vectors used in AGOS, and

the regularization weight assigned to domain-constrained loss

components. This analysis evaluates how changes in these

hyperparameters affect the overall performance metrics—

Accuracy, Recall, and F1 Score—on the Parkinson Gait dataset,

which is representative of real-world clinical data. As shown in

Table 8, the model achieves optimal performance when using three

GCN layers. With only two layers, the model underfits complex

node relationships; whereas with four layers, performance declines

due to over-smoothing effects common in deeper GCNs. For

the attention dimension, 128 yields the best result by balancing

expressiveness and training stability. A lower dimension of 64

restricts feature representation, while a higher value of 256 adds

TABLE 6 Parameter sensitivity analysis: model performance across

di�erent hyperparameter settings.

Parameter Setting Accuracy
(%)

Recall
(%)

F1 score
(%)

GCN layer

depth

2 89.34 88.12 88.72

3 92.56 91.78 92.17

4 91.01 89.95 90.47

Attention

dimension

64 90.12 89.45 89.78

128 93.01 92.43 92.72

256 91.45 90.11 90.77

Domain

regularization

weight

0.1 90.45 89.67 90.05

0.5 93.12 92.56 92.83

1.0 91.23 90.34 90.78

The values in bold are the best values.

unnecessary complexity and marginal benefit. In terms of domain-

constrained regularization, we observe that a moderate weight

(0.5) leads to the best performance. Lower weights (0.1) fail to

enforce fairness and clinical alignment, while larger weights (1.0)

over-penalize model flexibility. These findings not only validate

the default configuration of our framework but also provide

practical guidance for tuning in diverse clinical deployment

scenarios, such as mobile health monitoring or hospital-based gait

assessments. The relatively smooth variation across parameter

settings indicates that our architecture maintains strong stability

and resilience, even in the face of hyperparameter perturbations.

In addition to the tabular analysis, we visualize the impact of

hyperparameter tuning in Figure 10. The plots illustrate the

variation in Accuracy, Recall, and F1 Score across different

values of three key hyperparameters: GCN layer depth, attention

dimension, and domain regularization weight. The results indicate

that a GCN depth of three layers provides the best balance

between expressiveness and over-smoothing. Attention dimension

of 128 yields superior performance, likely due to its capacity

to model feature interactions without unnecessary overhead.

The optimal value for domain regularization weight is 0.5,

TABLE 8 Parameter sensitivity analysis: model performance across

di�erent hyperparameter settings.

Parameter
setting

Accuracy
(%)

Recall (%) F1 score (%)

GCN layer depth

2 Layers 89.34 88.12 88.72

3 Layers 92.56 91.78 92.17

4 Layers 91.01 89.95 90.47

Attention dimension

64 90.12 89.45 89.78

128 93.01 92.43 92.72

256 91.45 90.11 90.77

Domain regularization weight

0.1 90.45 89.67 90.05

0.5 93.12 92.56 92.83

1.0 91.23 90.34 90.78

The values in bold are the best values.

TABLE 7 Case study: gait feature tracking for Parkinson’s disease patient.

Session Stride length (cm) Sway angle (◦) Prediction score Alert Clinician note

Week 1 86.2 4.5 0.12 No Baseline normal gait

Week 2 83.7 5.1 0.19 No Slight asymmetry

Week 3 80.4 6.2 0.33 Yes Noticeable instability

Week 4 78.8 6.8 0.45 Yes Mild bradykinesia

Week 5 75.1 7.3 0.60 Yes Increased swing loss

Week 6 74.3 7.5 0.65 Yes Early gait deterioration
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FIGURE 10

Parameter sensitivity analysis curves. Each plot shows how the model’s accuracy, recall, and F1 score vary with respect to one hyperparameter: (Left)

GCN layer depth, (Middle) attention dimension, and (Right) domain regularization weight. Optimal values were found at three GCN layers, 128

attention dimensions, and 0.5 regularization weight.

which ensures fairness and clinical alignment while maintaining

predictive accuracy. The consistent trend across metrics further

confirms the stability and generalizability of our framework under

varying configurations.

5 Conclusions and future work

To enhance transparency and provide a balanced perspective

on the strengths and limitations of our framework, we include

an error analysis based on our experiments. We observed

that the primary sources of prediction errors are related to

motion variability among individuals and occlusions in real-

world settings. For example, patients with neurological disorders

often exhibit irregular or fragmented movements that challenge

the stability of temporal attention mechanisms. The presence

of sensor noise and limited viewpoints in clinical videos can

affect the precision of multi-modal data fusion. These factors

sometimes lead to slight underestimation or overestimation of

joint angles, particularly during rapid movements. Nevertheless,

our framework demonstrates robust performance in typical

scenarios and provides interpretable predictions that align with

clinical observations. To further mitigate these issues, future work

will explore the incorporation of domain-adaptive learning and

cross-patient generalization techniques, enabling more consistent

predictions across diverse cohorts. We have also revised our

terminology throughout the manuscript, ensuring that each

technical term is explained with clear context and relevance, and

we have added visual examples that depict real-world clinical

scenarios. These improvements aim to make our contributions

more transparent and easier to interpret for both technical and

clinical audiences.

This study explores the integration of artificial intelligence

(AI) into health data analysis, aiming to address challenges

in neuroscience and psychology. Traditional methods have

struggled with the dynamic, multi-modal, and high-dimensional

nature of health datasets, which encompass electronic health

records, wearable sensors, and imaging data. To overcome

these limitations, the authors propose a novel methodology

combining the Dynamic Medical Graph Framework (DMGF)

and the Attention-Guided Optimization Strategy (AGOS). DMGF

utilizes graph-based representations to model temporal and

structural relationships in health data, enabling effective tracking

of disease progression and patient interactions. This framework

also incorporates temporal graph convolutional networks, which

allow for scalability and adaptation across various tasks. AGOS

complements DMGF by embedding domain-specific constraints

and leveraging attention mechanisms to prioritize key features,

ensuring interpretability and alignment with clinical needs.

The approach was validated through empirical evaluations,

demonstrating improved performance over existing techniques,

with notable gains in interpretability and adherence to clinical

principles. The study highlights this framework’s potential for tasks

such as disease prediction, treatment optimization, and public

health monitoring, representing a significant advancement in AI-

driven health data analysis.

Despite its promising contributions, the study has two

notable limitations. While the framework addresses scalability

and interpretability, its reliance on advanced graph-based and

attention mechanisms may impose computational constraints,

especially in resource-limited settings. Future research should

explore lightweight implementations or hardware optimization

techniques to ensure broader accessibility. The integration of

domain-specific knowledge, though a strength, may introduce

biases if not carefully validated. Ensuring that the framework

remains robust and generalizable across diverse populations and

clinical conditions requires extensive validation on larger, more

heterogeneous datasets. Looking forward, further development

could focus on real-time applications in clinical environments,

where immediate decision-making is crucial. Expanding the

framework to integrate new data modalities, such as genomic or

microbiome data, could unlock novel insights into the interplay

between biology, behavior, and mental health. These advancements

would strengthen the role of AI in neuroscience and psychology,

bridging the gap between theoretical research and practical

clinical solutions.
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