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Background: Although significant progress has been made in trio-based whole-
exome sequencing (trio-WES) that enables the detection of exon-level variants, 
the diagnostic effectiveness of empirical and unselected use of trio-WES in 
children with low-function autism spectrum disorders (LF-ASDs) remains 
unsatisfactory. Thus, the identification of an appropriate approach for predicting 
the diagnostic efficacy of trio-WES at the pre-diagnosis stage is essential for 
implementing individualized diagnosis for children with LF-ASDs.
Methods: A total of 168 LF-ASDs patients who underwent trio-WES at Sun 
Yat-sen Memorial Hospital from September 2016 to December 2022 were 
enrolled as the training set. Additionally, 58 LF-ASDs patients who received 
trio-WES at Weierkang Children’s Rehabilitation Center between January 2023 
and December 2023 were recruited as an independent external validation 
set. Univariate and multivariate binary logistic analyses were performed on 
the training set to select phenotypic variables to establish a nomogram. The 
discriminative performance of the model was evaluated using receiver operating 
characteristic (ROC) curves and calibration curves. Furthermore, the nomogram 
was validated in external validation sets.
Results: Univariate and multivariate analyses identified independent trio-
WES diagnosis-related predictive indicators, including severity of global 
developmental delay/intellectual disability, complexity of neurodevelopmental/
neurological comorbid conditions, head circumference abnormalities, and brain 
malformations, in the training cohort and used to develop a nomogram. The 
nomogram showed excellent discrimination performance, with an area under 
curve (AUC) of the ROC in the training cohort of 0.868 (95% CI: 0.811–0.925), 
resulting in sensitivity, specificity, accuracy, precision, and F1 score values of 
85.56, 82.05, 83.93, 84.62%, and 0.85, respectively. The model also exhibited 
strong prediction ability in the external validation set (AUC: 0.941, 95% CI: 0.880–
0.998; sensitivity: 85.29%; specificity: 91.67%; accuracy: 87.93%; precision: 
93.55%; and F1 score: 0.89). Moreover, the calibration curves demonstrated 
good agreement between the nomogram predictions and actual observations 
in both training and validation sets.
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Conclusion: We developed an user-friendly and highly accurate model for 
predicting the diagnostic probability of trio-WES in LF-ASDs children, which 
could help implement an individualized diagnostic strategy for affected children 
and their families at the pre-diagnosis stage.
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Introduction

Autism spectrum disorders (ASDs) represent a genetically and 
clinically heterogeneous group of neurodevelopmental disorders 
characterized by dysfunctions in social communication/interaction 
and repetitive, stereotypic patterns of movements/behaviors typically 
manifesting within the first 2–3 years of life (1). With advancements 
in understanding of ASDs, their prevalence has increased significantly, 
now accounting for approximately 1–2% of children worldwide, 
according to the Network Organization of Autism and Developmental 
Disabilities Monitoring (2). As of 2016, the prevalence of ASDs in 
children and adolescents (ages 3–17) in the United States was 2.76%, 
rising to 3.49% by 2020 (3, 4). Recently, the World Health Organization 
reported that 1 in 100 children worldwide present with ASDs (5). The 
rapidly increasing prevalence of ASDs places enormous pressure on 
public health systems, social services, and economic burdens on 
families worldwide.

Low-function ASDs (LF-ASDs) represent a severe manifestation 
within the ASDs continuum, affecting nearly 42% of diagnosed with 
ASDs children (2). LF-ASDs can be defined as ASDs accompanied by 
varying severities of global developmental delay or intellectual 
disability (GDD/ID), marked by pronounced and easily observable 
deficits from an early age (often <18 months) (6). Previous studies 
indicate that identifiable neurodevelopmental/neurological comorbid 
conditions (NCCs), such as attention deficit hyperactivity disorder 
(ADHD) and epilepsy (EP) frequently co-occur in children with 
LF-ASDs (1). Moreover, there is a stronger correlation with LF-ASDs 
and significant structural and functional brain alterations, including 
abnormalities in brain volume growth trajectories and pronounced 
cortical connectivity disturbances, which can complicate diagnosis 
and treatment; consequently, LF-ASDs are often referred to as 
syndromic ASDs. Therapeutic interventions or disease management 
for ASDs and LF-ASDs are individualized and multidisciplinary, 
typically encompassing speech and language therapy, occupational 
therapy, cognitive behavioral therapy, and pharmacotherapy (e.g., 
risperidone and aripiprazole).

The etiology of ASDs is complex and multifaceted, stemming 
from a combination of genetic predispositions and environmental 
influences. The etiology of LF-ASDs encompasses the foundational 
genetic and environmental factors associated with ASDs but is 
statistically associated with a higher burden of pathogenic genetic 
variants; thus, genetic disturbances are still considered to play 
essential roles in the development of LF-ASDs (1). For instance, 
mutations or chromosomal abnormalities with larger effect sizes, 
such as fragile X syndrome and single-gene disorders like Rett 
syndrome (MECP2 abnormalities), are strongly associated with 
the etiology of LF-ASDs (ASDs with GDD/ID). Recent 

advancements in identifying the genetic components of LF-ASDs 
have accelerated, particularly due to the increased adoption and 
innovation of trio-based (parental-offspring model) whole-exome 
sequencing (trio-WES), the most common next-generation 
sequencing technology for detecting exon-level variants, including 
single-nucleotide variants (SNVs) and copy-number variants 
(CNVs) in clinical applications, making it possible to identify 
genetic components more frequently in many idiopathic LF-ASDs 
cases (7). Nonetheless, around half of children with LF-ASDs 
remain undiagnosed after receiving comprehensive trio-WES 
analyses, attributed to variants located outside exons (e.g., 
intronic, promoter, or enhancer-level variants); thus, the 
diagnostic yield of trio-WES for LF-ASDs remains unsatisfactory 
(1). Given the persistent challenges posed by the low diagnostic 
efficacy of trio-WES in LF-ASDs, it is imperative for pediatricians 
to develop practical tools for the early identification of children 
with LF-ASDs most likely be  diagnosed by trio-WES, thereby 
facilitating timely evaluations of medical conditions. Additionally, 
due to the features of exon-level sequencing of trio-WES, it 
becomes essential for affected children and their families to use 
straightforward approaches to support their decision-making 
regarding the employment of trio-WES testing at the pre-diagnosis 
stage, ultimately aiding individualized family planning and 
reducing unnecessary financial and temporal costs.

