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Predicting the transition from mild cognitive impairment (MCI) to Alzheimer’s disease 
(AD) has important clinical significance for dementia prevention and improving 
patient prognosis. Multimodal magnetic resonance imaging (MRI) techniques 
(including structural MRI, functional MRI, and cerebral perfusion MRI) can yield 
information on the morphology, structure, and function of the brain from multiple 
dimensions, providing a key basis for revealing the pathophysiological mechanisms 
during the conversion from MCI to AD. Artificial intelligence (AI) methods based 
on deep learning and machine learning, with their powerful data processing and 
pattern recognition capabilities, have shown great potential in mining the features 
of multimodal MRI data and constructing prediction models for MCI conversion. 
Therefore, this paper systematically reviews the research progress of multimodal 
MRI techniques in capturing brain changes related to MCI conversion, as well 
as the practical experience of AI algorithms in constructing efficient prediction 
models, analyses the current technical challenges faced by the research, and 
discusses future directions, with the goal of providing a scientific reference for 
the early and accurate prediction of MCI conversion and the formulation of 
intervention strategies.
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1 Introduction

According to the World Health Organization, approximately 50 million people worldwide 
suffer from dementia, and it is projected that by 2050, the number of people with dementia 
will reach 152 million (1). The main characteristic of dementia is the progressive deterioration 
in multiple cognitive domains, which is severe enough to interfere with daily functions (2). 
Alzheimer’s disease (AD) is one of the most common causes of dementia, accounting for 
approximately 75% of the total number of dementia cases (3–5). The symptoms of AD start 
with mild memory difficulties and evolve into cognitive impairment, impairment in complex 
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daily activities, and deficits in several other aspects of cognition (6). 
When AD is clinically diagnosed, neuronal loss and neuropathological 
lesions have already occurred in many areas of the brain (7). 
Therefore, the key to delaying potential damage is to intervene in a 
timely manner before AD progresses to mild symptoms, delaying the 
onset of irreversible dementia. MCI leads to cognitive impairment at 
an intermediate stage, between those with normal memory changes 
associated with ageing and those with obvious AD (8). At this very 
early stage, individuals still have sufficiently intact cognitive functions 
that can be utilized and guided to compensate for or restore functions 
(9). Although MCI is currently considered an early stage of AD and 
does not affect the normal life of patients, approximately 10–20% of 
patients convert to AD each year (10). If progressive MCI patients 
can be  identified at an early stage, providing a “window of 
opportunity” for the prevention and treatment of AD, it may 
be possible to prevent its conversion to AD, which will be highly 
important for the treatment and prognosis of AD (11). Many 
previous in depth studies have shown that multimodal MRI 
techniques (12), including structural MRI (13), functional MRI, and 
cerebral perfusion MRI, each have unique advantages (14–16). They 
can comprehensively and meticulously acquire abundant information 
on the morphology, structural function and cerebral blood flow of 
the brain from multiple dimensions and directions. The information 
obtained by these multimodal MR images complements each other, 
providing a theoretical basis for deeply revealing the 
pathophysiological changes in the cells, tissues, and functions of the 
brains of MCI patients and offering new perspectives for further 
exploration of the pathogenesis of MCI patient transformation and 
subsequent clinical diagnosis and treatment strategies. In addition, 
AI technologies, such as deep learning and machine learning (17–
19), are pioneering a revolutionary wave in the medical field due to 

