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Background: Motor symptoms of Parkinson’s disease (PD) patients affect their 
ability of daily activities. Identifying distinct trajectories of motor symptom 
progression in PD patients can facilitate long-term management.

Methods: A total of 155 PD patients were acquired from the Parkinson’s Disease 
Progression Marker Initiative (PPMI). Distinct longitudinal trajectory clusters of 
motor symptom progression in PD patients were identified by unsupervised 
self-organizing maps (SOMs), and baseline characteristics were compared 
among different clusters. Linear mixed-effect analysis was utilized to estimate 
the longitudinal courses of some cardinal motor symptoms among clusters, 
while survival analysis was used to compare time-to-clinical milestones 
within 5 years. The support vector machine (SVM) was built to predict patients’ 
trajectory clusters, and its performance was evaluated through the mean area 
under the receiver-operating characteristic curve (mAUC), accuracy and macro 
F1-score. Shapley values were calculated to interpret individual variability.

Results: The optimal clusters by SOMs are 3. Cardinal motor symptoms of the 
progressive cluster worsened more rapidly, and this cluster is more likely to 
have impaired balance, loss of independence, sleep disturbance, and cognitive 
impairment within 5 years. The mAUC, accuracy, and macro F1-score of multi-
class SVM model were 0.8846, 0.7692, and 0.7778, respectively. An interactive 
web application was developed to predict the individual’s trajectory cluster.

Conclusion: Subtyping motor symptom progression into different trajectories 
can improve patients’ management. Using baseline data to predict which 
trajectory cluster a patient belongs to may help develop interventions.
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1 Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative 
disorder, clinically manifested by typical motor symptoms and a variety 
of nonmotor symptoms (1). As a chronic disease that requires long-
term management, motor symptoms not only negatively impact PD 
patients’ daily activities and quality of life (2), but also serve as 
prognostic factors for rapid decline in PD-related disability (3). Despite 
its ubiquity, the heterogeneity of motor symptom progression 
trajectories in early PD patients remains yet to be explored (4). Rational 
subtyping early PD patients offers practical benefits for clinicians, 
patients, and caregivers. Understanding the progression trajectory of 
motor symptoms in PD patients allows for prognosis estimation, which 
aids clinicians in devising personalized treatment plans and follow-up 
schedules. It can also provide supportive counseling to patients and 
their families, helping them maintain a positive outlook on life. 
Additionally, including PD patients with more rapid progression of 
motor symptoms as an enrichment factor in clinical trials can potentially 
reduce the required sample size, inform the design, lower costs, and 
enhance the clinical trials’ sensitivity to detect treatment effects.

The conventional method for classifying motor subtypes of PD is 
to divide patients into tremor-dominant and non-tremor-dominant 
subtypes based on the most prominent clinical symptoms (1, 5–7), 
which is a hypothesis-driven approach. However, these subtype 
classification methods only explain the current heterogeneity of motor 
symptoms of PD patients, and the reliability of the subtype is questioned 
(8). Since subtypes may shift as the disease progresses (9), motor 
subtypes tend to be more heterogeneous early in the disease process, 
converging towards a common subtype as the disease progresses (10). 
Theoretically, the progression of such motor subtypes is orthogonal to 
the progression of the PD itself (11, 12). Therefore, longitudinal data 
should serve as the basis for identifying motor subtypes, not merely for 
evaluating the trends of progression between different subtypes.

A more realistic representation of the disease course requires a 
combination of a data-driven schema. Data-driven cluster analysis has 
the potential advantage of requiring no prior assumptions (13), and can 
provide more information for the understanding of complex 
mechanisms. Previous studies used cluster analysis to define clinical 
PD subtypes (14–17), but most had significant methodological 

disadvantages (18). Because data-driven methods are highly sensitive 
to the variables chosen for clustering, the results with different variables 
can be  quite heterogeneous and controversial (19). Therefore, the 
selection of variables should be determined based on specific research 
purposes and assess the quality of clusters for clinical relevance. 
Additionally, several studies are limited by approaches that only 
provide descriptions at the group level and are unable to assign new 
individual patients to subtypes, which makes it difficult to apply the 
findings to individual patients. Given that the symptoms, treatments, 
and treatment responses in PD patients change over time, relying solely 
on hypothesis-driven methods or data-driven methods may not 
be sufficient. To meet the needs of patients, caregivers, clinicians, and 
researchers, new approaches are needed to describe the heterogeneity 
of PD patients from the perspective of disease progression. Based on 
the purpose-driven framework recently proposed by the Movement 
Disorder Society (MDS) (18), which emphasizes considering the 
purpose of use when developing and applying PD subtypes, 
we  distinguished PD patients with different motor symptom 
progression trajectories, and defined subtypes through this 
heterogeneity in progression trajectories. We believe that this approach 
of using progression trajectories to define subtypes reflects disease 
progression and may be more appropriate for progressive disease.

Movement Disorders Society Sponsored revision of Unified 
Parkinson’s Disease Rating Scale (MDS-UPDRS) is a single tool for 
assessing specific aspects of PD globally, Part III of the motor 
examination can reliably assess the severity of objective motor 
symptoms (20, 21). To define trajectory clusters based on the evolution 
of motor symptoms over time, we used the MDS-UPDRS-Part III score 
to represent motor symptom severity at different follow-up visits for 
PD patients and applied unsupervised self-organizing maps (SOMs) to 
identify distinct motor trajectory clusters in early PD patients. 
Considering the clinical applicability of the trajectory clusters, we then 
constructed a machine learning (ML) model using baseline clinical 
data to assign new individual patients to their respective clusters.

The aims of this study were to: (1) identify distinct progression 
trajectories of motor symptoms in early PD patients; (2) explore 
differences in baseline clinical biomarkers among different trajectory 
clusters; (3) compare the progression rates of cardinal motor 
symptoms and the proportions of patients reaching key clinical 
milestones among different trajectory clusters during a five-year 
follow-up; (4) develop an interactive application based on an ML 
model to assign new individual patients to their respective clusters.

