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Background: The effects of blast overpressure (BOP) on brain health are 
increasingly recognized, yet longitudinal research into these effects after 
separation from military service remains limited. This study assessed the 
association between high-level blast (HLB) and low-level blast (LLB) exposure 
during military service using data from the Millennium Cohort Study (MCS) 
and diagnoses related to traumatic brain injury (TBI) diagnosed in the Veterans 
Health Administration (VHA).

Method: MCS participants were included in the analytic sample if they responded 
to the 2013 survey, were separated from military service, and utilized VHA care 
for at least 2 years. HLB exposure was assessed using self-report of injury from 
a “blast/explosion/bullet” in the 2013 survey; LLB risk was determined using 
military occupational specialty as a proxy. Clinical diagnoses of five TBI severity 
levels (e.g., mild, penetrating), 22 TBI-related conditions (e.g., tinnitus, dementia/
delirium, fatigue) and 10 mental health conditions (e.g., adjustment, bipolar, 
schizophrenia) were identified using ICD diagnosis codes. Modified Poisson 
regression with robust error variance was used to examine the relationships 
between HLB, LLB, and their interaction, adjusting for demographic and military 
characteristics for each diagnosis of interest.

Results: Statistically significant associations were found between HLB and 
several TBI diagnoses, TBI-related conditions, and mental health conditions. 
LLB exposure was associated with only one TBI condition, eight TBI-related 
conditions, and two mental health conditions. In addition, significant interactions 
between HLB and LLB were observed for two TBI-related conditions and four 
mental health conditions.

Conclusion: This study contributes to the growing body of evidence on the 
long-term effects of BOP on brain health. These findings may inform policy 
development and educational resources, provide metrics to calculate the 
potential financial burden on the VHA and increase understanding of long-
term health outcomes associated with blast exposure. By utilizing a prospective 
design and examining VHA diagnoses, the research highlights the potential 
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enduring effects of blast exposure that may continue to require healthcare 
services after military separation.
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blast, blast induced neurotrauma, low level blast, military, veteran, veteran affairs, 
psychiatric diagnoses, traumatic brain injury

Introduction

Many military service members experience exposures during 
service that may adversely affect their long-term health (e.g., physical 
injuries, mental health conditions) (1, 2). Comprehensive healthcare 
during service is provided by the Military Health System (MHS) 
whereas the Veterans Health Administration (VHA) provides to 
eligible veterans following separation. To better inform healthcare 
service requirements across the lifespan, it is important to understand 
how military experiences affect service members’ long-term health 
and subsequent demand for care provided by the VHA. Without 
adequate healthcare, veterans may experience difficulty managing 
long-term conditions, which may lead to diminished quality of life 
and long-term disability (3–6).

Blast overpressure (BOP) is an exposure that warrants further 
attention. Several literature reviews on health outcomes associated 
with BOP have been published (7–11). Previous research supports that 
BOP exposure can impact brain health (8, 12, 13). Specifically, BOP 
exposure has been associated with many long-term brain health 
outcomes including increased reporting of psychological symptoms 
(14), psychiatric diagnoses (15), poorer cognitive function (16, 17), as 
well as ensuing differences in brain structure (18–21), altered brain 
function (22, 23), and biomarkers of injury (24) observed years after 
BOP exposure.

Measuring blast overpressure (BOP) exposure in the military 
environment is inherently complex due to substantial variability in 
magnitude, frequency, and context of exposure (e.g., closed location, 
protective equipment use). Although there are many dimensions for 
characterizing BOP exposures, one important consideration is 
whether BOP was the result of incoming or outgoing munitions (25). 
High-level blast (HLB) refers to BOP from incoming munitions such 
as improvised explosive devices, whereas the term low-level blast 
(LLB) refers to BOP from outgoing munitions such as shoulder-fired 
weapons or breaching charges (25). Notably, these definitions are 
conceptual rather than strictly based on measurement of peak BOP 
values. Despite differences in BOP exposure levels and definitions 
across studies (26), evidence supports the conclusion that both HLB 
and LLB exposures are associated with adverse health effects, although 
the long-term health consequences that may emerge following 
separation from military service has not been sufficiently studied 
to date.