their unparalleled powerful capabilities (20, 21). Deep learning relies 
on a deep neural network architecture and can automatically mine 
deep-level features from massive and complex data without the need 
for manual predecision of feature extraction rules, resulting in a high 
degree of adaptability and flexibility (22). Machine learning (23), 
through various algorithms, involves the learning and training of 
data to achieve tasks such as classification and prediction of unknown 
data (24). Many studies have shown that prediction models 
constructed based on AI have great potential in predicting the risk 
and time nodes of MCI conversion to AD, providing strong technical 
support for early intervention in MCI and delaying the conversion of 
AD, and are expected to promote breakthrough progress in precision 
medicine in this field. Multimodal MRI techniques, including 
structural, functional, and cerebral perfusion MRI, can yield brain 
information from multiple dimensions, providing a theoretical basis 
for revealing pathological changes in MCI patients (25). AI 
techniques such as deep learning and machine learning are 
revolutionary in the medical field (26). Prediction models 
constructed based on AI have great potential in predicting the 
conversion of MCI to Alzheimer’s disease (AD), which can 
provide technical support for early intervention and promote the 
development of precision medicine. Therefore, this paper 
comprehensively and deeply summarizes the latest research progress 
on brain changes related to the prediction of MCI to AD conversion 
through multimodal integration plus AI transformation. It is hoped 
that this information will assist clinicians and researchers in gaining 
a deeper understanding of the underlying mechanisms of MCI 
conversion to AD, thereby facilitating the development of more 
effective early intervention measures and providing new hope for 
improving the quality of life and prognosis of MCI patients 
(Figure 1).

FIGURE 1

Overview of predicting conversion from mild cognitive impairment to Alzheimer’s disease: including structure MRI, functional MRI and artificial 
intelligence.
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2 Research progress in the use of 
brain structure MRI for the prediction 
of MCI conversion

Clinically, structural magnetic resonance imaging (sMRI) is 
widely used in the diagnosis and prediction of MCI (27). sMRI, a 
crucial component of multimodal magnetic resonance imaging 
techniques, primarily encompasses two core aspects: image-based 
brain morphometric measurements and structural data integration. 
The methods of image-based brain morphometric measurements are 
diverse and include voxel-based, surface-based, cortical folding, and 
white matter microscopy measurements. Numerous studies have 
shown that the volume changes derived from voxels in specific regions 
of the brain are closely related to the conversion process of MCI to 
AD. In a study conducted by Tapiola et  al., MCI patients with a 
34-month follow-up were selected to explore the predictive value of 
different methods for the conversion of MCI to AD (28). During this 
research, multiple indicators, such as MRI-derived medial temporal 
lobe (MTL) structure volumes, white matter (WM) lesions, Mini-
Mental State Examination (MMSE) scores, and APOE genotypes, were 
comprehensively analysed. The final findings indicated that only the 
MTL volume could effectively predict high-risk patients for MCI 
conversion to AD. Similarly, the study by deToledo-Morrell et al. (29) 
focused on this area. In this study, 27 MCI patients were followed up 
for 36 months after baseline diagnosis, and 10 of them progressed to 
AD during this period. Researchers have compared the volumes of the 
hippocampus and entorhinal cortex to determine which of these two 
regions is more advantageous in differentiating between stable and 
progressive MCI patients. The results showed that both the 
hippocampal and entorhinal cortex volumes had predictive 
capabilities, but the entorhinal cortex volume performed better in 
prediction, with a prediction accuracy as high as 93.5%. Costafreda 
SG et al. (30) developed an application tool that can automatically 
extract the 3D hippocampal shape morphology for predicting the 
conversion of MCI to AD. The model they constructed performed well 
in predicting the conversion of MCI patients to dementia within 
1 year, with an accuracy rate reaching 80%. In addition, changes in 
cortical thickness can also be used to predict the conversion of MCI 
to AD. Bakkour A reported that thinning of the temporal and parietal 
lobes could predict the conversion of MCI to AD, with a sensitivity of 
83% and a specificity of 65% (31). Desikan RS (32) reported that 
automatic MRI measurements of the medial temporal lobe cortex 
could accurately and reliably predict the conversion time of MCI. As 
a predictor of clinical decline, it is superior to cellular and metabolic 
measurements and is expected to become a predictive biomarker for 
AD. Notably, microscopic changes in white matter cannot be observed 
by the naked eye. Texturometry is a relatively abstract concept; it 
describes the spatial and statistical relationships of pixel values in the 
region of interest (ROI), which can quantify features such as 
smoothness, roughness, and regularity, thereby reflecting subtle 
structural changes in white matter. In the early stages of AD, subtle 
changes in neurofibrillary tangle (NFT) and amyloid-β (Aβ) plaque 
deposition occur. These minor changes can form specific texture 
patterns in MR images. By using the technical means of extracting 
texture descriptors from the images, these texture patterns can 
be  identified, providing important clues for the early diagnosis of 
AD. Tang et al. (33) integrated the structural information of the whole 
brain, used FreeSurfer software to extract parameters such as the 

