AUTHOR=Ai Min , Liu Yu , Liu Dan , Yan Chengxi , Wang Xia , Chen Xun TITLE=Research progress in predicting the conversion from mild cognitive impairment to Alzheimer’s disease via multimodal MRI and artificial intelligence JOURNAL=Frontiers in Neurology VOLUME=Volume 16 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2025.1596632 DOI=10.3389/fneur.2025.1596632 ISSN=1664-2295 ABSTRACT=Predicting the transition from mild cognitive impairment (MCI) to Alzheimer’s disease (AD) has important clinical significance for dementia prevention and improving patient prognosis. Multimodal magnetic resonance imaging (MRI) techniques (including structural MRI, functional MRI, and cerebral perfusion MRI) can yield information on the morphology, structure, and function of the brain from multiple dimensions, providing a key basis for revealing the pathophysiological mechanisms during the conversion from MCI to AD. Artificial intelligence (AI) methods based on deep learning and machine learning, with their powerful data processing and pattern recognition capabilities, have shown great potential in mining the features of multimodal MRI data and constructing prediction models for MCI conversion. Therefore, this paper systematically reviews the research progress of multimodal MRI techniques in capturing brain changes related to MCI conversion, as well as the practical experience of AI algorithms in constructing efficient prediction models, analyses the current technical challenges faced by the research, and discusses future directions, with the goal of providing a scientific reference for the early and accurate prediction of MCI conversion and the formulation of intervention strategies.