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Background: Inflammation plays a crucial role in the onset and progression 
of epilepsy. However, there is limited information regarding the relationship 
between diet-related inflammation and epilepsy. This study aimed to investigate 
the association between dietary inflammatory index (DII) and epilepsy.

Methods: We conducted a cross-sectional analysis using data from the National 
Health and Nutrition Examination Survey (NHANES) 2013–2020. The DII scores 
were calculated and categorized into quartiles. Logistic regression was applied 
to assess the association between DII and epilepsy. Additionally, restricted cubic 
spline (RCS) analysis and subgroup analyses were performed.

Results: The study included a total of 10,761 participants. After adjusting for 
age, gender, race, body mass index (BMI), smoking status, alcohol consumption, 
stroke, diabetes, and hypertension, a significant positive association was observed 
between DII and epilepsy in multivariable logistic regression (quartile 4 vs. 1, 
OR = 2.66, 95% CI 1.66–4.28, p < 0.001). The RCS analysis further confirmed 
a positive linear relationship between increasing DII scores and epilepsy risk 
(p for overall = 0.0007, p for nonlinear = 0.5128). Subgroup analyses showed 
a consistent association between DII and epilepsy across different subgroups.

Conclusion: Elevated DII scores are associated with the risk of epilepsy. To 
improve epilepsy prevention and management, attention to dietary inflammation 
regulation is essential.
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1 Introduction

Epilepsy is one of the most prevalent chronic neurological disorders and a significant cause 
of disability and mortality. With a global prevalence of 0.5–1% and a lifetime incidence of 
1–3%, epilepsy affects nearly 70 million individuals worldwide (1–3). Existing therapies are 
predominantly based on pharmacological interventions; however, the majority of antiepileptic 
medications are insufficient in preventing seizures and protecting the brain (4), highlighting 
the pressing requirement for enhanced preventative and curative strategies.

More and more clinical and experimental evidence reveals that inflammation may play a 
critical role in the pathophysiology of seizure and epilepsy (5–7). Elevated levels of systemic 
inflammatory biomarkers, including interleukins (ILs), tumor necrosis factor (TNF), 
interferon (IFN), and procalcitonin (PCT), have been identified in patients with epilepsy 
(8–14). Systemic inflammation can lead to the disruption of the blood–brain barrier (BBB), 
thereby allowing peripheral toxic molecules and cytokine-producing immune cells to infiltrate, 
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which promotes the occurrence of epilepsy (5, 15). Multiple researches 
have supported that antagonizing peripheral inflammation can reduce 
the severity of epilepsy, providing new strategies for the prevention 
and treatment of the condition (15–17).

Diet serves as an essential factor in modulating systemic 
inflammation within the body. Numerous studies have demonstrated 
that various nutrients, foods, and non-nutrient food components can 
regulate inflammation both acutely and chronically (18–20). Highly 
processed foods, refined grains, foods rich in saturated fatty acids and 
sodium, simple carbohydrates, and red processed meats are known to 
be  pro-inflammatory. In contrast, vegetables, fruits, whole grains, 
legumes, low-fat dairy, fish, and foods rich in antioxidants (omega-3 
fatty acids, flavonoids) exhibit anti-inflammatory properties (21–23). 
We propose that dietary interventions capable of modulating systemic 
inflammation may have a preventative effect on epilepsy.

Clearly, people’s diets are often diverse, rather than consisting of 
isolated intake of individual foods or food constituents. The 
inflammatory properties of individual foods are insufficient to assess the 
inflammation levels across various dietary patterns. Thus, it is essential 
to assess the dietary inflammatory potential in a comprehensive way. 
The Dietary Inflammation Index (DII) is a well-validated, reliable, and 
widely applied nutritional tool that assesses the inflammatory potential 
of an individual’s diet based on the effects of various dietary components 
on key inflammatory biomarkers, such as C-reactive protein (CRP), 
interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). It has been 
shown to be associated with systemic inflammation (24). The DII was 
originally developed by Cavicchia et al. (25) and improved by Shivappa 
et al. (24). In recent decades, the DII has been evaluated in cancer, 
diabetes, cardiovascular disease, asthma, neurodevelopment, and mental 
health disorders (26). However, to our knowledge, the association 
between DII and epilepsy has not yet been researched. Therefore, in the 
present study, we utilized the cross-sectional data of the National Health 
and Nutrition Examination Surveys (NHANES) to explore the 
relationship between dietary inflammation and epilepsy, with the aim of 
providing more precise guidance for the prevention strategies of epilepsy.