High-level blast exposure is the leading cause of traumatic brain 
injury (TBI) among deployed service members (27), contributing to 
many TBI-related outcomes such as prolonged symptoms and delayed 
recovery (1, 28–30). For example, prior work observed that 
HLB-related mild TBI (i.e., concussion) was associated with an 
increased number of post-concussive symptoms (31) that persist 
longer than those following impact-related mild TBI (32). 
Additionally, there is growing evidence suggesting that repetitive HLB 
exposure may have a cumulative impact, exacerbating both cognitive 

and emotional symptoms over time (33). Furthermore, cardiovascular 
and metabolic disorders have also been linked to HLB, suggesting that 
health effects of HLB extend beyond the brain and impact overall 
physical health (34).

A recent epidemiological study evaluating health records of 
over 2.2 million service members found that military occupations 
with a high risk of LLB exposure had a significantly increased 
likelihood of being diagnosed with TBI, postconcussive symptoms, 
or a behavioral health condition (1). Additionally, studies of 
service members participating in training scenarios (e.g., 
breachers, heavy weapons training) have shown acute and chronic 
effects on cognitive function (35–37), postconcussive symptoms 
(38), brain function (33), neuroinflammation (39), and DNA 
methylation patterns (40), even in the absence of a documented 
TBI diagnosis. Furthermore, previous research has noted that 
service members who had clinical diagnoses of concussion and 
associated conditions were more likely to be medically separated 
from service when they also worked in occupations at high risk for 
LLB (41).

Most examinations of the individual and combined effects of HLB 
and LLB exposure on humans focus solely on health outcomes that 
manifest during service. Additionally, relatively few prior 
investigations had prospective designs. One previous analysis from the 
U.S. Millennium Cohort Study (MCS), the largest and longest-running 
prospective study of the health of service members and veterans, 
sought to address these limitations by examining associations among 
single and repeated HLB and LLB, respectively on self-reported 
diagnoses of illness and injury (15). BOP was associated with greater 
risk of self-report of several clinical diagnoses (e.g., PTSD, hearing 
loss, migraines). However, this analysis was limited to self-reported 
diagnoses rather than diagnoses documented in medical records and 
did not distinguish whether participants received these diagnoses 
during or following military service. The present research expands this 
earlier work by estimating effects of HLB and LLB on diagnoses of 
TBI, TBI-related conditions, and mental health conditions diagnosed 
in the VHA following separation from service.

Method

Participants

Data were from the MCS (42–44). Enrollment methods have been 
previously described (45, 46). Briefly, service members were randomly 
selected from Defense Manpower Data Center (DMDC) rosters and 
invited to enroll in five panels in 2001–2003, 2004–2006, 2007–2008, 
2011–2013 and 2020–2021 with over 260,000 participants enrolled to 
date. Follow-up surveys with questions covering physical and mental 
health, health behaviors, and life experiences were sent to enrolled 
participants every 3–5 years (43). Throughout this manuscript, 
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we refer to the survey cycles by the year they closed (e.g., 2013 for the 
2011–2013 cycle).

Figure 1 depicts the flow chart of inclusion criteria for the present 
research. MCS participants from Panels 1–4 who served on active duty 
and completed the 2013 survey, either as baseline or follow-up, were 

eligible for inclusion (n = 97,033). Participants were excluded if 
responses to the blast screening questions assessed on the 2013 survey 
(n = 6,379) or covariates of interest (n = 19) were missing. Because the 
primary focus of the present analyses was on medical diagnoses 
recorded in the VHA system, the present analyses were restricted to 

FIGURE 1

Flow chart for primary and supplemental analytic samples. *The study sample includes all participants who completed the 2011–2013 survey, 
regardless of whether the survey was a follow-up or baseline for the panel.
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veterans who utilized VHA care (i.e., were seen for at least one 
healthcare visit for two or more calendar years; n = 36,641). 
Supplemental analyses were also conducted for the broader population 
of veterans enrolled in the VHA regardless of the number of visits over 
time (n = 51,541). Individual analyses for each condition of interest 
were further limited by excluding participants diagnosed with the 
condition in the VHA prior to the 2013 survey, which resulted in 
varying analytic sample sizes for each outcome of interest.