2 Methods

2.1 Participants

We enrolled 155 de novo drug-naïve PD patients from the 
Parkinson Progression Markers Initiative (PPMI), an international, 
multicenter, prospective, observational study (18). Participants in the 
PPMI cohort were followed longitudinally for clinical, imaging, and 
biospecimen biomarker assessment using standardized data acquisition 
protocols at 21 clinical sites. The study was approved by the Institutional 
Review Board of all participating sites, and written informed consent 
was obtained from all participants before inclusion in the study. The 
inclusion criteria for this study were as follows: (1) baseline clinical data 
available, (2) a drug-naïve PD diagnosis of Hoehn and Yahr (H&Y) 
stages I–II, and (3) complete MDS-UPDRS-Part III data from baseline 

Abbreviations: ADL, Activities of daily living; AMP PD, Accelerating Medicines 

Partnership Parkinson’s Disease; ANOVA, Analysis of variance; AUC, Area under 

the receiver operating characteristic curve; CSF, Cerebrospinal fluid; DAT, Dopamine 

transporter; ESS, Epworth sleepiness scale; GDS, Geriatric depression scale score; 

H&Y, Hoehn and Yahr; HVLT, Hopkins verbal learning test; IQR, Interquartile range; 

JoLO, Benton judgment of line orientation score; LNS, Letter-number sequencing; 

mAUC, Mean area under the receiver-operating characteristic curve; MCI, Test-

based mild cognitive impairment; MDS-UPDRS, Movement Disorder Society-

sponsored revision of the unified Parkinson’s disease rating scale; ML, Machine 

learning; MoCA, Montreal cognitive assessments; PD, Parkinson’s disease; PIGD, 

Postural instability with gait disorder; PPMI, Parkinson progression markers initiative; 

QUIP, Questionnaire for impulsive-compulsive disorder; RBD, rapid eye movement 

sleep behavior disorder; RBDSQ, REM sleep behavior disorder questionnaire; 

SCOPA-AUT, Scales-for-outcomes-in-Parkinson’s-disease-autonomic score; SD, 

Standard deviation; SDMT, Symbol digit modalities score; SFT, Semantic fluency 

total score; SOM, Self-organizing map; SPECT, Single-photon emission computed 

tomography; STAI, State-trait anxiety index; SVM, Support vector machine; UPSIT, 

University of Pennsylvania smell identification test.
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to 5 years of follow-up. The detailed flowchart is shown in 
Supplementary Figure 1.

Accelerating Medicines Partnership Parkinson’s Disease (AMP 
PD) aims to identify and validate biomarkers related to the diagnosis, 
prognosis and progression of PD, and to develop new approaches for 
improving clinical trial design and treatment. Given that the AMP 
PD dataset incorporates PPMI cohort data and only partial follow-up 
information for us is accessible through this composite resource, 
distinguishing PPMI patients form AMP PD becomes challenging. 
Consequently, AMP PD data is only used to verify trajectory 
clustering. More information can be found at: http://ppmi-info.org/ 
and https://amp-pd.org/.

2.2 Assessment of clinical information

The motor and non-motor assessments were completed by all 
participants at the baseline visit. Included participants underwent 
common PD tests such as the H&Y stage and MDS-UPDRS. The 
MDS-UPDRS total score is the sum of parts I to III of MDS-UPDRS, 
which include non-motor experiences in daily life (Part I); motor 
experiences in daily life (Part II) and motor examination (Part III) 
(22). Daily living ability was assessed using the modified Schwab & 
England activities of daily living (ADL) score.

Assessment of non-motor symptoms includes autonomic tests, 
neurobehavioral tests, neuropsychological tests, olfactory tests, and sleep 
disorder tests. Autonomic tests include Scales-for-outcomes-in-
Parkinson’s disease-autonomic (SCOPA-AUT) score. Neurobehavioral 
tests include Geriatric Depression Scale (GDS) score, Questionnaire for 
Impulsive-Compulsive Disorders in Parkinson’s Disease (QUIP) and the 
State-Anxiety Index (STAI) score. Neuropsychological tests include 
Benton Judgment of Line Orientation (JoLO) Test, Hopkins Verbal 
Learning Test (HVLT), Letter Number Sequencing (LNS) score, Montreal 
Cognitive Assessments (MoCA) score, Symbol Digit Modalities Test 
(SDMT), Semantic Fluency Total (SFT) Score. Olfactory tests include 
University of Pennsylvania Smell Identification Test (UPSIT). Sleep 
disorder tests include Epworth Sleepiness Scale (ESS) score, and rapid eye 
movement sleep behavior disorder (RBD) is evaluated using the REM 
Sleep Behavior Disorder Screening Questionnaire (RBDSQ) score.

The dopamine transporter (DAT) binding rate (caudate and 
putamen) and cerebrospinal fluid (CSF) proteins (α-synuclein, Aβ1–42, 
t-Tau, p-Tau181) were collected. The details of the DAT processing and 
cerebrospinal fluid biomarker measurements could be  found in 
Supplementary material.

2.3 Statistical analysis

All analyses were performed using R version 4.2.3 statistical 
software, with missing values of the independent variables imputed by 
the “DMwR2” package. The independent variables with missing values 
in the baseline data were DaTScan mean caudate SBR, DaTScan mean 
putamen SBR, CSF Aβ1–42, CSF α-synuclein, CSF T-Tau, CSF P-Tau181, 
with missing rates of 1.29, 1.29, 3.23, 1.94, 3.87, and 7.74%, 
respectively. These rates met the criteria for imputation, and missing 
values were imputed using the k-nearest neighbors method in the 
“DMwR2” package, with the parameter (n) set to 20, and impute 
before data normalization.

Each patient’s baseline and five-year follow-up MDS-UPDRS-part 
III score represent the longitudinal trajectory of the patient’s motor 
symptom severity. We conducted the unsupervised SOM to identify 
distinct clusters of individual trajectories using the “som” package. As 
a preprocessing step, the data was normalized to scale-free values. 
Hyperparameter optimization was then performed before clustering, 
the learning rates started from 1.00 and was set to 0.90 for ordering 
and to 0.02 for tuning, and a neighborhood distance was set at 1.00 
with hexagonal topology (23). Given the topological preservation 
properties of SOMs and their conceptual alignment with k-means 
clustering method (23), the best number of clusters was determined 
using the “NbClust” package, which provides 26 fit indices. The best 
fit was selected based on a plurality of these indices (24). The same 
preprocessing steps and clustering methods were applied to AMP PD.