Nomograms are powerful predictive tools, are widely used in 
forecasting the outcomes across various diseases due to their 
visualization, ease of use, objectivity, and accuracy (8). Nomograms 
have been widely used for predicting risks or outcomes of many 
pediatric neurodevelopmental disorders, including ADHD (9), 
infant neurodevelopmental delays (10), and teenager oppositional 
defiant disorder (11). However, to the best of our knowledge, no 
studies to date have reported the application of a nomogram for 
predicting the diagnostic efficacy of trio-WES in LF-ASDs children. 
Therefore, this multicenter study with independent external 
validation based on the phenotype-driven concept aims to generate 
the first user-friendly nomogram model for predicting the 
individualized diagnostic probability of trio-WES in children with 
LF-ASDs. Grounded in the phenotype-driven concept, which is 
essential in clinical genetics; this approach is used for Mendelian 
monogenic disorders to identify critical phenotypic characteristics 
that allow the identification of probands with a high probability of 
harboring relevant pathogenic genetic variants (12). Leveraging this 
concept, we  used readily obtainable and objective phenotypic 
variables related to LF-ASDs and their associated complex NCCs, 
thereby establishing a predictive nomogram to assess the 
individualized diagnostic probability of employing trio-WES at the 
pre-diagnosis stage.
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Materials and methods

Patients and subject selection criteria

As shown in Figures 1A, a total of 560 individuals diagnosed 
with LF-ASDs were admitted to the tertiary Children’s Medical 
Center of Sun Yat-sen Memorial Hospital (SYSMH) from September 
2016 to December 2022. Following a comprehensive assessment 
involving clinical information, informed consent, and routine 
genetic screening (G-band karyotyping and fragile-X analysis) to 
exclude ineligible cases—such as children with unclear or incomplete 
clinical data (excluding 307 cases), those whose parents or guardians 
declined genetic testing or opted not to permit the use of their 
genetic results for publication (excluding 67 cases), and children 
presenting with apparent chromosomal disorders (e.g., Down 
syndrome or fragile-X syndrome), which rendered trio-WES 
inappropriate as a diagnostic strategy (excluding 18 cases), a total of 
168 children with idiopathic LF-ASDs who had received trio-WES 
testing from SYSMH were ultimately in this retrospective study as 
training subjects. Moreover, 79 children diagnosed LF-ASDs were 
admitted to Weierkang Children’s Rehabilitation Center (WCRC), a 
specialized pediatric neurorehabilitation center focusing on 
integrated diagnosis and treatment of neurodevelopmental 
disorders, from January 2023 to December 2023. After performing 
a series of screenings similar to those applied in the SYSMH group, 
58 patients with idiopathic LF-ASDs ultimately qualified for 
enrollment, having undergone trio-WES testing between January 1, 
2023, and December 31, 2023, thus serving as external 
validation subjects.

The present study defined LF-ASDs in accordance with the 
following: (I) A clinical diagnosis of ASDs made by professional 
pediatric psychiatrists based on the Diagnostic and Statistical Manual 
of Mental Disorders, 5th Edition (DSM-5) criteria for ASDs (13), 
supplemented by several main ASDs-related clinical assessment scales, 
including the Modified Checklist for Autism in Toddlers, the Clancy 
Autism Behavior Scale, the Autism Behavior Checklist, and the 
Childhood Autism Rating Scale (14–16). (II) Diverse severities of 
GDD/ID, where by clinical diagnostic criteria for GDD/ID were based 
on the DSM-5 criteria (13). GDD/ID severity was assessed mainly 
according to the Gesell Developmental Diagnosis Scale (GDDS) for 
infants under 3 year-old (17), and Wechsler Preschool and Primary 
Scale of Intelligence, IV Edition (WPPSI-IV) for children with 
4 ~ 6 year-old. For subjects over 6 year-old, we  used Wechsler 
Intelligence Scale for Children, IV Edition (WISC-IV) to assess their 
GDD/ID severity (18). (III) Exclusion of subjects with identified 
non-genetic causes such as hypoxic–ischemic encephalopathy, 
bilirubin encephalopathy and intrauterine infections, and positive 
findings from routine genetic screens (fragile-X analysis and G-band 
karyotyping) that indicate chromosomal disorders, such as fragile X 
syndrome or Down syndrome, deemed inappropriate for trio-WES in 
those conditions. (IV) Children with or without common NCCs, 
mainly ADHD and/or epilepsy, with diagnoses established by 
specialized child psychiatrists and neurologists following the criteria 
of the DSM-5 for ADHD (13) and the International League Against 
Epilepsy (ILAE) criteria for epilepsy (19). Due to the diagnostic 
challenges and lack of objective and Chinese version of assessment 
tools for other NCCs such as sleep disorder and anxiety disorder in 
young children, these conditions were excluded from current study.

Ethical compliance

The design of this multicenter study received approval from the 
Ethical Committee of Sun Yat-sen Memorial Hospital, Sun Yat-sen 
University (initiative affiliation approval number: SYSKY-2025-244-
01). Written informed consent for genetic investigation and 
publication of genetic results was obtained from the parents or 
guardians of all 226 enrolled subjects.