Measures

Primary exposures
Self-reported HLB exposure was assessed from the 2013 MCS 

survey consistent with previously used methods (15). Specifically, 
participants reported whether they had experienced an injury from a 
blast, explosion, or bullet and those who endorsed any such injury 
reported the number of such injuries. Whereas prior research 
categorized participants into three groups (no HLB, single HLB, or 
repeated HLB) (15), the present analysis combined single and repeated 
HLB into one group due to the small number of VHA utilizers who 
met inclusion criteria. LLB exposure was assessed using DMDC 
records of military occupation specialty (MOS) codes as a proxy; 
participants were categorized into high- vs. low-risk of exposure to 
LLB (1, 15, 41). This approach has been used in previous studies with 
this MCS population (15) and is supported by a validation study 
demonstrating that MOS-based risk categories correspond closely 
with clinically-evaluated LLB exposure (47). Although not a direct 
measure of BOP, using MOS allows for large-scale estimation of 
occupational risk when objective exposure data are unavailable.

Covariates
Participant characteristics such as sex, race, ethnicity, and birth 

year were obtained from DMDC at study enrollment. Sex, race, and 
ethnicity were self-reported to the Department of Defense (DoD) at 
time of accession into the military. Time-varying military factors such 
as paygrade and service branch represented status at the time of 
completion of the 2013 survey. Total time deployed in days was 
calculated based on dates in and out of theater as reported in the 
Contingency Tracking System (CTS). Additionally, participants were 
categorized as not deployed, deployed without combat, or deployed 
with combat based on CTS data and self-reported combat experiences 
reported on any MCS survey through the 2013 survey (48). Marital 
status and education attainment were self-reported on the 2013 survey 
and backfilled with DMDC information if missing. Study panel was 
included as a covariate in adjusted models to adjust for 
potential heterogeneity.

Outcomes of interest
Conditions of interest were identified in VHA inpatient and 

outpatient records during the study period (i.e., completion of the 
2013 survey through the 2021 fiscal year). The MHS Data Repository 
(MDR) was used to identify cases diagnosed before the 2013 survey 
and outside of VHA. Broadly, diagnoses of interest fell into three 
categories: traumatic brain injury (i.e., any TBI, mild TBI, moderate 
TBI, severe TBI, penetrating TBI), TBI-related conditions (e.g., 
conditions commonly comorbid with concussion), and mental health 
conditions (e.g., posttraumatic stress disorder [PTSD], adjustment 

disorder). Conditions were identified using case criteria established 
by the Armed Forces Health Surveillance Division (AFHSD) or prior 
literature [e.g., (1, 49, 50)]. Whereas prior research evaluated 
associations between blast exposure and clinical diagnoses of 
substance abuse, the present research did not because substance 
use-related conditions diagnosed within the VHA are not currently 
available due to federal protections from Title 38 of U. S. Code § 7,332. 
Supplementary Table 1 lists case criteria and diagnoses.