Baseline demographic characteristics, clinical assessments, 
cerebrospinal fluid biomarkers, and neuroimaging results were 
compared between trajectory clusters. For continuous variables, 
normality distribution was measured using Shapiro–Wilk’s test. Mean 
and standard deviation (SD) were used to describe central tendency 
and dispersion if the continuous variable was normally distributed, 
otherwise median and interquartile range (IQR) were used. Normal 
distributed continuous variables with homoskedasticity which was 
measured by Levene’s test, the means among three groups were 
compared by analysis of variance (ANOVA), and a post-hoc test was 
performed using Tukey’s method. For non-normally distributed 
continuous variables, Kruskal–Wallis’s test was used to compare the 
medians among groups, and a post-hoc test was performed using 
Dunn’s method. The categorical variables were described by frequency 
and constituent ratio, and the differences among groups were 
compared by chi-square test or Fisher’s test. The level of statistical 
significance was predefined as 0.05 (two-sided).

Linear mixed-effect model was utilized to estimate the 
longitudinal courses of some cardinal motor symptoms between 
clusters via the “lme4” package. The core motor symptoms are assessed 
based on the sum of the corresponding MDS-UPDRS subitems (25), 
namely: tremor, sum of MDS-UPDS subitems 2.10, 3.15–3.18; 
postural instability with gait disorder (PIGD), sum of MDS-UPDRS 
subitems 2.12–2.13, 3.10–3.12; bradykinesia, sum of MDS-UPDRS 
subitems 3.5–3.8, 3.14; rigidity, MDS-UPDRS subitem 3.3.

Survival analyses were performed to compare clinical milestones 
among different trajectory clusters via the “survival” package. The 
following time to clinical milestones times were assessed up to the 
follow-up year 5: (1) H&Y score ≥3, indicating at least the presence of 
balance impairment with mild to moderate disease severity (loss of 
recovery from a retropulsive stress); (2) Modified Schwab & England 
ADL score <80%, corresponding to a threshold of not being completely 
independent in performing daily activities; (3) RBDSQ score ≥3, 
corresponding to a cutoff for diagnosis of RBD Positive; (4) MoCA score 
≤23, corresponding to a cutoff for diagnosis of cognitive impairment.

2.4 Construction and explanation of the ML 
model

The baseline data was randomly divided into a training set (75%) 
and a test set (25%). The training set was utilized for both parameter 
tuning and final model development. Through grid search within a 
predefined hyperparameter space, the optimal hyperparameter 
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combination was identified. During this process, five-fold cross-
validation was implemented to mitigate random sampling bias. This 
approach minimizes the mean prediction error while ensuring high 
classification accuracy and effectively avoiding overfitting. The 
independent test set was subsequently employed to evaluate the 
model’s predictive performance.

We utilized a classification support vector machine (SVM) model 
using baseline clinical data of PD patients. The evaluation indicators 
of the model performance included the mean area under the receiver-
operating characteristic curve (mAUC), accuracy, macro-average 
sensitivity, macro-average specificity and macro F1-score.

In addition, considering the heterogeneity of PD patients, 
we calculated Shapley values for each patient’s characteristics with the 
“iml” package. Shapley value computes feature contributions for 
individual prediction, which fairly distributes the difference of the 
instance’s prediction and the datasets average prediction among the 
features. The SVM model was finally adopted to develop an interactive 
web application with the “shiny” package. After inputting the patient’s 
characteristics, the tool outputs the predicated trajectory clusters and 
the Shapley value plot.

3 Results

3.1 Baseline characteristics

A total of 155 drug-naïve patients with PD were included. The median 
(IQR) of the age was 61.51 (12.11) years, 106 (68.39%) were male patients, 
and the median (IQR) of disease duration was 3.87 (4.60) months. There 
were 92 (59.35%) patients with H&Y stage 1 and 63 (40.65%) patients with 
H&Y stage 2 at baseline (see Supplementary Table 1).

3.2 Trajectory clusters description

Out of 26 fit indices, 13 indices suggested three trajectory clusters 
was the optimal solution. The baseline MDS-UPDRS-Part III score 
of the cluster 3 (26 points) was significantly higher than those of 
cluster 1 (14 points) and cluster 2 (18 points) (see Table  1). 
Considering that the total participants showed an annual increase of 
approximately 2.34 points in MDS-UPDRS-Part III score, thus three 
trajectory clusters that can be interpreted as the stable cluster [Cluster 
1, N = 50 (32.26%), annual increase of 1.51 points], the intermediate 
cluster [Cluster 2, N = 60 (38.71%), annual increase of 2.46 points], 
and the progressive cluster [Cluster 3, N = 45 (29.03%), annual 
increase of 3.11 points], as shown in Figure 1.

To ascertain the stability of the trajectory clustering, we utilized 
data from the AMP PD as a validation set, and similarly observed the 
existence of three distinct progressive trajectories in the motor 
symptoms of PD patients (see Supplementary Figure 2).

3.3 Comparison of baseline demographics 
and clinical variables among three 
trajectory clusters

As illustrated in Table 1, there were no significant differences 
among three clusters in terms of disease duration and years of 
education. Compared with the stable cluster, patients in the 

progressive cluster were older (p = 0.030), and there were differences 
in gender (p = 0.021) and H&Y stage (p < 0.001) among the three 
clusters (see Table 2).

The progressive cluster had the highest MDS-UPDRS total 
score, the highest MDS-UPDRS-Part I, Part II, Part III, rigidity, 
bradykinesia, PIGD and SCOPA-AUT scores, and the worst 
modified Schwab & England ADL, HVLT Discrimination 
Recognition, SDMT, SFT and UPSIT scores at baseline. Conversely, 
the stable cluster exhibited the lowest severity of motor and 
non-motor manifestations with the least impaired core motor 
symptoms, neuropsychological features, autonomic and olfactory 
dysfunctions at baseline. For almost all manifestations, PD patients 
of the intermediate clusters had values intermediate between the 
stable cluster and the progressive cluster.

In addition, the DaTScan mean caudate SBR and the DaTScan 
mean putamen SBR in the stable cluster and the intermediate cluster 
were significantly higher than those in the progressive cluster at 
baseline. No significant difference was observed among the three 
clusters for CSF biomarkers at baseline.