Strategy for variant capture of trio-WES

The principles of the variant capture process and quality control 
systems for trio-WES have been described in previous studies (20–22), 
with details in the current study briefly outlined as follows: Genomic 
DNA was extracted from the whole blood of the proband and their 
parents using a commercial genomic extraction kit (Qiagen, Shanghai, 
China). The Illumina TruSeq Exome Kit (Illumina, San Diego, CA, 
United  States) was used for DNA library construction and the 
generation of approximately 10GB of exome sequencing data per 
individual. GeneRanger (Xunyin Biotech, Shanghai, China) was 
employed for the exome sequencing data analysis. Subsequently, the 
Burrows-Wheeler aligner, Picard tool, and genome analysis tools were 
employed for read alignment, indel region realignment, base quality 
recalibration, variant capture, and calling/transformation based on the 
Genome Aggregation Database (gnomAD). The variant quality 
control system was set to a coverage depth of greater than 10, along 
with a minor allele frequency of less than 0.05%.

Pathogenicity criteria for 
trio-WES-identified exon-level variants and 
enrolled case grouping

The pathogenicity of trio-WES-identified SNVs was rated 
according to the 2015 American College of Medical Genetics (ACMG) 
guidelines for SNV interpretation (23), categorizing detected SNVs 
into “pathogenic/likely pathogenic” and “benign/uncertain 
significance” SNVs. As per prior research (24), gnomAD and in-house 
SNV population frequency databases were used to assess SNV allele 
frequency. In silico pathogenic predictions for identified missense, 
frameshift, nonsense, and deletion variants were conducted using 
online versions of Mutation Taster,1 Protein Variation Effect Analyzer,2 
Polymorphism Phenotyping version 2,3 and Sorting Intolerant From 
Tolerant.4 In silico prediction for the splice variant was conducted 
using online version of Combined Annotation Dependent Depletion.5 
Additionally, the Human Genomic Mutation Database and PubMed 
were consulted to determine whether identified variants had been 
previously documented, while Online Mendelian Inheritance in Man6 

1  https://mutationtaster.org/

2  PROVEAN; http://provean.jcvi.org/index.php

3  Polyphen-2; http://genetics.bwh.harvard.edu/pph2/

4  SIFT; https://sift.bii.a-star.edu.sg/

5  CADD; https://cadd.gs.washington.edu/

6  OMIM; https://omim.org/
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FIGURE 1

Flowchart and candidate variables description of this multicenter study. (A) Flowchart of this research. (B) A summary of candidate phenotypic 
indicators and their corresponding definitions in current research. LF-ASDs, low-function autism spectrum disorders; SYSMH, Sun Yat-Sen Memorial 
Hospital; WCRC, Weierkang Children’s Rehabilitation Center; trio-WES, trio-based whole-exome sequencing. NCCs, neurodevelopmental/neurological 
comorbid conditions; HCAs, head circumference abnormalities; BMs, brain malformations. In A “+/−” indicates enrolled LF-SADs patients who 
underwent trio-WES and received a positive genetic diagnosis (having “likely pathogenic” or “pathogenic” variants) or a negative genetic diagnosis 
(having “benign” or “uncertain significance” variants), respectively, according to the guidelines of the American College of Medical Genetics. In B, Gesell 
Developmental Diagnosis Scale with developmental quotient score (cut-off value: 35) was used to assess GDD severity (mild–moderate or severe-
profound GDD) for patients under 5-year-old. While, Wechsler Intelligence Scale with intelligence quotient score (cut-off value: 40) was used to 
evaluate ID severity (mild–moderate or severe-profound ID) for patients older than 5-year-old.
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database was employed to obtain genotype–phenotype profiles linked 
to identified SNVs.

The pathogenicity of trio-WES-detected CNVs was assessed based 
on the 2019 ACMG guidelines for postnatal CNV interpretation (25), 
employing previously documented methods (26). Identified CNVs 
were manually interpreted and categorized into “pathogenic/likely 
pathogenic” or “benign/uncertain significance” by two or more 
experienced clinical geneticists adhering to ACMG guidelines.

Based on the pathogenicity assessments of these trio-WES-
identified SNVs and CNVs mentioned above, enrolled subjects were 
categorized into LF-ASDs children with positive genetic diagnoses (+, 
harboring pathogenic/likely pathogenic SNVs or CNVs from their 
trio-WES testing reports) and LF-ASDs children with negative genetic 
diagnoses (−, harboring benign/uncertain significance SNVs or CNVs 
from their trio-WES testing reports).

Candidate variable collection and 
interpretation of collected indicators

Demographic and phenotypic factors of all enrolled subjects were 
collected from hospital medical records. These included: (I) 
demographic characteristics including sex, admission date, and age at 
which trio-WES was performed; and (II) candidate phenotypic 
factors: GDD/ID severity, ADHD, epilepsy, complexity of NCCs, head 
circumference abnormalities (HCAs), and brain malformations 
(BMs). A summary table detailing these phenotypic variables and 
their corresponding definitions, is provided in Figure 1B.

Model development and internal/external 
validation of model performance

For model development, independent phenotypic indicators were 
first screened through univariate and multivariate binary logistic 
regression alongside collinearity diagnostic analyses in the training 
set. Specifically, during the univariate and multivariate logistic 
analyses of the training set, indicators with clinical significance and 
significantly significant differences (p < 0.05) were identified between 
children with positive and negative genetic diagnoses via trio-
WES. Then, collinearity diagnostic analyses were performed to 
determine the presence of significant collinearity among the screened 
indicators. Tolerance and variance inflation factor (VIF) metrics were 
used to evaluate the severity of collinearity. A tolerance value 
exceeding 0.5 and a VIF below 5 for each screened variable indicated 
no significant collinearity, thereby permitting the selection of these 
variables as independent for establishing the logistic regression model 
(27). Finally, we generated a nomogram using R packages to visualize 
the constructed logistic regression model.