cortical surface area, average thickness, folding index, and grey matter 
volume of each subregion of the whole brain, and further extracted 
the radiomic parameters of the subcortical brain regions. On this 
basis, they developed a radiomic-clinical-laboratory model that can 
accurately predict whether MCI will progress to AD and the time of 
conversion, with a C-index as high as 0.07. This achievement is highly 
important for formulating personalized treatment plans and delaying 
the occurrence of irreversible dementia. Shu ZY et  al. (34) also 
developed a comprehensive model based on whole-brain (white 
matter, grey matter, cerebrospinal fluid) radiomics, which can 
accurately identify and predict high-risk groups of MCI patients who 
may progress to AD. However, the integration of brain structural data 
is also commonly used for predicting the conversion of MCI. Two 
main methods are used: diffusion tensor imaging (DTI) and neurite 
orientation dispersion and density imaging (NODDI). Song Q et al. 
(35) utilized DTI technology to construct a brain network based on 
white matter fibre tracts and extract network attribute features from 
it. They subsequently downscaled these white matter network features, 
used a comprehensive downscaling method to construct white matter 
markers, and then combined clinical features and performance 
evaluations to develop a comprehensive model. This comprehensive 
model has demonstrated excellent performance, with diagnostic 
efficacies of 0.924 and 0.919 in the training group and the experimental 
group, respectively. This model can effectively identify high-risk 
patients with MCI Conversion to AD, provides valuable auxiliary 
biomarkers for the early detection of AD, and is highly important in 
the field of early AD diagnosis. The theoretical basis of traditional DTI 
assumes that the diffusion of water molecules in all directions is free 
and unrestricted, i.e., Gaussian motion (36). However, in actual 
human tissues, the diffusion of water molecules is not completely free 
or unrestricted. Cell membranes and organelles restrict the free 
diffusion of water molecules, i.e., non-Gaussian motion. Therefore, 
two important DTI parameters, fractional anisotropy (FA) and mean 
diffusivity (MD), both lack specificity (37). In recent years, the 
emerging NODDI technique has been used to observe the 
microstructure of brain tissue more sensitively and specifically, 
showing superior performance in detecting grey matter and white 
matter lesions (38). This technique can distinguish three 
microstructural tissue models: intracellular water, extracellular water, 
and cerebrospinal fluid (39). The diffusion of water in neurites is 
restricted, the diffusion of water outside neurites is hindered, and the 
diffusion of water molecules in cerebrospinal fluid is completely free. 
The diffusion of water molecules in each compartment does not affect 
each other, so independent standardized MR parameters, such as the 
neurite density index (NDI), orientation dispersion index (ODI), 
isotropic volume fraction (Viso), and extracellular volume fraction 
(Vec), can be obtained. As a neurodegenerative disease, the main 
pathological changes associated with AD are the degeneration and loss 
of neurons and neurites, which irreversibly worsen over time. Until 
the middle and late stages, many neurons are lost, causing gross 
atrophy of the brain parenchyma. Some researchers have reported that 
NODDI indicators may be sensitive markers of pathological changes 
in early-stage AD patients (40, 41). Nicholas et al. used the NODDI 
technique to explore the microstructure of the brain parenchyma in 
MCI and AD patients and reported that the NDI in the temporal and 
parietal cortical regions of MCI patients was significantly decreased, 
whereas in AD patients, the NDI and ODI in the parietal, temporal, 
and frontal cortical regions were significantly decreased. After 

https://doi.org/10.3389/fneur.2025.1596632
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Ai et al. 10.3389/fneur.2025.1596632