3.4 Annual change of motor function 
scores in trajectory clusters

In terms of some cardinal motor symptoms progression, the 
annual decline of MDS-UPDRS-Part III, rigidity, tremor, 
bradykinesia, PIGD, and modified Schwab & England ADL scores of 
the progressive cluster were significantly faster than those of the 
stable cluster. The annual decline in scores of MDS-UPDRS-Part III 
and bradykinesia of the intermediate cluster were also significantly 
faster than the stable cluster.

3.5 Survival analysis of reaching key clinical 
milestones

The progressive cluster had a higher chance of reaching key 
clinical milestones within 5 years follow-up. 14.2% of participants 
reached H&Y ≥3 (4.0% for the stable cluster, 8.3% for the 
intermediate cluster, and 33.3% for the progressive cluster) 
(Figure 2A). 19.4% of participants reached modified Schwab & 
England ADL <80% (4.0% in the stable cluster, 21.7% in the 
intermediate cluster, and 33.3% in the progressive cluster) 
(Figure 2B). 64.5% of participants reached RBDSQ ≥5 (64.0% in 
the stable cluster, 55.0% for the intermediate cluster, and 77.8% 
for the progressive cluster) (Figure  2C). 23.9% of participants 
reached MoCA ≤23 (18.0% in the stable cluster, 18.3% in the 
intermediate cluster, and 37.7% in the progressive cluster) 
(Figure 2D).

3.6 Treatment response

In the early stages of PD, the progressive cluster is more likely 
to show symptom improvement after dopaminergic drug 
treatment. Over 75% of patients demonstrated improvement in 
MDS-UPDRS-Part III scores after dopaminergic drug intake 
compared to the off state during the five-year follow-up period 
(Supplementary Figure 3).
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TABLE 1  Baseline demographic and clinical variables among three trajectories.

Characteristic Stable cluster 
(N = 50)

Intermediate cluster 
(N = 60)

Progressive cluster 
(N = 45)

p-value

Age, years 58.7 [12.29] 60.93 [11.23] 63.95 [10.13] 0.030b

Gender, n (%)

 � Male 32 (64.00) 36 (60.00) 38 (84.44) 0.021

 � Female 18 (36.00) 24 (40.00) 7 (15.56)

Duration, months 3.55 [3.89] 4.13 [4.48] 3.70 [5.03] 0.982

Education, years 15 [3] 16 [4] 16 [4] 0.066

MDS-UPDRS total score 21 [8.75] 28 [15.25] 38 [11] <0.001a,b,c

 � MDS-UPDRS-Part I score 3 [4] 5 [6] 6 [4] <0.001a,b,c

 � MDS-UPDRS-Part II score 3 [3.75] 4 [6] 7 [4] <0.001a,b,c

 � MDS-UPDRS-Part III score 14 [8] 18 [7.25] 26 [12] <0.001a,b,c

Rigidity 2 [2] 3 [3] 6 [3] <0.001a,b,c

Tremor 4 [4] 5 [4] 5 [5] 0.823

Bradykinesia 4 [4] 5.5 [4] 9 [7] <0.001a,b,c

PIGD 0 [1] 1 [0.5] 1 [1] <0.001a,b,c

H&Y stage, n (%) <0.001

 � Stage I 40 (80.00) 37 (61.67) 15 (33.33)

 � Stage II 10 (20.00) 23 (38.33) 30 (66.67)

Schwab-England ADL score 95 [10] 90 [10] 90 [0] 0.001b,c

SCOPA-AUT score 6 [6.75] 8 [6.25] 10 [5] 0.009b

GDS score 1 [3] 2 [2.25] 2 [2] 0.135

QUIP score 0 [0] 0 [1] 0 [0] 0.214

STAI total score 61 [26.25] 62 [22.25] 60 [30] 0.781

 � STAI state subscore 30 [14] 30 [11.25] 32 [18] 0.550

 � STAI trait subscore 29.5 [10.75] 31.5 [11] 32 [13] 0.496

JoLO score 14 [3] 13 [3] 14 [2] 0.515

HVLT Discrimination Recognition 10 [2] 10 [2] 10 [1] 0.036b,c

HVLT Immediate/Total Recall 25.24 ± 4.42 25.00 ± 4.95 24.24 ± 4.66 0.563

HVLT Retention 0.90 [0.20] 0.89 [0.26] 0.88 [0.27] 0.473

HVLT False Alarms 1 [1] 1 [2] 1 [1] 0.172

HVLT Delayed Recall 9 [3] 9 [3.25] 8 [3] 0.641

HVLT Delayed Recognition 12 [1] 12 [1] 11 [2] 0.233

LNS score 11.5 [3.75] 11 [3.25] 10 [3] 0.054

MOCA score 28 [2] 27 [2.25] 27 [3] 0.065

ESS score 4 [3.75] 5 [4] 4 [4] 0.392

RBDSQ score 4 [3] 3 [3] 4 [5] 0.167

SDMT score 44 [11.75] 46 [12.25] 39 [14] 0.006b,c

SFT score 51 [18.5] 48.5 [16.75] 44 [13] 0.040b,c

 � SFT animal subscore 22 [6.75] 21 [8.25] 19 [7] 0.110

 � SFT fruit subscore 13 [4.75] 14 [6] 13 [6] 0.711

 � SFT vegetable subscore 15.26 ± 4.80 15.23 ± 4.36 12.87 ± 3.69 0.009d,e

UPSIT score 25 [11.75] 23.5 [16] 19 [13] 0.032b

DaTScan mean caudate SBR 2.03 ± 0.51 2.02 ± 0.49 1.78 ± 0.45 0.021d,e

DaTScan mean putamen SBR 0.83 [0.35] 0.80 [0.29] 0.64 [0.31] 0.002b,c

CSF Aβ1–42 (pg/mL) 927 [612.58] 896.5 [480.48) 876.7 [369.5] 0.682

CSF α-synuclein (pg/mL) 1425.37 [677.50] 1436.95 [841.60] 1373.70 [562.55] 0.625

(Continued)
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3.7 Machine learning model and interactive 
web application

Before establishing the machine learning model, features with 
variance close to zero such as race were excluded. Subsequently, features 

with correlations higher than 0.8, such as diagnostic age and DaTScan 
mean putamen SBR, were excluded. Finally, the recursive feature 
elimination method was adopted to further optimize the feature set.