For internal validation of model performance, the receiver 
operating characteristic (ROC) curve and the area under curve (AUC) 
of the ROC were initially used to evaluate the discriminative 
performance of the model in the training cohort. Subsequently, 
calibration curves coupled with the Hosmer-Lemeshow test were 
applied to assess the goodness-of-fit between predicted and observed 
data. A p value from the Hosmer-Lemeshow test <0.05 indicated that 
the dotted line (representing model-predicted data) significantly 
differed from the solid line (representing actual observed data) in 

calibration curve, demonstrating poor model fit; conversely, a p value 
>0.05 implied good model fit. Additionally, the clinical applicability 
of the nomogram was evaluated through decision curve analysis 
(DCA) and clinical impact curve (CIC). Furthermore, we used two 
methods to assess consistency and mitigate overfitting bias: the 10-fold 
cross-validation and bootstrap resampling (with 1,000 bootstrap 
resamples). The 10-fold cross-validation approach is a common and 
robust resampling technique used to assess the consistence 
performance and internal stability of predictive model, and involves 
partitioning the dataset into 10 mutually exclusive and approximately 
equal-sized folds. During iterative training, 9 folds are used as the 
training set while the remaining fold serves as the validation set. This 
process is repeated across all folds. The established performance 
metric, concordance index (C-index), is calculated to examine the 
consistency (generalization) and stability of predictive model. 
Conversely, the bootstrap sampling method, a classical internal 
validation method, draws from the original training dataset with 
replacement and undergoes 1,000 repetitions. C-index values greater 
than 0.7 from both methods indicated the nomogram had good 
reliability (28).

For external validation of model performance, the optimal cutoff 
value was first set based on the maximal Youden index value 
corresponding to the optimal values of sensitivity and specificity of the 
model in the training set. Cases in the external validation set were 
then classified into “nomogram-predicted positive diagnostic cases” 
and “nomogram-predicted negative diagnostic cases” based on these 
optimal cutoff values. The AUC value, calibration curves with the 
Hosmer-Lemeshow test, and DCA/CIC, were subsequently used to 
validate the discriminative performance, consistency, and clinical 
benefits of the nomogram in the external validation set. Finally, 
we calculated the model sensitivity, specificity, accuracy, precision, 
and F1 scores for the training and external validation sets, and the 
results were visualized using Sankey plots.

Statistical analysis

Microsoft Excel software was used for data entry, while all 
statistical analyses were conducted using R.7 As referenced in previous 
studies using the R (8, 27, 29, 30), the following R packages were used 
for statistical analysis and data visualization: ggplot2,” “foreign,” “rms,” 
“rmda,” “caret,” “tidyverse,” and “ggDCA.” p value <0.05 were 
considered statistically significant.

Results

Clinical details of the enrolled subjects

In total, 168 and 58 children with unexplained LF-ASDs were 
enrolled in the training and external validation cohorts, respectively. 
Comparisons of the baseline demographics and phenotypic features 
between the two cohorts are shown in Table 1. Detailed data regarding 
the genotypes and phenotypes of subjects in the training and 

7  version 4.4.2, http://www.R-project.org/
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validation cohorts are summarized in Supplementary Files 1–4, 
respectively. Among the 168 enrolled subjects in the training cohort, 
90 (53.6%) had a genetic diagnosis via trio-WES, whereas 78 (46.4%) 
did not have a genetic diagnosis via trio-WES. Moreover, 58.6% 
(34/58) of the individuals included in the external validation cohort 
received a genetic diagnosis via trio-WES.

Independent predictive variable screening 
and logistic regression model 
establishment

As shown in Table 2, the univariate logistic analysis revealed that 
five phenotypic indicators (GDD/ID severity, ADHD, NCC 
complexity, HCAs, and BMs) were potentially associated with a 
positive trio-WES diagnosis.

Following the univariate logistic analysis, the five candidate 
indicators were incorporated into a multivariate logistic regression 
model. As shown in Table 2, the multivariate analysis results indicated 

that GDD/ID severity (OR: 11.264; 95% CI: 4.788–26.495, p < 0.001), 
NCC complexity (2.671; 1.055–6.764, p < 0.05), HCAs (2.801; 1.070–
7.332, p < 0.05), and BMs (3.701; 1.601–8.558, p < 0.01) were 
independently associated with a higher diagnostic efficacy when 
applying trio-WES in patients with LF-ASDs. In contrast, having 
ADHD was not independently associated with a higher possibility of 
receiving a genetic diagnosis by trio-WES in LF-ASDs children.

Collinearity diagnosis performed on the four candidate indicators 
(GDD/ID severity, NCC complexity, HCAs, and BMs) showed no 
significant evidence of collinearity, as the tolerances and the VIFs for 
each phenotypic factor were all >0.5 and <5, respectively (Table 3).

Finally, based on the four-variable binary logistic regression β 
values and the intercept term, a regression model was established to 
predict the diagnostic efficacy of applying trio-WES in children with 
LF-ASDs. The corresponding formula for predicting the probability 
(P) of an individual with LF-ASDs being diagnosed by trio-WES is as 
follows: Logit (P) = 2.422 (β1) × GDD/ID severity (severe-profound: 
1; mild–moderate: 0) + 0.983 (β2) × NCCs complexity (complicated: 
1; simple: 0) + 1.030 (β3) × HCAs (yes: 1; no: 0) + 1.309 (β4) × BMs 
(yes: 1; no: 0) – 1.898 (intercept term).

TABLE 1  Comparison of baseline demographics and phenotypic features between training and validation cohorts of trio-WES tested LF-ASDs children.