Frontiers in Neurology 04 frontiersin.org

controlling for cortical thickness, when the microstructure in the same 
brain region was compared, differences in NODDI indicators were 
also found between MCI and AD patients. In addition, for MCI 
patients with normal cortical thickness, the cortical NDI in the 
temporal, parietal, and posterior cingulate regions was also decreased 
(42). The NODDI indicators can detect not only macroscopic 
structural changes but also pathological changes in the microstructure 
of the cortex in MCI patients and early-stage AD patients before 
macroscopic structural changes occur. With respect to the exploration 
of white matter regions, Fu et al. used NODDI and DTI diffusion 
models to explore microstructural changes in the white matter regions 
of normal, MCI, and AD individuals. Compared with those in normal 
people, the NDI and ODI values in the MCI and AD groups were 
significantly lower, and the Viso value was significantly greater. 
However, there was no significant difference in the FA value in the 
MCI group, whereas the FA value in the AD group was significantly 
lower than that in the normal group. NDI and ODI are more sensitive 
to white matter microstructural changes than FA (41). Therefore, 
we believe that the NODDI technique, which is based on sMRI, can 
quantify the complexity of the microstructures of neurites and axons 
in MCI patients, thereby providing morphological information on 
nerve fibres. It has increased specificity and sensitivity in the 
evaluation of the microstructure of brain tissue, providing a basic 
guarantee for studying the risk of MCI patients transitioning into 
AD patients.

3 Research progress on functional 
magnetic resonance imaging-assisted 
MCI transformation prediction

Functional brain imaging techniques are important tools for 
exploring the mysteries of the brain and revealing the laws of neural 
activity, playing a crucial role in the process of MCI conversion. 
Functional brain imaging devices can generally be divided into two 
categories, one of which constitutes devices that measure the 
electromagnetic fields generated by neuronal activities. These devices 
can achieve real-time monitoring and localization of brain neural 
activities by capturing the weak electromagnetic field signals generated 
by neuronal electrical activities. Among them, electroencephalograms 
(EEGs) and magnetoencephalograms (MEGs) are the most 
representative devices and have been widely used to study changes in 
the brain functions and connections of MCI patients. Mazaheri A 
et al. (43) reported that subtle abnormalities in the EEG activities of 
MCI patients during a word comprehension task can serve as evidence 
for the conversion of MCI to AD. Subtle malfunctions in the brain 
network that support language comprehension may indicate the 
conversion of MCI. Poil SS et al. (44) reported that multiple EEG 
biomarkers associated mainly with activities in the β-frequency range 
(13–30 Hz) could predict the conversion from MCI to AD. They also 
proposed combining multiple EEG-based neuromarkers into a 
diagnostic classification index, which could better predict the 
conversion from MCI to AD. Yu M et al. reported that the MEG-based 
resting-state multiplex networks in AD patients were preferentially 
disrupted in hub regions, including the medial temporal lobe (left 
hippocampus), posterior default mode network, and occipital regions. 
Pusil S et al. (45) employed MEG phase-based multivariate coupling 
measures to independently construct dynamic functional connectivity 

networks in five classical frequency bands. Thus, the distance between 
the fluctuations in functional strength for each pair of regions of 
interest (ROIs) in the two conditions was calculated through dynamic 
time warping (DTW), which extracts many features. Machine learning 
algorithms were used to reveal 30 DTW-based features in the five 
frequency bands, which could be used to predict the conversion from 
MCI to AD. We argue that strategies to increase prediction efficacy are 
shifting from single-modality optimization to cross-modal integration. 
By combining the temporal resolution advantages of EEG with the 
spatial localization precision of MEG and constructing a multimodal 
recognition system through well-designed fusion algorithms, it is 
possible to achieve synergistic integration of complementary 
information from both modalities. This innovative approach not only 
has the potential to exceed the performance limits of single modalities 
but also opens new research paradigms for MCI conversion 
prediction, holding significant exploratory value and application 
prospects in the future development of neuroimaging technologies.