The following prediction features are finally selected: age, gender, 
years of education, family history, disease duration, most affected side, 

TABLE 1  (Continued)

Characteristic Stable cluster 
(N = 50)

Intermediate cluster 
(N = 60)

Progressive cluster 
(N = 45)

p-value

CSF T-Tau (pg/mL) 163.25 [72.67] 153.45 [71.87] 150.52 [36.90] 0.851

CSF P-Tau181 (pg/mL) 13.27 [5.85] 13.30 [4.99] 12.66 [3.81] 0.693

Descriptive statistics for continuous variables are presented as median [IQR] or mean ± SD.
aStable cluster is significantly different from intermediate cluster (Dunn’s method with p < 0.05).
bStable cluster is significantly different from progressive cluster (Dunn’s method with p < 0.05).
cIntermediate cluster is significantly different from progressive cluster (Dunn’s method with p < 0.05).
dStable cluster is significantly different from progressive cluster (Tukey’s method with p < 0.05).
eIntermediate cluster is significantly different from progressive cluster (Tukey’s method with p < 0.05).
p-values less than 0.05 are given in bold.

FIGURE 1

SOMs of MDS-UPDRS-Part III score trajectory per cluster among patients. Individual data points indicate the MDS-UPDRS-Part III score for each 
patient. The trendline shows the mean MDS-UPDRS-Part III score at each follow-up year. Individual motor symptom severity traces clustered by SOMs 
from each patient represented as scale-free normalized values for stable cluster (A), intermediate cluster (C), progressive cluster (E), and as non-
normalized values for stable cluster (B), intermediate cluster (D), progressive cluster (F).
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H&Y stage, motor subtype, tremor, rigidity, bradykinesia, postural 
instability with motor disorder, activities of daily living, MDS-UPDRS-
Part I score, MDS-UPDRS-Part II score, MDS-UPDRS-Part III score, 
MDS-UPDRS total score, UPSIT score, JoLO score, ESS score, GDS 
score, HVLT Discrimination Recognition, HVLT Immediate/Total 
Recall, HVLT Retention, HVLT False Alarms, HVLT Delayed Recall, 
HVLT Delayed Recognition, LNS score, QUIP Score, RBDSQ score, 
SCOPA-AUT score, SFT animal subscore, SFT fruit subscore, SFT 
vegetable subscore, SFT score, STAI Total score, STAI state subscore, 
STAI trait subscore.

We developed a multi-class SVM model to identify patient’s 
motor trajectory cluster using baseline demographic and clinical 
variables (mAUC = 0.8846, accuracy = 0.7692, macro-average 
sensitivity = 0.7866, macro-average specificity = 0.8842, macro 
F1-score = 0.7732).

Given the individual differences in PD patients, we calculated 
feature contributions using the Shapley value. Shapley value distributes 
the difference between the individual prediction and the average 
prediction to each feature. As shown in Supplementary Figure  4, 
we interpret the instance using Shapley values with the progressive 

TABLE 2  Annual change of motor function scores in trajectory clusters.

Annual change Total Stable cluster 
(n = 50)

Intermediate cluster 
(n = 60)

Progressive cluster 
(n = 45)

MDS-UPDRS-Part II, score 0.759 0.606 0.734 0.962

MDS-UPDRS-Part III, score 2.344 1.508 2.463* 3.113***

 � Rigidity, score 0.549 0.437 0.500 0.737*

 � Tremor, score 0.358 0.185 0.325 0.595*

 � Bradykinesia, score 0.838 0.537 0.997** 0.958*

 � PIGD, score 0.241 0.149 0.214 0.370**

Modified Schwab & England ADL, score −1.569 −1.106 −1.643 −1.984*

The symbol * indicates a statistically significant difference compared to the stable cluster, and * represents p-value < 0.05, ** represents p-value < 0.01, and *** represents p-value < 0.001.

FIGURE 2

Kaplan–Meier curves comparing time-to-clinical milestones among three clusters within 5 years. (A) Time to H&Y stage ≥3. (B) Time to Modified 
Schwab & England ADL <80%. (C) Time to RBD score ≥5. (D) Time to MoCA score ≤23.
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cluster as the target. The actual prediction denotes the predicted 
ending, 1 for the progressive cluster and 0 for not the progressive 
cluster. Vertical coordinates denote the features of the instance. The 
horizontal coordinate denotes the phi value of the corresponding 
feature, where a larger phi value indicates a larger contribution for this 
instance compared to the average prediction of the dataset. For this 
instance, the high predictive value of the patients mainly stems from 
poorer MDS-UPDRS scores, being female, better Semantic fluency, 
etc., while features such as years of education and no family history of 
PD partially offset this effect.

The SVM model was finally used to develop an interactive web 
application. After the user enters the values for each metric and clicks 
“Submit,” the page will display the result of the prediction of the 
patient’s trajectory cluster, as well as the result of the analysis of the 
corresponding Shapley values (see Supplementary Figure  5). The 
details of the application can be found in https://xuxiaozhoushiny.
shinyapps.io/application/.

4 Discussion

This study applied a purpose-driven cluster analysis, revealing 
three distinct clusters of motor symptom trajectories over a five-year 
follow-up in early PD patients. These clusters were characterized by 
different anthropometric features and showed significant differences 
in the progression of cardinal motor symptoms and the timing of 
reaching clinical milestones. The subtype classification, determined 
through longitudinal cluster analysis, may offer new insights into the 
dynamic heterogeneity of PD progression. Moreover, to identify 
trajectory clusters of new individuals in real-life clinical practice, 
we developed an ML model using baseline data and established an 
interactive web application based on this model.

Although several studies have attempted to categorize PD patients 
into various subtypes, most of these studies have been found to have 
significant methodological disadvantages and clinical applicability 
shortcomings (10, 18). Hypothesis-driven methods are important for 
answering specific research questions, but they categorize patients 
based on cross-sectional motor symptoms, compromising the stability 
of motor subtypes. On the other hand, the advantage of data-driven 
methods is that there are no a priori constraints, which may render 
the cluster result unreliable due to differences in variables and models, 
making the applicability unclear to researchers and users. Considering 
the respective characteristics of the two categories of subtyping 
studies, we believe that the purpose of use should be considered when 
developing and using PD subtypes.