Demographics or 
characteristics

Indicators Training cohort Validation cohort t/χ2 value p-value

Demographic parameters

  Case number (n) 168 58

  Sex [n (%)] Female 43 (25.6%) 16 (27.6%) 0.089 0.766

Male 125 (74.4%) 42 (72.4%)

 � Admission Periods (MM/

YY ~ MM/YY)

Sep/2016 ~ Dec/2022 Jan/2023 ~ Dec/2023

 � Age of receiving trio-WES 

[Mean ± SD/(yrs)]

4.7 ± 3.4 5.3 ± 2.6 1.324 0.188

  Patient sources SYSMH WCRC

Phenotypic features

  GDD/ID severity [n (%)] Mild–moderate 92 (54.8%) 28 (48.3%) 0.728 0.393

Severe-profound 76 (45.2%) 30 (51.7%)

  ADHD [n (%)] Yes 34 (20.2%) 18 (31.0%) 2.837 0.092

No 134 (79.8%) 40 (69.0%)

  EP [n (%)] Yes 27 (16.1%) 11 (19.0%) 0.258 0.611

No 141 (83.9%) 47 (81.0%)

  NCCs complexity [n (%)] Simple 124 (73.8%) 30 (51.7%) 9.687 0.002

Complicated 44 (26.2%) 28 (48.3%) 0.065 0.798

  HCAs [n (%)] Yes 52 (31.0%) 19 (32.8%)

No 116 (69.0%) 39 (67.2%)

  BMs [n (%)] Yes 70 (41.7%) 15 (25.9%) 4.590 0.032

No 98 (58.3%) 43 (74.1%)

Outcomes

 � trio-WES-based diagnostic 

status [n (%)]

Positive 90 (53.6%) 34 (58.6%) 0.444 0.505

Negative 78 (46.4%) 24 (41.4%)

LF-ASDs, low-function autism spectrum disorders; NCCs, neurodevelopmental/neurological comorbid conditions; trio-WES, trio-based whole exome sequencing SYSMH, Sun Yat-Sen 
Memorial Hospital; WCRC, Weierkang Children’s Rehabilitation Center; GDD/ID, global developmental delay/intellectual disability; ADHD, attention defi cit hyperactivity disorder; EP, 
epilepsy; HCAs, head circumference abnormalities; BMs, brain malformations. In NCCs complexity row, “simple” means patients only existing LF-ASDs without ADHD and (or) EP; 
“complicated” means LF-ASDs patients coexisting one or two type of other NCCs (ADHD and EP).
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Predictive model visualization and 
nomogram usage

Figure  2 shows the nomogram plot based on the established 
logistic regression model. This nomogram provides an estimate of the 
individual probability of diagnosis via trio-WES through a score-
contribution system and is designed for a child with LF-ASDs at the 
time of initial admission or during the pre-diagnosis stage. The 
methodology for this score-contribution system utilizes the coefficients 
(β) from the logistic regression model. The calculated score assigned to 
each indicator is proportional to its β value, mapped to a 0 to 100-point 
scale through linear transformation. Specifically, we assigned a value 
of 100 to the indicator with the maximum β value (βmax), from which 
the scores for the other predictive indicators can be calculated using 
the formula: calculated scorex = 100 × βx ÷ βmax. Detailed parameters 
related to this regression model and the corresponding model scores 
for each independent predictive variable are provided in Table 4.

As indicated in Figure 2A, LF-ASDs with severe-profound GDD/
ID had the greatest influence on the probability of receiving a 
diagnosis through trio-WES, followed by BMs, HCAs, and 
complicated NCCs (NCC with coexisting ADHD and/or epilepsy). 
For example, a 4.5-year-old girl with LF-ASDs (subject no. 89 in the 
training group) with severe-profound GDD and comorbid ADHD 
and epilepsy (complicated NCCs), but without BMs and HCAs, 

achieved a total score of approximately 140.5 points; the corresponding 
probability of obtaining a genetic diagnosis through trio-WES was 
approximately 80%. Indeed, this girl was diagnosed with 
“Developmental and Epileptic Encephalopathy 2 (OMIM#300672)” 
through trio-WES (Figure  2B). Another subject with LF-ASDs, a 
9-year-old boy (subject No. 84  in the training cohort) with mild–
moderate ID and multiple BMs detected via brain MRI, including 
basal ganglia lesions, pituitary dysplasia, and cerebellar atrophy, but 
without HCAs, ADHD, and epilepsy (simple NCCs), scored 
approximately 54 points, with the corresponding probability of a 
positive genetic diagnosis via trio-WES being approximately 35%. 
This boy has yet to receive a genetic diagnosis despite his multiple 
brain anomalies following comprehensive trio-WES analysis and 
re-evaluation of the trio-WES data (Figure 2C).

Assessment and internal validation of the 
nomogram performance in the training set

First, a calibration curve with Hosmer-Lemeshow testing was 
used to evaluate the fitness of the nomogram model within the 
training cohort. As demonstrated in Figure 3A, the calibration analysis 
indicated a good fit between the observed and model-predicted 
diagnostic probabilities (χ2 = 4.275; p value = 0.511), indicating 
satisfactory consistency between the predicted and observed values.

Subsequently, we used ROC curves to evaluate the discriminative 
ability of the nomogram. Figure 3B demonstrates an AUC of 0.868 
(95% CI: 0.811–0.925), indicating good predictive performance in the 
training cohort. Based on the ROC plot of the training set, the 
maximal Youden index was 0.677 and was used to establish the 
optimal cutoff nomogram score (nomoScore) value = 54, generating 
a confusion matrix that yielded sensitivity, specificity, accuracy, 
precision, recall, and F1 score values of 85.56, 82.05, 83.93, 84.62, 
85.56%, and 0.85, respectively, in the training set (Figure 4A; Table 5). 
These findings further underscore the nomogram’s promising 
capability in predicting the diagnostic probability of applying 
trio-WES in the diagnostic strategy of LF-ASDs in children.

Additionally, we used DCA and the CIC to assess the clinical 
usefulness of the nomogram model in the training set. As 
demonstrated in Figures 3C–D, children with LF-ASDs could receive 

TABLE 2  Univariate and multivariate logistic regression for predicting diagnostic efficacy of using trio-WES in 168 LF-ASDs children in training cohort.