The other category consists of devices sensitive to the 
haemodynamic or metabolic effects of neuronal activities, which 
indirectly reflect the functional state of the brain based on the coupling 
relationship between neuronal activity and local cerebral blood flow 
or blood oxygen metabolism. Functional magnetic resonance imaging 
(fMRI) and positron emission tomography (PET) are typical examples 
of such devices. fMRI is based on the blood oxygenation level-
dependent (BOLD) signal to measure the haemodynamic changes 
generated during brain activity, thus indirectly representing the 
activities of brain neurons (46). BOLD-fMRI includes resting-state 
functional magnetic resonance imaging (rs-fMRI) and task-based 
fMRI (47, 48). Common brain regions with abnormal brain function 
in MCI patients include the precuneus, posterior cingulate cortex, 
lingual gyrus, parahippocampal gyrus, and temporal lobe (49, 50). The 
precuneus, posterior cingulate cortex, and inferior parietal lobule are 
key brain regions for Aβ deposition in MCI patients and are closely 
related to cognitive decline and disease conversion (51). Pasquini L 
et  al. divided the default mode network (DMN) into the anterior 
DMN and the posterior DMN and reported that the functional 
connectivity (FC) of the posterior DMN was positively correlated with 
the level of Aβ deposition in the whole-brain cortex; specifically, the 
higher the FC of the posterior DMN is, the greater the degree of Aβ 
deposition in the brain region. With disease conversion, Aβ deposition 
peaks in the early stage of MCI, indicating that Aβ is more likely to 
be deposited in brain regions with high functional connectivity (52). 
This discovery provides insight into the early deposition of Aβ in the 
DMN, suggesting that rs-fMRI is helpful for understanding the 
pathophysiological mechanism of AD and can be used as a powerful 
tool to identify different stages of AD. S Kemik K (53) investigated 
functional changes associated with MCI via independent component 
analysis (ICA), word-generation task fMRI, and resting-state 
fMRI. The results showed that in the resting-state fMRI data, the 
language network exhibited larger voxel sizes in the bilateral lingual 
gyri than did the task-based word-generation fMRI data. In task-
based fMRI, the right temporo–occipital fusiform cortex, right 
hippocampus, and right thalamus were also activated. Reduced 
activation in the dorsal attention network (DAN) and visual network 
was observed in MCI patients during word-generation task-
fMRI. Therefore, task-based fMRI combined with ICA serves as a 
more sophisticated and reliable tool for evaluating cognitive 
impairments in language processing. Therefore, in our view, fMRI is 
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one of the most widely used neuroimaging techniques for studying 
abnormal brain function activities in MCI and AD patients. fMRI has 
a significant correlation with pathological biomarkers and can reflect 
the pathological characteristics of the brain, providing the possibility 
of finding noninvasive markers for the transformation of MCI patients 
to AD patients. PET is also a crucial functional brain imaging device. 
Metabolic activity in different brain regions can be  detected by 
injecting radiolabelled tracers into the body. PET can reflect the 
physiological and pathological processes of the brain at the molecular 
level, offering unique advantages in predicting the conversion to 
MCI. When patients present with clinical dementia symptoms, 
reductions in the cerebral glucose metabolism rate (MRglc), which are 
easily detectable via 2-[18F]fluoro-2-deoxy-D-glucose positron 
emission tomography (FDG-PET) examinations, have already 
occurred in the association cortex. Abnormal phosphorylation of the 
tau protein is an important mechanism for the progressive worsening 
of MCI. Arnáiz E (54) suggested that reductions in temporoparietal 
regional reduced glucose metabolism (rCMRGlu) and measurements 
of visuospatial function may help predict the evolution of MCI 
patients to AD patients. Groot C (55) reported that tau PET performed 
best as an independent biomarker for predicting dementia conversion 
in MCI patients and that tau PET scans may currently be the best 
available neuroimaging biomarker. Souchet B demonstrated that the 
b-healing test using multiomics blood biomarkers exhibits high 
predictive specificity in identifying AD patients within cognitively 
impaired populations, maximizing the reduction in false positives. 
When used in conjunction with amyloid screening, it can effectively 
identify an almost pure cohort of MCI individuals (56).

Brain functional imaging techniques play crucial roles in 
monitoring the conversion of MCI. However, current single-modality 
technologies have inherent limitations, such as ambiguity in the 
spatial localization of EEGs and task-dependent fMRI. In this context, 
multimodal fusion has emerged as a transformative approach. By 
integrating the complementary strengths of different modalities and 
leveraging machine learning to synthesize cross-modal features, more 
accurate predictive models can be constructed. These models provide 
fundamental support for early intervention and personalized 
prediction in MCI, driving advancements in both research and 
clinical applications.