The purpose-driven framework proposed by MDS provides 
guidance for defining PD subtypes and clarifying their application 
scenarios (18). The purpose-driven framework’s requirements for 
defining subtypes are: the ability to predict the progression of PD, the 
ability to predict the response to treatment, etc. However, the current 
technical and database conditions make it difficult to achieve a 
comprehensive approach that fully covers the heterogeneity of 
PD. Our research has advanced some objectives under the guidance 
of this framework. Firstly, accurately predicting the progression of PD 
is undoubtedly the top priority in clinical practice and research. For 
instance, in the prospective study based on the PREDICT-PD cohort 
conducted by Cristina’s team, it was possible to identify high-risk 
individuals for PD and longitudinally track the progression trajectory 

of their motor prodromal symptoms. However, this study was limited 
to assessments at the baseline and the 6th year of follow-up, which 
may affect the validity of the risk prediction model (26). This study 
utilizes a multi-time-point longitudinal follow-up data-driven 
definition as the basis for defining the prototype, an approach that 
may be more suitable for progressive diseases such as PD. In addition, 
Ren adopted the multivariate functional principal component analysis 
method to integrate the dynamic changes of multi-dimensional 
longitudinal indicators, and incorporated the extracted principal 
component features into the Cox model to construct the prognostic 
index (27). However, the 10 principal component features contained 
in this model lack established clinicopathological correlates. The 
subtype definition method based on the progression of motor 
symptoms in this study can avoid selection bias introduced by 
excessive variables. With the help of machine learning methods and 
interactive applications, clinical interpretation of clustering results and 
rapid prediction of new participants we can achieve.

Although the extent varies, motor symptoms in PD can lead to a 
loss of physical ability, changes in social life, alterations in relationships, 
and shifts in activity patterns (28). For instance, some individuals may 
feel troubled or even ashamed by exhibiting symptoms such as tremors 
or bradykinesia in public, leading to a withdrawal from social activities 
(29). Compared to the stable and intermediate clusters, the progressive 
cluster exhibits more severe motor and non-motor symptoms at 
baseline. Specifically, the progressive cluster exhibits more severe 
motor experiences in daily life, during motor examinations, and in the 
ability to perform daily activities. In terms of non-motor symptoms, 
the progressive cluster also performs worse than the stable cluster and 
the intermediate cluster in areas such as visuospatial function, executive 
function, and speed/attention. Furthermore, the progressive cluster has 
more severe impairments in olfactory and autonomic nervous 
functions compared to the stable cluster. Furthermore, the mean 
single-photon emission computed tomography (SPECT) striatal 
binding ratios for the progressive cluster are significantly lower than 
those for the other two clusters. This hierarchical ranking provides 
external validation for the trajectory clusters (13) and suggests the 
potential utility of SPECT imaging in assessing the progression of 
motor symptoms.

Moreover, living with PD means adapting to continuous losses. The 
disease’s progressive nature requires patients to continually adapt to the 
ongoing loss of daily living abilities as well, as face the additional 
challenges posed by its unpredictable trajectory. Coping with PD is thus 
never static, but an ongoing process of adapting to the circumstances of 
daily life with the disease (28). In terms of motor symptom progression, 
we found that the progression rates of cardinal motor symptoms varied 
across different clusters. The progressive cluster exhibited significant 
annual changes in tremor, rigidity, bradykinesia, and PIGD, with 
bradykinesia showing the fastest annual progression rate. Additionally, 
we observed that the progressive cluster had a higher incidence of 
reaching key clinical milestones within 5 years of follow-up. This cluster 
was more likely to experience disease progression, impairment in 
activities of daily living, sleep disturbances, and cognitive decline. 
Therefore, early identification of the progressive cluster can help PD 
patients adapt to gradual changes and maintain a positive outlook on 
life, which contributes to the long-term management of PD patients.

Currently, most typical clustering solutions present characteristics 
at the group level using mean values, which makes it impossible to 
directly categorize new individuals into different subgroups (13). 
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Considering the clinical applicability, we used ML methods that have 
been widely used in medical research, with more comprehensive 
baseline clinical data, including demographic data, motor symptom 
assessment and non-motor symptom assessment to learn the 
characteristics of the cluster. The variables are typically evaluated at 
diagnosis, and are more accessible than the more costly cerebrospinal 
fluid and imaging studies. We  also developed a user-friendly 
interactive web application for mobile devices. This application is 
based on the ML model, ensuring its foundation in our established 
classification method. After inputting patient characteristics, the tool 
identifies patient’s trajectory clusters online, which can assist in the 
long-term management of PD patients.

The current study has several limitations. Firstly, PD patients were 
untreated at baseline and received varying drug levels at follow-up, so 
we selected predictors of “off” status to reduce the impact of drugs. 
Secondly, the limitation of sample size leads to a relatively small number 
of subgroups after dividing patients into three trajectory groups. 
Furthermore, the trajectory clustering results of AMP PD cannot be used 
as rigorous external verification. Lastly, the web application is only 
trained based on PPMI data and have not yet been applied in real-world 
practices, which also limits the robustness of the model. Future research 
should use larger and more diverse PD cohorts to test and improve this 
model to enhance generalization and intra-cluster resolution.

5 Conclusion

Our study demonstrates that motor symptoms in PD patients 
exhibit dynamic progression over time. We identified three distinct 
trajectories in early PD patients, characterized by differing clinical 
features, clinical milestones and progression rates. To facilitate 
application, we developed an interactive web application based on an 
SVM model. These findings underscore the importance of 
understanding the dynamic nature of PD progression and highlight 
the critical role of early subtype identification for effective long-
term management.

Data availability statement

Publicly available datasets were analyzed in this study. This data 
can be found at: http://ppmi-info.org/.

Ethics statement

Ethical review and approval was not required for the study on 
human participants in accordance with the local legislation and 
institutional requirements. Written informed consent from the 
patients/participants or patients/participants’ legal guardian/next of 
kin was not required to participate in this study in accordance with 
the national legislation and the institutional requirements.