2 Methods

2.1 Study population and ethics

NHANES, launched by National Center for Health Statistics 
(NCHS), is an ongoing, nationwide cross-sectional survey that collects 
health and nutrition information from the U. S. civilian 
noninstitutional population. All protocols received approval from the 
NCHS Ethics Review Board (ERB) and were performed in accordance 
with the Declaration of Helsinki, with all NHANES participants 
providing signed informed consent (publicly available on the web)1 
(27). The cross-sectional data utilized in this study were sourced from 

1 https://www.cdc.gov/nchs/nhanes/

the NHANES database, spanning the period from 2013 to March 
2020. The data collection for this database was conducted by a team 
of trained professionals affiliated with the NHANES research initiative. 
After obtaining these data, we conducted the subsequent statistical 
analyses independently. Participants missing dietary and prescription 
medication data were excluded.

2.2 Calculation of the DII

The DII is calculated based on individual dietary components, 
requiring 45 dietary components in total (24). However, most studies 
analyze only a subset of these components. Shivappa et al. reported 
that the DII calculation retains its predictive ability even with fewer 
than 30 food parameters (28). The DII calculation formula is as follows:

For each dietary component, calculate the Z-score of 
individual intake:

 
−

=
     

 
daily mean intake global daily mean intakeZ score

standard deviation

Convert the Z-score to a percentile score, which is then 
standardized to a range between −1 and 1:

 ( )=′ × −  2 1Z score Z score percentile score

Multiply the standardized percentile score by the inflammatory 
effect score for each component, and then sum the scores for all 
components to obtain the individual’s overall DII score:

 ( )′= ∑ ×   DII Z score inflammation effect score

A lower DII score indicates a more anti-inflammatory diet, while 
a higher DII score indicates a more pro-inflammatory diet (24).

Due to the limitations of NHANES data collection, this study, 
following the approach of other literature, used 28 dietary components 
for DII calculation (29–31). These components are protein, energy, 
carbohydrates, dietary fiber, total fat, saturated fat, monounsaturated 
fatty acids (MUFAs), polyunsaturated fatty acids (PUFAs), n-3 fatty 
acids, n-6 fatty acids, cholesterol, β-carotene, folate, vitamin A, 
vitamin B1, vitamin B2, niacin, vitamin B6, vitamin B12, vitamin C, 
vitamin D, vitamin E, magnesium, iron, zinc, selenium, caffeine, and 
alcohol. Dietary data were collected through 24-h dietary recall 
interviews by the NHANES Working Group on Nutrition Methods. 
Two separate dietary recalls were conducted in all participants: the 
first was a face-to-face interview at the Mobile Examination Center 
(MEC), and the second was completed via telephone 3 to 10 days later. 
This approach helps to provide a more comprehensive assessment of 
each participant’s dietary habits (32). To minimize the potential for 
recall bias, the dietary data from the two 24-h recalls were averaged.

2.3 Assessment of epilepsy

Epilepsy was defined by NHANES questionnaire data labeled 
“prescription medications.” In the study, participants who 

Abbreviations: DII, Dietary inflammatory index; NHANES, National Health and 

Nutrition Examination Survey; RCS, Restricted cubic spline; BMI, Body mass index; 

ILs, Interleukins; TNF, Tumor necrosis factor; MEC, Mobile examination center; 

BBB, Blood–brain barrier.
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self-reported that their main reason for taking prescription 
medication in the past 30 days was “epilepsy and recurrent seizures” 
(International Classification of Disease, Tenth Revision, Clinical 
Modification [ICD-10-CM] Code: G40) were classified as having 
epilepsy (33, 34).