Univariate logistic analysis Multivariate logistic analysis

Candidate indicators OR (95% CI) p value Candidate indicators OR (95% CI) p value

Age of receiving trio-WES 0.981 (0.898–1.072) 0.675

GDD/ID severity 15.836 (7.209–34.788) < 0.001 *** GDD/ID severity 11.264 (4.788–

26.495)

< 0.001 ***

ADHD 2.473 (1.098–5.568) 0.029 *

EP 1.584 (0.678–3.698) 0.288

NCCs complexity 3.034 (1.431–6.433) 0.004 ** NCCs complexity 2.671 (1.055–6.764) 0.038 *

HCAs 5.950 (2.721–13.011) < 0.001 *** HCAs 2.801 (1.070–7.332) 0.036 *

BMs 5.140 (2.599–10.167) < 0.001 *** BMs 3.701 (1.601–8.558) 0.002 **

trio-WES, trio-based whole exome sequencing; LF-ASDs, low-function autism spectrum disorders; GDD/ID, global developmental delay/intellectual disability; NCCs, neurodevelopmental/
neurological comorbid conditions; ADHD, attention deficit hyperactivity disorder; EP, epilepsy; HCAs, head circumference abnormalities; BMs, brain malformations; OR (95%CI), odds ratio 
(95% confidence interval). *p < 0.05; **p < 0.01; ***p < 0.001.

TABLE 3  The collinearity diagnostic analysis of indicators for predicting 
diagnostic efficacy of using trio-WES in LF-ASDs children in training 
cohort.

Candidate 
variables

Tolerance VIF

GDD/ID severity 0.822 1.216

NCCs complexity 0.967 1.034

HCAs 0.823 1.215

BMs 0.891 1.123

Trio-WES, trio-based whole exome sequencing; LF-ASDs, low-function autism spectrum 
disorder; GDD/ID, global developmental delay/intellectual disability; ADHD, attention 
deficit hyperactivity disorder; NCCs, neurodevelopmental/neurological comorbid 
conditions; HCAs, head circumference abnormalities; BMs, brain malformations; VIF, 
variance inflation factor.
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greater net benefits from this nomogram compared to hypothetical 
treat-none or treat-all scenarios, suggesting that applying this model 
to predict the diagnostic efficacy of trio-WES for LF-ASDs patients 
may yield significant benefits.

Finally, we used 10-fold cross-validation and bootstrapping re- 
for internal validation to determine the generalization performance 
of the nomogram. As depicted in Figure 5A C-index value following 
the 10-fold cross-validation was 0.860 (95% CI: 0.785–0.935). 

FIGURE 2

Predictive nomogram for LF-ASDs children in the training set, estimating the probability of receiving a positive genetic diagnosis by applying trio-WES. 
(A) The nomogram plot has two parts: the top portion (from the “Point” section to the last the “BMs” section) is designed to calculate the respective 
point scores of each incorporated phenotypic indicator. The bottom portion (from the “Total Points” section to the “Diagnosis by trio-WES” section) is 
used to analyze the probability of having a positive genetic diagnosis via trio-WES for each enrolled LF-ASDs subject. (B,C) represent two examples 
with high and low probabilities of receiving a genetic diagnosis via trio-WES, respectively. The red arrow in (B) reveals an LF-ASDs child with an 
approximate total score of 154, and the matched predicted probability of receiving a genetic diagnosis via trio-WES is approximately 85%, whereas the 
red arrow in (C) indicates an LF-ASDs subject with an approximate total score of 54. The matched predicted probability of receiving a genetic diagnosis 
via trio-WES is approximately 35%. LF-ASDs, low-function autism spectrum disorders; GDD/ID, global developmental delay/intellectual disability; 
NCCs, neurodevelopmental/neurological comorbid conditions; HCAs, head circumference abnormalities; BMs, brain malformations; trio-WES, trio-
based whole-exome sequencing.
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TABLE 4  Coefficients of binary logistic regression for predicting diagnostic efficacy via trio-WES in individuals with LF-ASDs in training set.

Phenotypic 
variables

B S. E. Wald p value OR 95% CI for 
OR

Calculated score

GDD/ID severity 2.422 (β1) 0.436 30.789 <0.001 11.264 4.788–26.495 100*

NCCs complexity 0.983 (β2) 0.474 4.297 0.038 2.671 1.055–6.764 40.5 (100 × β2÷β1)

HCAs 1.030 (β3) 0.491 4.402 0.036 2.801 1.070–7.332 42.5 (100 × β3÷β1)

BMs 1.309 (β4) 0.428 9.364 0.002 3.701 1.601–8.558 54 (100 × β4÷β1)

Trio-WES, trio-based whole exome sequencing; LF-ASDs, low-function autism spectrum disorders; GDD/ID, global developmental delay/intellectual disability; NCCs, neurodeveopmental/
neurological comorbid conditions; HCAs, head circumference abnormalities; BMs, brain malformations; B, β value; S. E., standard error; OR, odds ratio; 95% CI, 95% confidence interval. * 
The variable showing the max β value and being set 100-point as reference-point for other included variables.

FIGURE 3

Assessment of the discriminatory performance of the nomogram in the training cohort. (A) Calibration plot with Hosmer–Lemeshow test. (B) ROC 
curve for evaluating the nomogram-predicted accuracy in the training set. DCA (C) and CIC (D) were used to determine the predicted clinical utility 
and clinical impact of the model in the training cohort. ROC, receiver operating characteristic; AUC, area under curve of the ROC; 95% CI, 95% 
confidence interval; DCA, decision curve analysis; CIC, clinical impact curve.
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Similarly, the bootstrap method with 1,000 resamples yielded a 
C-index of 0.856 (95% CI: 0.776–0.939; Figure 5B). Collectively, 
these results indicate that the nomogram exhibits good stability 
with excellent consistence and no evidence of overfitting.