Author contributions

XX: Software, Visualization, Writing  – original draft. CX: 
Software, Visualization, Writing  – original draft. WZ: 

Writing  – review & editing. HZ: Software, Visualization, 
Writing – original draft. YL: Data curation, Writing – original 
draft. ShuZ: Data curation, Writing  – original draft. JZ: 
Conceptualization, Methodology, Writing – review & editing. ZL: 
Conceptualization, Methodology, Writing – review & editing. LX: 
Conceptualization, Methodology, Supervision, Writing – review 
& editing. ShiZ: Writing – review & editing.

Funding

The author(s) declare that financial support was received for the 
research and/or publication of this article. This work is funded by the 
National Natural Science Foundation of China (82401683, 12171471), 
the Advanced Program of The Affiliated Hospital of Xuzhou Medical 
University (PYJH2024316), the Construction Project of High Level 
Hospital of Jiangsu Province (GSPJS202424), the Open Project of 
Jiangsu Provincial Key Laboratory (XZSYSKF2023.28), the Xuzhou 
Science and Technology Bureau Project (KC23155), the Affiliated 
Hospital of Xuzhou Medical University Research Fund (XYF202249), 
and the Sun Yat sen University Young Teacher Training Project 
(24qnpy234).

Acknowledgments

The authors greatly appreciate the reviewers whose comments and 
suggestions helped improve this article.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Gen AI was used in the creation of 
this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fneur.2025.1597132/
full#supplementary-material

https://doi.org/10.3389/fneur.2025.1597132
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
http://ppmi-info.org/
https://www.frontiersin.org/articles/10.3389/fneur.2025.1597132/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fneur.2025.1597132/full#supplementary-material


Xu et al.� 10.3389/fneur.2025.1597132

Frontiers in Neurology 10 frontiersin.org

References
	1.	Jankovic J, McDermott M, Carter J, Gauthier S, Goetz C, Golbe L, et al. Variable 

expression of Parkinson’s disease: a base-line analysis of the DAT ATOP cohort. 
Neurology. (1990) 40:1529–9. doi: 10.1212/WNL.40.10.1529

	2.	Bock MA, Brown EG, Zhang L, Tanner C. Association of motor and nonmotor 
symptoms with health-related quality of life in a large online cohort of people with 
Parkinson disease. Neurology. (2022) 98:e2194–203. doi: 10.1212/WNL.0000000000200113

	3.	Muslimović D, Post B, Speelman JD, Schmand B, De Haan RJ. Determinants of 
disability and quality of life in mild to moderate Parkinson disease. Neurology. (2008) 
70:2241–7. doi: 10.1212/01.wnl.0000313835.33830.80

	4.	Alves G, Larsen JP, Emre M, Wentzel-Larsen T, Aarsland D. Changes in motor 
subtype and risk for incident dementia in Parkinson’s disease. Mov Disord. (2006) 
21:1123–30. doi: 10.1002/mds.20897

	5.	Stebbins GT, Goetz CG, Burn DJ, Jankovic J, Khoo TK, Tilley BC. How to identify 
tremor dominant and postural instability/gait difficulty groups with the movement 
disorder society unified Parkinson’s disease rating scale: comparison with the unified 
Parkinson’s disease rating scale. Mov Disord. (2013) 28:668–70. doi: 10.1002/mds.25383

	6.	Kang GA, Bronstein JM, Masterman DL, Redelings M, Crum JA, Ritz B. Clinical 
characteristics in early Parkinson’s disease in a central California population-based 
study. Mov Disord. (2005) 20:1133–42. doi: 10.1002/mds.20513

	7.	Kang J-H, Mollenhauer B, Coffey CS, Toledo JB, Weintraub D, Galasko DR, et al. 
CSF biomarkers associated with disease heterogeneity in early Parkinson’s disease: the 
Parkinson’s progression markers initiative study. Acta Neuropathol. (2016) 131:935–49. 
doi: 10.1007/s00401-016-1552-2

	8.	Berg D, Postuma RB, Bloem B, Chan P, Dubois B, Gasser T, et al. Time to redefine 
PD? Introductory statement of the MDS task force on the definition of Parkinson’s 
disease. Mov Disord. (2014) 29:454–62. doi: 10.1002/mds.25844

	9.	Xu X, Gu W, Shen X, Liu Y, Zhai S, Xu C, et al. An interactive web application to 
identify early parkinsonian non-tremor-dominant subtypes. J Neurol. (2024) 
271:2010–8. doi: 10.1007/s00415-023-12156-5

	10.	Mestre TA, Fereshtehnejad S-M, Berg D, Bohnen NI, Dujardin K, Erro R, et al. 
Parkinson’s disease subtypes: critical appraisal and recommendations. J Parkinsons Dis. 
(2021) 11:395–404. doi: 10.3233/JPD-202472

	11.	Vogel JW, Young AL, Oxtoby NP, Smith R, Ossenkoppele R, Strandberg OT, et al. 
Four distinct trajectories of tau deposition identified in Alzheimer’s disease. Nat Med. 
(2021) 27:871–81. doi: 10.1038/s41591-021-01309-6

	12.	Zhou C, Wang L, Cheng W, Lv J, Guan X, Guo T, et al. Two distinct trajectories of 
clinical and neurodegeneration events in Parkinson’s disease. npj Parkinsons Dis. (2023) 
9:111. doi: 10.1038/s41531-023-00556-3

	13.	Fereshtehnejad S-M, Zeighami Y, Dagher A, Postuma RB. Clinical criteria for 
subtyping Parkinson’s disease: biomarkers and longitudinal progression. Brain. (2017) 
140:1959–76. doi: 10.1093/brain/awx118

	14.	Deng X, Saffari SE, Liu N, Xiao B, Allen JC, Ng SYE, et al. Biomarker 
characterization of clinical subtypes of Parkinson disease. npj Parkinsons Dis. (2022) 
8:109. doi: 10.1038/s41531-022-00375-y

	15.	Dadu A, Satone V, Kaur R, Hashemi SH, Leonard H, Iwaki H, et al. Identification 
and prediction of Parkinson’s disease subtypes and progression using machine learning 
in two cohorts. npj Parkinsons Dis. (2022) 8:172. doi: 10.1038/s41531-022-00439-z