Data analysis

Descriptive statistics were calculated for military and demographic 
characteristics overall and stratified by occupational risk of LLB and 
self-reported HLB exposure. The geometric mean and standard 
deviation were calculated for the number of days deployed because 
this continuous variable displayed a log-normal distribution (51). 
Collinearity among covariates was examined with a variance inflation 
factor threshold of 4. For each condition, we calculated the numbers 
of cases diagnosed: (a) overall [i.e., in either the MDR or VHA medical 
systems], (b) in the MDR before the 2013 survey, (c) in the VHA 
before the 2013 survey, and (d) in the VHA after the 2013 survey. 
Although counts and frequencies are presented for all four criteria, 
this report will focus on cases identified in the VHA during the study 
period. Adjusted models were calculated excluding participants 
diagnosed in the VHA before the 2013 survey. Prevalence ratios for 
HLB exposure and LLB occupation for each condition were estimated 
using Poisson regression in the GENMOD procedure with the robust 
standard errors (52). Models adjusted for military (service branch, 
total days deployed, pay grade, deployment/combat experience) and 
demographic factors (age, sex, race, ethnicity, education, marital 
status), enrollment panel, diagnosis of the condition in the MDR 
before the 2013 survey, and the interaction between HLB and 
LLB. When models failed to converge due to a small number of 
participants with a prior diagnosis of the condition in the MDR before 
the 2013 survey (i.e., for memory loss and delirium/dementia), cases 
with prior history were excluded from adjusted analyses. False 
discovery rate (FDR) adjustment for multiple comparisons was used 
to identify significant direct associations and interaction effects (53). 
FDR corrections were chosen instead of traditional family-wise error 
rate corrections as they confer increased statistical power, which was 
deemed appropriate considering the smaller sample size than similar 
published investigations (15). When the two-way interaction variable 
between HLB and LLB was statistically significant (FDR corrected 
p < 0.05), adjusted associations were calculated with a common 
reference category of blast-naïve (i.e., those with no HLB and low risk 
of LLB exposure). Although we did not set a priori criteria for number 
of cases to conduct analyses, some models failed to converge, therefore 
adjusted prevalence ratios were not calculated. All analyses were 
conducted in SAS 9.4.

Results

Descriptive

Table 1 reports sample characteristics for the full sample and by 
occupational risk for LLB and self-reported HLB exposure. Among 
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TABLE 1 Demographic and military characteristics among veterans enrolled in the millennium cohort study who utilized VHA for 2 or more years.

Characteristic All
n = 36,641

Low-level blast (LLB) High-level blast (HLB)

No
n = 30,257

Yes
n = 6,384

No
n = 32,752

Yes
n = 3,889

n (%) n (%) n (%) n (%) n (%)

Panel (Enrollment years)

1 (2001–2003) 12,071 (32.9) 10,459 (34.6) 1,612 (25.3) 11,100 (33.9) 971 (25.0)

2 (2004–2006) 4,419 (12.1) 3,625 (12.0) 794 (12.4) 3,841 (11.7) 578 (14.9)

3 (2007–2008) 6,597 (18.0) 5,494 (18.2) 1,103 (17.3) 5,787 (17.7) 810 (20.8)

4 (2011–2013) 13,554 (37.0) 10,679 (35.3) 2,875 (45.0) 12,024 (36.7) 1,530 (39.3)

Sex

Male 25,108 (68.5) 19,274 (63.7) 5,834 (91.4) 21,633 (66.1) 3,475 (89.4)

Female 11,533 (31.5) 10,983 (36.3) 550 (8.6) 11,119 (33.9) 414 (10.6)

Race and ethnicity

American Indian 595 (1.6) 472 (1.6) 123 (1.9) 520 (1.6) 75 (1.9)

Asian or Pacific 

Islander
1,524 (4.2) 1,306 (4.3) 218 (3.4) 1,412 (4.3) 112 (2.9)

Black, non-Hispanic 5,055 (13.8) 4,512 (14.9) 543 (8.5) 4,752 (14.5) 303 (7.8)

White, non-Hispanic 25,714 (70.2) 20,851 (68.9) 4,863 (76.2) 22,655 (69.2) 3,059 (78.7)

Hispanic 3,260 (8.9) 2,692 (8.9) 568 (8.9) 2,954 (9.0) 306 (7.9)

Multiracial 493 (1.3) 424 (1.4) 69 (1.1) 459 (1.4) 34 (0.9)

Birth year

Before 1970 7,565 (20.6) 6,708 (22.2) 857 (13.4) 6,989 (21.3) 576 (14.8)

1970–1979 8,488 (23.2) 7,092 (23.4) 1,396 (21.9) 7,572 (23.1) 916 (23.6)

After 1979 20,588 (56.2) 16,457 (54.4) 4,131 (64.7) 18,191 (55.5) 2,397 (61.6)

Education

High School 

Diploma/equivalent 

or less

5,027 (13.7) 3,524 (11.6) 1,503 (23.5) 4,269 (13.0) 758 (19.5)

Some college, no 

degree
15,338 (41.9) 12,215 (40.4) 3,123 (48.9) 13,494 (41.2) 1,844 (47.4)