External validation of the nomogram 
performance in the independent validation 
set

Based on the optimal cutoff value (nomoScore = 54), all 58 cases 
within the independent validation cohort were classified into 31 
nomogram-predicted positive diagnostic cases and 27 nomogram-
predicted negative diagnostic cases. As illustrated in Figure 6A, the 
calibration curve with the Hosmer-Lemeshow test demonstrated 
excellent agreement between the nomogram-predicted values and the 
actual observed results (χ2 = 1.125, p value = 0.952) in the transformed 
external set. Additionally, a ROC plot was used to validate the 
discriminative performance of the model in the transformed external 
set, which revealed robust discriminative ability (AUC: 0.941; 95% CI: 
0.880–0.998; Figure  6B). The results of DCA and CIC within the 
transformed external cohort indicated that employing this nomogram 
to predict the diagnostic efficacy of trio-WES for LF-ASDs children 
could yield significant net benefits (Figures 6C,D). The confusion matrix 
results illustrated in the Sankey plot for the external set revealed 

sensitivity, specificity, accuracy, precision, and F1 score of the nomogram 
were 85.29, 91.67, 87.93, 93.55%, and 0.89, respectively (Figure 4B; 
Table 5). These external validation results suggest that the proposed 
model demonstrates stable reproducibility and robust repeatability.

Discussion

The rapid development of next-generation sequencing technology 
has enabled the identification of genetic components in many children 
with unexplained neurological syndromes, including LF-ASDs (24, 
31–33). The application of trio-WES has transformed the landscape 
of clinical genetics, facilitating a more cost-effective means of 
obtaining diagnoses for various Mendelian disorders compared to 
traditional genetic tests, such as target-panel sequencing with family 
phenotype segregation analysis. This shift has alleviated the “diagnostic 
odysseys” frequently encountered by affected children and their 
families (34–37). However, it is essential to recognize the technical 
limitations of trio-WES and the complexities associated with human 
genomic disturbances, such as intronic structural variants and 
non-coding variants, which may hinder its diagnostic effectiveness. 
Whole-genome sequencing (WGS) could potentially address these 
limitations by facilitating the identification of intronic structural or 
non-coding variants. Nevertheless, the high costs associated with 
WGS significantly restrict its clinical application and widespread use 
as a routine genetic diagnostic approach is largely restricted (38, 39). 
To date, trio-WES remains the first-tier genetic diagnosis option 
globally and constitutes a critical element of subsequent genetic 
counseling and patient management for many Mendelian disorders 
(40). Thus, developing effective approaches and tools to analyze the 
diagnostic rate of trio-WES in clinical contexts related to various 
idiopathic and complex disorders, including LF-ASDs, remains a 
pertinent endeavor.

Numerous factors, such as disorder type, disease onset age, and 
variant capture strategy, may influence the diagnostic efficacy of 
trio-WES in clinical practice (12, 38). For instance, the diagnostic 
yield of trio-WES may reach 92% in children with idiopathic 
dermatological syndromes (12), potentially due to the clear 

FIGURE 4

Sankey plots showing the discriminatory performance of the predictive model in the training (A) and validation (B) cohorts. nomoScore, nomogram 
score. the calculated maximal Youden index (0.677) based on the training set was selected to set the optimal cutoff value of the nomoScore (54), a 
critical value that clustered the two groups (training and validation cohorts) into subgroups with high and low probabilities of receiving positive genetic 
diagnosis by trio-WES.

TABLE 5  Predictive performance of the constructed phenotype-driven 
nomogram model in training and validation sets.

Predictive values Training set Validation set

Sensitivity (%) 85.56% 85.29%

Specificity (%) 82.05% 91.67%

Accuracy (%) 83.93% 87.93%

Precision (%) 84.62% 93.55%

Recall (%) 85.56% 85.29%

F1 score 0.85 0.89
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presentation and delineation of phenotypic information evident in 
those conditions, which likely contributes to the elevated diagnostic 
rate achievable through trio-WES. Thus, accurate and comprehensive 
assessments of clinical phenotypes at the pre-diagnosis stage are 
paramount and pose considerable challenges, necessitating rigorous 
collection and precise analysis of various phenotypic features for every 
patient. In this study, we  meticulously recorded all associated 
phenotypic clues that accurately reflect the neurological conditions of 
each child with LF-ASDs to enhance the diagnostic yield. The global 
diagnostic yields in the training and external validation groups were 
53.6 and 58.6%, respectively; these figures are similar to those 
documented in a previous WES report involving LF-ASDs children 
with additional associated conditions (51.3%) (1). Our findings 
regarding the global diagnostic rate associated with the 
implementation of trio-WES in children with LF-ASDs further 
reinforce prior conclusions that complex phenotypic features—
encompassing multiple neurological disorders (including ADHD and/
or epilepsy), multiple neurological anomalies (such as HCAs and/or 
BMs), and severe-profound levels of cognitive or developmental 
impairment—are more likely linked to an exon-level variant within 
the clinical setting. This observation implies a potential relationship 
between the enrichment of phenotypic characteristics and the 
diagnostic yield of trio-WES in children with LF-ASDs (1, 24). 
We thus propose the possibility of establishing a diagnostic predictive 
model for the application of trio-WES in LF-ASDs patients by 
incorporating key phenotypic factors associated with a higher 
probability of obtaining genetic results. This model could help 
pediatricians make more appropriate and personalized management 
for affected children during the pre-diagnosis stage.