4 Cerebral haemodynamic changes 
during transformation in patients with 
MCI

Numerous studies have confirmed that cerebrovascular 
dysfunction is an important mechanism in the occurrence and 
development of MCI and AD and that changes in cerebral perfusion 
are closely related to the conversion of MCI (57, 58). Arterial spin 
labelling (ASL) is a technique based on the theoretical hypothesis that 
contrast agents can freely diffuse from blood vessels into tissue spaces 
(59); it uses the difference in signal intensity generated before and after 
magnetically labelled arterial blood water protons flow into the 
imaging plane to obtain cerebral MRI perfusion images (60). 
Currently, it has become a clinically recognized imaging examination 
method for MCI and AD patients (61). An increasing number of 
studies have shown that cerebral blood flow is closely related to the 
course of AD and MCI, pathological markers, vascular pathological 

burden, the apolipoprotein E (ApoE) ε4 allele, and the conversion of 
cognitive impairment (62). ASL-based studies have shown that, 
compared with healthy controls, MCI patients have increased blood 
flow in the bilateral hippocampus, precuneus, and left middle 
temporal gyrus (63) and increased blood flow in the right 
hippocampus and temporoparietal cortex (64). As the disease 
progresses to the stages of mild cognitive impairment and dementia, 
blood flow in the posterior cingulate gyrus, precuneus, and 
temporoparietal cortex decreases, and the hypoperfusion area 
subsequently extends to the frontal and occipital lobes (65). Therefore, 
changes in cerebral blood flow in MCI patients can simultaneously 
reflect neurodegeneration and vascular pathological burden. The 
change in cerebral blood flow during the conversion of MCI to AD 
shows an inverted “U” shaped curve; that is, cerebral blood flow 
compensatorily increases in the early stage of the disease and then 
gradually decreases. The ASL-based examination technique can reflect 
the process of MCI transformation to AD by measuring cerebral blood 
flow. In addition, there are also bottlenecks in the ASL technique; 
specifically, the ASL sequence is sensitive to motion, and its post 
processing requires complex haemodynamic modelling, which 
hinders its clinical application. Therefore, it is necessary to combine it 
with biomarkers such as amyloid PET to increase its specificity.

Therefore, the use of multimodal MRI technology is a reliable 
method for detecting the brain structural, functional, and cerebral 
blood flow characteristics of patients with MCI transforming to 
AD. This method provides a powerful guarantee for the risk 
assessment of whether and when MCI patients will transform to AD 
and offers a more scientific basis for further exploration of the 
pathophysiological mechanism, early diagnosis, treatment, and 
prognosis of MCI transforming to AD.

5 Deep learning and machine learning 
AI methods build a new framework for 
transforming MCI risk prediction into 
AD risk prediction