Associates degree 5,612 (15.3) 4,759 (15.7) 853 (13.4) 5,110 (15.6) 502 (12.9)

Bachelors degree 6,439 (17.6) 5,732 (18.9) 707 (11.1) 5,919 (18.1) 520 (13.4)

Masters or higher 4,225 (11.5) 4,027 (13.3) 198 (3.1) 3,960 (12.1) 265 (6.8)

Marital status

Single, never married 8,002 (21.8) 6,550 (21.6) 1,452 (22.7) 7,316 (22.3) 686 (17.6)

Now married 22,059 (60.2) 18,143 (60.0) 3,916 (61.3) 19,581 (59.8) 2,478 (63.7)

No longer married 6,580 (18.0) 5,564 (18.4) 1,016 (15.9) 5,855 (17.9) 725 (18.6)

Pay grade

Enlisted 31,384 (85.7) 25,101 (83.0) 6,283 (98.4) 27,861 (85.1) 3,523 (90.6)

Officer 5,257 (14.3) 5,156 (17.0) 101 (1.6) 4,891 (14.9) 366 (9.4)

Service branch

Army 16,543 (45.1) 12,656 (41.8) 3,887 (60.9) 13,736 (41.9) 2,807 (72.2)

Navy/Coast Gard 6,653 (18.2) 5,702 (18.8) 951 (14.9) 6,472 (19.8) 181 (4.7)

Marine Corps 4,604 (12.6) 3,539 (11.7) 1,065 (16.7) 3,935 (12.0) 669 (17.2)

Air Force 8,841 (24.1) 8,360 (27.6) 481 (7.5) 8,609 (26.3) 232 (6.0)

(Continued)
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TABLE 1 (Continued)

Characteristic All
n = 36,641

Low-level blast (LLB) High-level blast (HLB)

No
n = 30,257

Yes
n = 6,384

No
n = 32,752

Yes
n = 3,889

n (%) n (%) n (%) n (%) n (%)

Days deployed

(geometric mean, std. 

dev)

301.66 (2.49) 280.94 (2.56) 397.89 (2.03) 283.97 (2.53) 438.57 (1.94)

Deployment experience

Not deployed 11,609 (31.7) 10,414 (34.4) 1,195 (18.7) 11,305 (34.5) 304 (7.8)

Deployed, without 

combat

3,626 (9.9) 3,298 (10.9) 328 (5.1) 3,585 (10.9) 41 (1.1)

Deployed, with 

combat

21,406 (58.4) 16,545 (54.7) 4,861 (76.1) 17,862 (54.5) 3,544 (91.1)

High-level blast

No 32,752 (89.4) 28,131 (93.0) 4,621 (72.4) 32,752 (100.0) <30 (<1.0)

Yes 3,889 (10.6) 2,126 (7.0) 1,763 (27.6) 0 (0) 3,889 (100.0)

Low-level blast

No 30,257 (82.6) 30,257 (100.0) 0 (0) 28,131 (85.9) 2,126 (54.7)

Yes 6,384 (17.4) 0 (0) 6,384 (100.0) 4,621 (14.1) 1,763 (45.3)

High-risk LLB occupations

Armor and 

Amphibious, General

391 (6.1) 277 (6.0) 114 (6.5)

Artillery and 

Gunnery

485 (7.6) 360 (7.8) 125 (7.1)

Aviation Ordnance 511 (8.0) 492 (10.7) < 30 (< 1.0)

Combat Engineering, 

General

514 (8.1) 327 (7.1) 187 (10.6)

Combat Operations 

Control, General

807 (12.6) 561 (12.1) 246 (14.0)

EOD/UDT 193 (3.0) 143 (3.1) 50 (2.8)

Expeditionary 

Medical Service

270 (4.2) 226 (4.9) 44 (2.5)

Infantry, General 2,419 (37.9) 1,522 (32.9) 897 (50.9)

Infantry, Gun Crews, 

and Seamen

173 (2.7) 173 (3.7) < 30 (< 1.0)

Military Training 

Instructor

148 (2.3) 142 (3.1) < 30 (< 1.0)

Missile Artillery, 

Operating

304 (4.8) 227 (6.0) < 30 (< 1.0)