2.4 Covariates

Covariates were selected based on prior literature and biological 
plausibility. The demographic and questionnaire data were obtained 
through standardized questionnaires and face-to-face interviews, 
including gender (male, female), age (≤18, >18 years), race (Mexican 
American, non-Hispanic White, non-Hispanic Black, and other 
races), alcohol consumption, smoking status, and histories of stroke, 
diabetes, and hypertension. Based on total weekly alcohol 
consumption, Alcohol consumption was categorized based on total 
weekly intake as none, normal (1–14 drinks/week for males and 1–7 
drinks/week for females), and heavy (≥15 drinks/week for males and 
≥8 drinks/week for females). Smoking status was categorized as never, 
former, and current, with participants who had smoked at least 100 
cigarettes in their lifetime defined as smokers. Physical examination 
was conducted by experienced medical staff in the MEC. Body mass 
index (BMI) data, calculated as weight (kg) divided by the square of 
height (m2), were used to estimate overweight/obesity status. Histories 
of stroke, diabetes, and hypertension can be defined based on self-
reported previous diagnoses by a physician.

2.5 Handling of missing variables

To maximize the sample size and minimize bias from missing 
covariate data, we  employed the multiple-imputation method for 
participants with incomplete covariate information. Missing values 
were imputed using chained equations with a 20-fold multiple 
imputation method. Supplementary Figure S1 presents the 
distribution of variables with missing data in our study.

2.6 Statistical analysis

We divided the study participants into four groups based on 
quartiles of the DII scores (Q1 to Q4) and compared differences in 
baseline characteristics across these quartiles. Categorical variables 
were presented as frequencies and percentages, whereas continuous 
variables were expressed as mean ± standard deviation (SD). 
Comparison of categorical and continuous variables were 
performed using the Pearson chi-squared test and Student’s t-test, 
respectively.

The association between DII and epilepsy was examined using 
logistic regression models, with odds ratios (OR) and 95% confidence 
intervals (95% CI) reported. In Model 1, no covariate was adjusted for; 
Model 2 was adjusted for age, gender, and race; Model 3 further 
included BMI, smoking status, alcohol consumption, stroke, diabetes, 
and hypertension. The first quartile (Q1) was designated as the 
reference group. Additionally, multivariate-adjusted (fully adjusted) 
restricted cubic spline (RCS) logistic regression analyses (choosing 4 
knots, 5th, 35th, 65th, and 95th percentiles, respectively) were also 

conducted to examine the linear and dose–response associations 
between DII and epilepsy.

Furthermore, we selected covariates including age, gender, race, 
BMI, smoking status, alcohol consumption, stroke, diabetes, and 
hypertension for subgroup analyses to evaluate whether these 
covariates significantly interacted with the association between DII 
and epilepsy.

Finally, a sensitivity analysis was conducted, excluding participants 
with missing values for any variable, to verify the robustness of 
the results.

R software version 4.3.32 was used for all statistical analyses. A 
p-value of less than 0.05 was considered statistically significant.

3 Results

3.1 Baseline characteristics of the study 
participants

In this study, cross-sectional data of 35,706 participants from 
NHANES (2013-March 2020) were initially included. After manual 
data filtration, a total of 10,761 eligible participants were finally 
included in our analysis (Figure 1).

The baseline characteristics of all participants, classified into 
four groups by DII quartiles, are shown in Table 1. Compared with 
participants in the lowest quartile group (Q1), those with higher 
DII scores were more likely to be female, younger (≤18 years old), 
non-Hispanic black, current smokers, non-alcohol consumers, 
and have higher BMI, as well as a history of stroke and  
hypertension.

Additionally, we also summarized the baseline characteristics of 
all individuals based on the presence of epilepsy (Supplementary  
Table S1).