Deep learning is an ideal tool for big data processing. It can 
efficiently handle massive amounts of data, mine valuable information 
therein, and elucidate the relationships within the data (66). Therefore, 
in the face of complex, high-dimensional, and heterogeneous 
biomedical data and diverse clinical tasks, deep learning has significant 
advantages and broad application prospects. Deep learning is a rapidly 
emerging research tool in the biomedical sciences and is currently 
widely used to predict the conversion of MCI to AD. Yue L et al. (67) 
employed deep learning techniques to explore subtle structural 
changes in the brains of patients with MCI in depth. They also 
constructed a unique deep learning framework based on sMRI to 
predict the disease conversion of MCI. This framework demonstrated 
excellent performance, with an AUC as high as 0.812. By combining 
deep learning algorithms with MR images, this study successfully 
achieved effective prediction of the conversion from a normal 
cognitive state to MCI in individuals. Deep learning methods have 
great potential for exploring key brain changes in the early stage of 
MCI; this not only helps to analyse the occurrence and development 
mechanism of the disease more deeply but also opens new directions 
and ideas for subsequent related research, which is promising for 
promoting more in-depth research studies in this field. Machine 
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learning (ML) is the scientific study of algorithms and statistical 
models used by computer systems to perform specific tasks effectively 
without using explicit instructions, relying instead on patterns and 
inferences (24, 68). ML is regarded as a subset of AI. A mathematical 
model constructed by a machine learning algorithm based on sample 
data, known as “training data,” is used to make predictions or decisions 
without being explicitly programmed to perform the task. Commonly 
used machine learning algorithms include logistic regression, 
K-nearest neighbours, random forest (RF), support vector machine 
(SVM), and decision tree (DT) (69). Currently, machine learning 
algorithms for the study of MCI diagnosis, differential diagnosis, and 
transformation risk assessment show great potential (70, 71). Feng 
et al. also reported that hippocampal radiomic biomarkers and the 
established radiomic model are highly important for the diagnosis, 
differential diagnosis, and treatment of MCI patients (72). Barnes DE 
developed a Cox model based on cortical thickness, the hippocampus, 
and neurological scales to predict the likelihood of transformation 
from MCI to AD (73). Skolariki K et al. (74) retrospectively analysed 
803 participants from the ADNI cohort. Three different ML models, 
namely, the SVM, decision tree (DT), and naive Bayes (NB) models, 
were employed to predict the conversion of MCI, achieving a 
prediction accuracy rate of 84%. Moradi E et  al. (75) used a 
semisupervised learning method to develop a novel MRI biomarker 
for predicting the conversion from MCI to AD. Subsequently, with the 
help of supervised learning algorithms, they integrated this biomarker 
with the subjects’ age and cognitive measurement data to generate an 
aggregated biomarker. Finally, they constructed a prediction model 
using the RF algorithm to predict the conversion from MCI to AD, 
and the accuracy of this model was as high as 0.90. AI technologies, 
with their powerful data processing capabilities, can handle vast 
amounts of complex data and uncover hidden patterns and 
relationships within them, thereby increasing the accuracy of 
predicting the conversion of MCI to AD. Compared with traditional 
clinical prediction methods, AI-based prediction models can take into 
account a wider range of factors, including multimodal data (such as 
clinical, imaging, and biomarker data), reducing the interference of 
human factors and providing more objective and accurate prediction 
results. By analysing the longitudinal data of MCI patients, AI models 
can capture subtle trends in early-stage disease changes, enabling early 
warning of the conversion from MCI to AD, which is conducive to 
improving patient outcomes.

However, the artificial intelligence models currently available still 
have the problem of interpretability of their output results. Doctors 
require training in interpreting AI output results, for example, in how 
to make comprehensive judgements by integrating imaging features 
and clinical scale scores. Moreover, the AI platform interfaces of 
different medical institutions are inconsistent. Therefore, data input/
output specifications (such as DICOM-format annotation) need to 
be  formulated to prevent misjudgment caused by data-format 
discrepancies. Since the definition of legal responsibility for AI 
prediction results is unclear, clinical application guidelines and quality 
control systems must be established.

In addition, most of the current AI models that combine deep 
learning and machine learning focus on changes in brain structure 
while ignoring changes in key indicators such as brain function and 
cerebral blood flow. Therefore, we believe that if deep learning and 
machine learning techniques can be combined to comprehensively 
analyse relevant indicators related to the transformation of MCI to 

AD, such as the whole-brain structure, brain function, and cerebral 
blood flow, and a model for predicting when MCI patients will 
transform to AD can be  established, it will greatly promote the 
personalized diagnosis and treatment of MCI patients in clinical 
practice, which has important clinical significance.