The present study identified four key phenotypic indicators 
(GDD/ID severity, NCC complexity, HCAs, and BMs) as being 
associated with the possibility of obtaining genetic results through 
trio-WES in children with LF-ASDs. We hypothesize that severe-
profound GDD/ID, BMs, HCAs, and a broad spectrum of NCCs 
associated with LF-ASDs may share common genetic backgrounds 

linked to overlapping genetic factors, which ultimately results in a 
higher trio-WES diagnostic rate. Over 1,200 genes related to ASDs 
susceptibility (called ASDs-related genes) have been cataloged in the 
Simons Foundation Autism Research Initiative8 gene dataset (41); the 
two major gene fall into two functional categories: those involved in 
gene expression regulation (mainly chromatin modification and 
transcription regulation) and those involved in neuronal 
communication (mainly synaptic communication and ion channel 
regulation) (42, 43). This suggests that dysregulation in gene 
expression and neuronal communication may significantly contribute 
to the genetic components underlying syndromic ASDs. We speculate 
that alterations in the genetic functions pertinent to expression 
regulation and neuronal communication may be  fundamental 
contributors to the genetic components associated with severe-
profound GDD/ID and multiple NCCs inherent in syndromic ASDs. 
Furthermore, neuronal communication between the craniofacial 
ectoderm and neural crest cells are vital for craniofacial patterning 
and morphogenesis during craniofacial development (44). We, 
therefore, speculate that alterations in these neuronal communication-
related genes can cause disruption between the craniofacial ectoderm 
and neural crest cells, leading to a broad spectrum of craniofacial 
anomalies, among which BMs and HCAs are prominent phenotypic 
features. However, these speculations warrant further exploration 
through in-depth mechanistic experiments.

Additionally, previous research had demonstrated that the four 
phenotypic features—severe to profound GDD/ID, complicated NCC 
complexity, the presence of HCAs, and BMs—are strong indicators of 
rare monogenic neurodevelopmental disorders (24, 45). moreover, 
variants at exon-level have been recognized as the main cause of rare 
monogenic neurodevelopmental disorders (46). Given the close 
relationship between these elements, it is reasonable to infer that 

8  SFARI, http://gene.sfari.org/

FIGURE 5

Internal validation of the generalization performance of the nomogram model in training cohort. (A) Point-fold line chart with 10-fold-cross validation 
approach showing the nomogram had good stability with excellent consistence in training set (C-index, 0.860 with 95% CI, 0.785–0.935). 
(B) Histogram with 1,000-time resampling bootstrap method revealing the nomogram did not overfit in training set (C-index, 0.856 with 95% CI, 
0.776–0.939). C-index, concordance index; 95% CI, 95% confidence interval.
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individuals with LF-ASDs exhibiting multiple phenotypic indicators 
associated with rare monogenic disorders may possess greater 
probabilities of harboring relevant exon-level variants, thereby 
facilitating a more straightforward diagnosis via trio-WES. However, 
LF-ASDs is a very complicated disorder with a high heterogeneity of 
genetic abnormalities including variants at exon-level and at out-exon-
level (such as non-coding variation, epigenetics, and polygenic 
effects); given the technical limitation (exon-level sequencing only) of 
trio-WES, there is definitely a part of LF-ASDs patients cannot get an 
exact genetic diagnosis by using trio-WES alone because their genetic 

components may lie outside exon regions. Because of the lack of 
effective diagnostic tools (such as WGS and RNA-seq) applied in 
current study, we cannot determine whether the specific causes of 
those cases with negative trio-WES diagnosis in our study are 
non-coding variants, epigenetics, polygenic effects or other unknown 
genetic factors. Further analysis of these cases are needed to ascertain 
their specific etiologies and will be a focus of our future investigations.

Notably, the current study established a logistic regression model 
based on the four easily obtained phenotypic indicators and showed 
good calibration and discrimination with high accuracy and precision 

FIGURE 6

External validation of the discriminatory performance of the nomogram model in an independent external cohort. (A) Calibration plot with Hosmer–
Lemeshow test. (B) ROC curve verifying the nomogram-predicted accuracy in the external set. DCA (C) and the CIC (D) were used to verify the clinical 
value of the model in an external cohort. ROC, receiver operating characteristic; AUC, area under curve of the ROC; 95% CI, 95% confidence interval; 
DCA, decision curve analysis; CIC, clinical impact curve.
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within both the training and validation LF-ASDs groups, revealing 
promising clinical applications. Moreover, considering the diagnostic 
yield (53.6%) and the number of identified variables (four) in the 
training cohort, in conjunction with the 10 events per variable, i.e., 10 
EPV, the expected total number of cases in the training set should 
be  over 75 (4 × 10 ÷ 0.536) (47). In actuality, the training cohort 
comprised 168 cases, which is substantially greater than 75, further 
affirming the reliability and robustness of the constructed nomogram.

However, the current study has several limitations. First, this study 
adopted a dual-center design, whereby the case sources for the training 
set (from a tertiary hospital) and the validation set (from a specialized 
LF-ASDs rehabilitation center) differed, potentially introducing 
selection bias. A multicenter study with a consistent case source (where 
all training and validation cases come from tertiary hospitals) are 
needed to further validate our predictive model. Second, our 
nomogram was constructed and validated within professional medical 
institutions, leaving its performance in primary medical institutions 
undetermined. Lastly, the study’s scope was not comprehensive 
enough, as it only considered ADHD and epilepsy as common NCCs 
in children with LF-ASDs. Further improvements, such as applying 
cutting-edge and Chinese version assessment tools to enable objective 
assessment of sleep and anxiety disorders in young children, allowing 
for the incorporation of such phenotypic variables into our predictive 
model, are required to further enhance the reliability of the model.

Conclusion

We developed and validated an user-friendly nomogram based on 
common, objective, and easily obtained phenotypic indicators related 
to neurological conditions to predict the individualized diagnostic 
probability of trio-WES in children with LF-ASDs. This tool could 
assist affected children and their families in estimating their 
personalized diagnostic probability and selecting more suitable 
diagnostic strategies at the pre-diagnosis stage, ultimately reducing 
unnecessary financial expenditures. Additionally, this nomogram may 
enable pediatricians to identify children with LF-ASDs at high risk for 
relevant genetic factors at the early admission stage, facilitating more 
individualized patient management and subsequent genetic counseling.
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