3.2 Relationship between DII and epilepsy

We constructed three logistic regression models to examine the 
association between DII and epilepsy, as presented in Table 2. In 
the non-adjusted model (Model 1), DII quartiles Q2 and Q4 were 
statistically significantly associated with epilepsy compared to Q1 
(Q2: OR = 1.91, 95% CI 1.16–3.14, p = 0.011; Q4: OR = 2.42, 95% 
CI 1.47–3.96, p < 0.001). These associations remained significant 
in both Model 2 (Q2: OR = 1.87, 95% CI 1.14–3.07, p = 0.013; Q4: 
OR = 2.21, 95% CI 1.37–3.58, p = 0.001) and Model 3 (Q2: 
OR = 1.98, 95% CI 1.21–3.24, p = 0.007; Q4: OR = 2.66, 95% CI 
1.66–4.28, p < 0.001). When DII was treated as a continuous 
variable, a 1 SD increase in DII was significantly associated with 
epilepsy across all models (Model 1: OR = 1.34, 95% CI 1.13–1.59, 
p < 0.001; Model 2: OR = 1.29, 95% CI 1.09–1.52, p = 0.003; Model 
3: OR = 1.39, 95% CI 1.18–1.64, p < 0.001). In the fully adjusted 
RCS regression model, we observed a positive linear association 
between DII and epilepsy (p for overall = 0.0007, p for 
nonlinear = 0.5128) (Figure 2).

2 http://www.R-project.org/
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3.3 Subgroup analysis

We carried out subgroup analysis stratified by age (≤ 18 years, and 
> 18 years), gender (female and male), race (Mexican American, 
non-Hispanic White, non-Hispanic Black, and other races), BMI 
(<25, 25–<30, ≥30), smoking status (never, former, and current), 
alcohol consumption (none, normal, and heavy), stroke (yes and no), 
diabetes (yes and no), and hypertension (yes and no) to investigate 
whether the relationship between DII and epilepsy remained 
consistent across different subgroups (Figure 3). The results indicated 
a significant association between DII and epilepsy in most subgroups, 
while no significant interactions were observed that affected this 
relationship (all P for interaction > 0.05).

3.4 Sensitivity analysis

A sensitivity analysis was performed after excluding participants 
with missing values for any covariates (Supplementary Table S2). The 
results from both non-adjusted and adjusted models were consistent 
with the primary analysis, thereby confirming the stability and 
reliability of the findings.

4 Discussion

Research on the relationship between the DII and epilepsy 
remains limited. A study by Ding et  al. demonstrated that adult 
epilepsy patients had higher DII scores compared to non-epileptic 
subjects (35). However, it did not include data from children under 
the age of 20, thereby limiting its generalizability. In contrast, our 
study collected a larger number of cases and included data from 

pediatric epilepsy patients. In our findings, logistic regression analysis 
revealed a positive association between high DII scores and epilepsy. 
Even after adjusting for other covariates, this relationship remained 
robust. Additionally, dose–response analysis showed a linear positive 
relationship. Stratified analysis indicated that DII was positively 
associated with epilepsy in most subgroups.

Although the research on the relationship between the DII and the 
occurrence and development of epilepsy is still scarce at present, the 
association between diet and epilepsy has long been a prominent 
research topic. A recent study by Zhang et  al. investigated the 
association between the comprehensive dietary antioxidant index 
(CDAI) and epilepsy in the US population and found that a higher 
CDAI level corresponds to a lower risk of epilepsy, which suggests that 
a diet rich in antioxidants may help prevent epilepsy (34). He et al. 
reported that reduced antioxidant intake is associated with an 
increased risk of psychiatric comorbidities in epilepsy patients (36). 
Another study demonstrated that diet-derived circulating β-carotene 
significantly reduces epilepsy risk (37). Park et  al. showed that 
naringin, a flavonoid found in grapefruit and citrus fruits, can reduce 
spontaneous recurrent seizures in a kainic acid-induced mouse model 
(38). Thus, these findings indicate that diet-related inflammation can 
influence epilepsy risk, providing a theoretical basis for our further 
research on the link between DII and epilepsy.