6 Challenges faced by AI technology

6.1 Data quality and standardization

AI technology is highly dependent on the quality of imaging data. 
There are differences in the models of imaging equipment, scanning 
parameters, and image reconstruction algorithms among different 
medical institutions, which may lead to uneven image quality. 
Variances in magnetic field intensities (1.5 T/3.0 T), gradient systems, 
and coil types can lead to discrepancies in image contrast and 
resolution. For example, hippocampal volume measurements in 
structural MRI show a coefficient of variation of 12–15% across 
different devices. Differences in the AIF models used in various 
studies may introduce biases in the results. Head motion artifacts are 
common in multimodal scanning, especially during long duration 
fMRI scans. Their impact should be minimized through standardized 
head support fixation and motion correction algorithms. Moreover, 
the standards for image segmentation are not unified. There are 
differences in manual segmentation by different physicians or in 
semiautomatic and fully automatic segmentation, which also affects 
the results. To solve the above problems, it is necessary to establish a 
unified scanning system and image segmentation standard, carry out 
prospective multicentre collaborative research, and improve the 
stability and generalizability of artificial models through large 
sample analysis.

6.2 Feature selection and model 
optimization

Currently, there are numerous index parameters in deep learning 
and machine learning, and how to screen out the key indicators 
remains a considerable challenge. Different studies use different 
parameter selection methods and model construction algorithms, 
resulting in poor generalization of research results. In addition, many 
machine learning models are prone to overfitting, especially when the 
sample size is small. Therefore, it is necessary to explore more efficient 
parameter selection algorithms and model optimization strategies to 
improve the prediction performance and stability of the model. 
Moreover, it is necessary to vigorously strengthen the external 
verification of the model with multicentre large samples to ensure the 
reliability of the model in diverse populations and complex 
clinical environments.

6.3 Clinical translation and application

In the exploration of methods for predicting the conversion of 
MCI, AI has emerged as a core technology to overcome the bottlenecks 
of traditional diagnosis. Brain multimodal imaging analysis represents 
a significant breakthrough in the early diagnosis of AD. AI technology 
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has achieved a leap from “naked-eye recognition” to “intelligent 
analysis” (44, 55). In the clinical practice of predicting the conversion 
of MCI to AD, AI models based on deep learning and machine 
learning demonstrate remarkable potential for clinical transformation 
due to their ability to mine multimodal imaging data in detail. Studies 
have shown that structural changes such as hippocampal atrophy and 
thinning of the entorhinal cortex are important markers of the 
conversion of MCI (76, 77). Through deep learning models and 
machine learning algorithms, pixel-level feature extraction can 
be performed on brain MR structural images, precisely capturing 
these subtle changes and establishing AI prediction models (78, 79). 
Moreover, AI can continuously track patients’ longitudinal cognitive 
test data, automatically focusing on the key time points and feature 
combinations related to the decline in cognitive function, and 
dynamically elucidate the potential patterns underlying the conversion 
of MCI to AD. These achievements not only reveal the potential laws 
governing the conversion and conversion of MCI but also provide 
reliable risk assessment tools for clinicians. Although deep learning 
and machine learning have made some progress in predicting MCI 
transformation in research settings, there are still many challenges, 
from research theory to clinical practice. Currently, most studies use 
a retrospective analysis method, with a limited sample size and a 
serious lack of prospective, multicentre large-scale clinical verification. 
Moreover, the practicality and operability of AI models in clinical 
scenarios still need to be further evaluated. How to integrate research 
results deeply into clinical work and provide clear, easy-to-understand, 
and easy-to-use decision-making bases for clinicians has become the 
core focus for achieving clinical translation. The development of cross-
modal transfer learning models and the integration of clinical data 
with imaging biomarkers can help doctors better understand the 
current AI scenarios. In addition, it is necessary to properly solve the 
cost effectiveness problem of related technologies to ensure the 
feasibility and sustainability of AI technology in the process of 
clinical promotion.

7 Conclusion

In conclusion, multimodal MRI technology has opened a new 
direction for the noninvasive prediction of MCI conversion and 
provided support for predicting the transition from MCI to AD. The 
advancement of AI technology, especially the optimization of deep 
learning algorithms, will enhance the ability of image analysis and 
model performance. In addition, strengthening multicentre 
collaboration and establishing a large-scale standardized MCI 
database can lay a solid foundation for the clinical translation of 
AI. The deep integration of AI and multimodal MRI technology may 
play a crucial role in the clinical diagnosis and treatment of MCI 

conversion prediction, helping to improve the prognosis of patients, 
enhance their quality of life, and promote the development of early 
interventions and treatments for AD.
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