	16.	Fereshtehnejad S-M, Romenets SR, Anang JBM, Latreille V, Gagnon J-F, Postuma 
RB. New clinical subtypes of Parkinson disease and their longitudinal progression: a 
prospective cohort comparison with other phenotypes. JAMA Neurol. (2015) 72:863. 
doi: 10.1001/jamaneurol.2015.0703

	17.	Schiess MC, Suescun J. Clinical determinants of progression of Parkinson disease: 
predicting prognosis by subtype. JAMA Neurol. (2015) 72:859–60. doi: 
10.1001/jamaneurol.2015.1067

	18.	Marras C, Fereshtehnejad S, Berg D, Bohnen NI, Dujardin K, Erro R, et al. 
Transitioning from subtyping to precision medicine in Parkinson’s disease: a purpose-
driven approach. Mov Disord. (2024):462–71. doi: 10.1002/mds.29708

	19.	Fereshtehnejad S-M, Postuma RB. Subtypes of Parkinson’s disease: what do they 
tell us about disease progression? Curr Neurol Neurosci Rep. (2017) 17:34. doi: 
10.1007/s11910-017-0738-x

	20.	Horváth K, Aschermann Z, Ács P, Deli G, Janszky J, Komoly S, et al. 
Minimal clinically important difference on the motor examination part of MDS-
UPDRS. Parkinsonism Relat Disord. (2015) 21:1421–6. doi: 10.1016/j.parkreldis. 
2015.10.006

	21.	Makkos A, Kovács M, Aschermann Z, Harmat M, Janszky J, Karádi K, et al. Are 
the MDS-UPDRS—based composite scores clinically applicable? Mov Disord. (2018) 
33:835–9. doi: 10.1002/mds.27303

	22.	Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, et al. 
Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease 
Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov 
Disord. (2008) 23:2129–70. doi: 10.1002/mds.22340

	23.	Fainberg HP, Oldham JM, Molyneaux PL, Allen RJ, Kraven LM, Fahy WA, et al. 
Forced vital capacity trajectories in patients with idiopathic pulmonary fibrosis: a 
secondary analysis of a multicentre, prospective, observational cohort. Lancet Digit 
Health. (2022) 4:e862–72. doi: 10.1016/S2589-7500(22)00173-X

	24.	Charrad M, Ghazzali N, Boiteau V, Niknafs A. NbClust: an R package for 
determining the relevant number of clusters in a data set. J Stat Soft. (2014) 61:1–36. doi: 
10.18637/jss.v061.i06

	25.	Severson KA, Chahine LM, Smolensky LA, Dhuliawala M, Frasier M, Ng K, et al. 
Discovery of Parkinson’s disease states and disease progression modelling: a longitudinal 
data study using machine learning. Lancet Digit Health. (2021) 3:e555–64. doi: 
10.1016/S2589-7500(21)00101-1

	26.	Simonet C, Mahlknecht P, Marini K, Seppi K, Gill A, Bestwick JP, et al. The 
emergence and progression of motor dysfunction in individuals at risk of Parkinson’s 
disease. Mov Disord. (2023) 38:1636–44. doi: 10.1002/mds.29496

	27.	Ren X, Lin J, Stebbins GT, Goetz CG, Luo S. Prognostic modeling of Parkinson’s 
disease progression using early longitudinal patterns of change. Mov Disord. (2021) 
36:2853–61. doi: 10.1002/mds.28730

	28.	Haahr A, Groos H, Sørensen D. ‘Striving for normality’ when coping with 
Parkinson’s disease in everyday life: a metasynthesis. Int J Nurs Stud. (2021) 118:103923. 
doi: 10.1016/j.ijnurstu.2021.103923

	29.	Haahr A, Kirkevold M, Hall EOC, Østergaard K. Living with advanced Parkinson’s 
disease: a constant struggle with unpredictability: living with advanced Parkinson’s 
disease. J Adv Nurs. (2011) 67:408–17. doi: 10.1111/j.1365-2648.2010.05459.x

https://doi.org/10.3389/fneur.2025.1597132
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://doi.org/10.1212/WNL.40.10.1529
https://doi.org/10.1212/WNL.0000000000200113
https://doi.org/10.1212/01.wnl.0000313835.33830.80
https://doi.org/10.1002/mds.20897
https://doi.org/10.1002/mds.25383
https://doi.org/10.1002/mds.20513
https://doi.org/10.1007/s00401-016-1552-2
https://doi.org/10.1002/mds.25844
https://doi.org/10.1007/s00415-023-12156-5
https://doi.org/10.3233/JPD-202472
https://doi.org/10.1038/s41591-021-01309-6
https://doi.org/10.1038/s41531-023-00556-3
https://doi.org/10.1093/brain/awx118
https://doi.org/10.1038/s41531-022-00375-y
https://doi.org/10.1038/s41531-022-00439-z
https://doi.org/10.1001/jamaneurol.2015.0703
https://doi.org/10.1001/jamaneurol.2015.1067
https://doi.org/10.1002/mds.29708
https://doi.org/10.1007/s11910-017-0738-x
https://doi.org/10.1016/j.parkreldis.2015.10.006
https://doi.org/10.1016/j.parkreldis.2015.10.006
https://doi.org/10.1002/mds.27303
https://doi.org/10.1002/mds.22340
https://doi.org/10.1016/S2589-7500(22)00173-X
https://doi.org/10.18637/jss.v061.i06
https://doi.org/10.1016/S2589-7500(21)00101-1
https://doi.org/10.1002/mds.29496
https://doi.org/10.1002/mds.28730
https://doi.org/10.1016/j.ijnurstu.2021.103923
https://doi.org/10.1111/j.1365-2648.2010.05459.x

	Identifying subtypes of longitudinal motor symptom severity trajectories in early Parkinson’s disease patients
	1 Introduction
	2 Methods
	2.1 Participants
	2.2 Assessment of clinical information
	2.3 Statistical analysis
	2.4 Construction and explanation of the ML model

	3 Results
	3.1 Baseline characteristics
	3.2 Trajectory clusters description
	3.3 Comparison of baseline demographics and clinical variables among three trajectory clusters
	3.4 Annual change of motor function scores in trajectory clusters
	3.5 Survival analysis of reaching key clinical milestones
	3.6 Treatment response
	3.7 Machine learning model and interactive web application

	4 Discussion
	5 Conclusion

	References