Several studies have demonstrated that pro-inflammatory diets can 
elevate systemic inflammation levels. D’Esposito et al. found that red 
meat consumption is associated with significant rises in IL-6, IL-8, and 
CRP (39). A study from the United States showed that after consuming 
an energy-dense, high-fat, fast-food–style meal, participants experienced 
a significant increase in IL-1β levels (40). An expanding body of evidence 
now indicates a close relationship between systemic inflammation and 
epilepsy onset. It has been reported that circulating inflammatory 
mediators, such as IL-6, TNF-α, and IL-1β, may impair tight junction 

FIGURE 1

Flow diagram of study participants.
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TABLE 1 Baseline characteristics of the study participants grouped by DII quartiles.

Characteristics Quartiles of DII

Quartile 1 Quartile 2 Quartile 3 Quartile 4 p-value

n 2,691 2,689 2,691 2,690

Gender, n (%) <0.001

  Female 1,182 (43.9) 1,337 (49.7) 1,563 (58.1) 1841 (68.4)

  Male 1,509 (56.1) 1,352 (50.3) 1,128 (41.9) 849 (31.6)

Age, n (%) <0.001

  ≤18 years 203 (7.5) 385 (14.3) 492 (18.3) 525 (19.5)

  >18 years 2,488 (92.5) 2,304 (85.7) 2,199 (81.7) 2,165 (80.5)

Race, n (%) <0.001

  Mexican American 332 (12.3) 299 (11.1) 300 (11.1) 285 (10.6)

  Non−Hispanic Black 505 (18.8) 590 (21.9) 710 (26.4) 753 (28.0)

  Non−Hispanic White 1,227 (45.6) 1,203 (44.7) 1,147 (42.6) 1,120 (41.6)

  Others 627 (23.3) 597 (22.2) 534 (19.8) 532 (19.8)

BMI, mean (SD) 29.09 (7.44) 29.05 (7.94) 29.25 (8.37) 29.67 (8.82) 0.022

Smoking status, n (%) <0.001

  Never 1,441 (57.6) 1,262 (54.0) 1,213 (54.5) 1,129 (51.3)

  Former 802 (32.1) 728 (31.1) 601 (27.0) 564 (25.6)

  Current 257 (10.3) 349 (14.9) 413 (18.5) 506 (23.0)

Alcohol consumption, n (%) <0.001

  None 724 (31.0) 760 (34.5) 784 (37.1) 912 (45.1)

  Normal 1,372 (58.7) 1,258 (57.1) 1,141 (54.0) 1,001 (49.5)

  Heavy 241 (10.3) 186 (8.4) 188 (8.9) 109 (5.4)

DII, mean (SD) −0.94 (0.92) 0.91 (0.36) 2.06 (0.30) 3.31 (0.49) <0.001

Stroke, n (%) <0.001

  Yes 113 (4.6) 139 (6.1) 133 (6.1) 206 (9.7)

  No 2,352 (95.4) 2,151 (93.9) 2044 (93.9) 1921 (90.3)

Diabetes, n (%) 0.522

  Yes 509 (18.9) 549 (20.4) 536 (19.9) 543 (20.2)

  No 2,182 (81.1) 2,138 (79.6) 2,152 (80.1) 2,147 (79.8)

Hypertension, n (%) <0.001

  Yes 1,310 (51.8) 1,255 (52.6) 1,316 (57.3) 1,278 (56.2)

  No 1,221 (48.2) 1,131 (47.4) 981 (42.7) 994 (43.8)

Results are shown as n (%) for binary variables, and as mean (standard deviation, SD) for continuous variables. BMI, body mass index.

TABLE 2 Logistic regression analysis on the association between DII and epilepsy.

DII Cases, n (%) Model 1 Model 2 Model 3

OR (95% CI) p OR (95% CI) p OR (95% CI) p

Quartiles

 Q1 24 (0.89%) Reference - Reference - Reference -

 Q2 47 (1.75%) 1.91 (1.16, 3.14) 0.011 1.87 (1.14, 3.07) 0.013 1.98 (1.21, 3.24) 0.007

 Q3 37 (1.38%) 1.50 (0.88, 2.54) 0.13 1.43 (0.85, 2.40) 0.02 1.55 (0.92, 2.60) 0.10

 Q4 63 (2.34%) 2.42 (1.47, 3.96) <0.001 2.21 (1.37, 3.58) 0.001 2.66 (1.66, 4.28) <0.001

p for trend - 0.002 0.006 <0.001

Continuous

 Per 1 SD increase - 1.34 (1.13, 1.59) <0.001 1.29 (1.09, 1.52) 0.003 1.39 (1.18, 1.64) <0.001

Model 1 was adjusted for none. Model 2 was adjusted for age, gender, and race. Model 3 was adjusted for age, gender, race, BMI, smoking status, alcohol consumption, stroke, diabetes, and 
hypertension. OR, odds ratio; CI, confidence interval; DII, dietary inflammation index; Q1, 1st quartile; Q2, 2nd quartile; Q3, 3rd quartile; Q4, 4th quartile; SD, standard deviation.
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regulation in brain endothelial cells, leading to heightened BBB 
permeability, enabling inflammatory mediators to infiltrate the central 
nervous system and trigger neuroinflammation (41). Additionally, 
another study revealed that blood monocytes can migrate to the brain 
through a compromised BBB and mediate neuroinflammation by 
differentiating into macrophages or microglia-like cells (42). Huang et al. 
also discovered that inducing systemic inflammation in mice led to 
TNFα-mediated brain vascular endothelial damage and astrocyte 
dysfunction, thereby raising the mice’s susceptibility to seizures (6). 
Therefore, the mechanism by which a high-DII diet increases epilepsy 
risk appears to be closely related to systemic inflammation.

Diet is well-recognized as a critical factor in shaping and 
influencing the structure and function of gut microbiota (43, 44). The 
Western diet, characterized by high levels of fat and cholesterol, is a 
primary driver of gut microbiota dysbiosis (45). Extensive evidence 
links changes in gut microbiota to epilepsy (46, 47). Medel-Matus 
et al. showed that disturbances in the intestinal microbiota of rats, 
particularly those associated with long-term stress, can increase 
vulnerability to epilepsy (48). Peng et  al. identified a potential 
relationship between gut microbiota dysbiosis and the pathogenesis 
of drug-resistant epilepsy (49). Gómez-Eguílaz et al. demonstrated 
that probiotic therapy aimed at restoring gut microbiota balance can 
reduce seizure frequency and enhance quality of life in patients with 
drug-resistant epilepsy (50). Hence, we propose that DII influences 
epilepsy not only through systemic inflammation but also by 
modulating gut microbiota.

We further conducted the RCS regression analysis and found a 
significant positive linear association between DII and the incidence 
of epilepsy. In subgroup analyses stratified by age, race, gender, and 
other factors, no between-group differences in the association between 

DII and epilepsy were observed, which underscores the generalizability 
of our findings.

This study encompasses several advantages worth considering. 
Given the substantial sample size included, the study provides a 
dependable conclusion and ensures accurate statistical power. 
Additionally, our study utilized RCS analysis to further illustrate the 
positive linear association between the DII and epilepsy, which could 
provide novel insights for health policy decision-makers.

We acknowledge several limitations inherent in the present study. 
First, as a cross-sectional study, it cannot establish causality or 
temporal relationships between the DII and epilepsy. Second, recall 
bias may arise when obtaining dietary intake information through self-
reporting. Third, the NHANES database does not explicitly 
differentiate between epilepsy subtypes or the severity of epilepsy. 
Detecting the connection between dietary-induced inflammatory 
status and various classifications of epilepsy remains a significant 
challenge. Fourth, although we have thoroughly screened numerous 
covariates to mitigate confounding bias, unidentified confounders may 
still exist and may not be explicitly recorded in the NHANES database.

5 Conclusion

In summary, our research indicates that the DII is closely 
associated with the risk of epilepsy. The association between the DII 
and epilepsy is linear and positive. Our findings offer preliminary 
evidence that may assist public health officials in developing practical 
strategies. However, more prospective studies are needed, and further 
investigation is required to explore the potential mechanism through 
which diet contributes to inflammation in epilepsy.

FIGURE 2

The RCS curve of the association between DII and epilepsy. RCS regression was adjusted for age, gender, race, BMI, smoking status, alcohol 
consumption, stroke, diabetes, and hypertension.
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