Rocket Artillery 74 (1.2) 56 (1.2) < 30 (< 1.0)

Special Forces 95 (1.5) 65 (1.4) 30 (1.7)

*LLB–low-level blast, determined by occupational risk; HLB–high-level blast, self-reported; EOD/UDT–Explosive Ordnance Disposal/Underwater Demolition Team. Sample sizes < 30 have 
been masked consistent with reporting requirements.
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the analytic sample of veterans who utilized VHA care for two or more 
years during the study period (N = 36,641), most participants were 
enrolled in the 2013 survey, male, identified as White/non-Hispanic 
race and ethnicity, were born after 1979, attended some college but 
had not obtained a degree, were married, were enlisted, and served in 
the Army (Table 1). The average total time deployed was 302 days 
(geometric SD = 2.49). Approximately 17.4% of the sample worked in 
an occupation at high risk for LLB exposure; the most common high-
risk occupations included general infantry (37.9%), combat operations 
control (12.6%), and combat engineering (8.1%). In addition, 10.6% 
of the sample reported HLB exposure on the 2013 MCS survey. All 
military and demographic characteristics examined were significantly 
different by occupational risk of LLB exposure and self-reported 
HLB exposure.

TBI diagnoses

Descriptive
Among the TBI diagnoses recorded in the VHA after the 2013 

survey, mild TBI was the most common (3.0%), followed by moderate 
TBI (2.1%; Table 2). Severe and penetrating TBIs were rare (n < 10) 
and thus not examined further.

Adjusted models
In the adjusted models (Table 3), HLB exposure was associated 

with any TBI, mild TBI, and moderate TBI. Notably, the largest 
magnitude of association (three-fold increase) between HLB exposure 
and TBI diagnoses was for moderate TBI. LLB was associated with 
moderate TBI, but not mild TBI. Similar to HLB, LLB was most 
strongly associated with moderate TBI diagnosis. There were no 
significant interaction effects observed between LLB and HLB for 
TBI diagnoses.

TBI-related conditions

Descriptive
Among the 22 TBI-related conditions, the five most prevalent 

were non-headache pain (74.8%), sleep disorders and symptoms 
(50.3%), sleep apnea (35.5%), headache (32.2%), and migraine 
headaches (21.4%).

Adjusted models
HLB was significantly associated with most conditions in the fully 

adjusted models except for chronic fatigue syndrome, sleep disruption 
movement and communication disorders (Table  3). The largest 
prevalence ratios were seen for memory loss, post-concussive 
syndrome, cognitive problems, and delirium/dementia. LLB was 
associated with subsequent tinnitus, significant hearing loss, hearing 
problems, sleep disruption movement disorders, headache, cognitive 
problems, memory loss, and communication disorders. The largest 
prevalence ratios among significant associations were for 
communication disorders, memory loss, and sleep disruption/
movement disorders. Among these conditions, significant HLB and 
LLB interactions were observed for sleep apnea as well as sleep 
disorders and symptoms (FDR adjusted p = 0.04 and 0.01, 
respectively). These interactions were antagonistic, such that the 

combined effects were less than the additive effects. Specifically, when 
compared with blast-naïve veterans, those who only endorsed HLB 
exposure were significantly more likely to be diagnosed with sleep 
apnea or sleep disorders and symptoms in the VHA whereas those 
who were in a LLB occupation (solely or in combination with HLB 
exposure) did not appear to be  more likely to have a diagnosis 
(Table 4).

Mental health conditions

Descriptive
Among the 10 mental health diagnoses, the most prevalent 

conditions during the study period were depression (39.3%), anxiety 
(33.7%), PTSD (31.9%), adjustment disorder (20.0%), and manic-
depressive disorder (7.0%).

Adjusted models
HLB was significantly associated with adjustment, anxiety, bipolar, 

manic-depressive, depressive, and PTSD, whereas LLB exposure was 
associated with adjustment disorder and PTSD (Table  3). The 
strongest associations between HLB and mental health conditions 
were seen for acute stress disorder, adjustment disorders, PTSD, 
bipolar disorders, and manic-depressive disorder. LLB was most 
strongly associated with acute stress disorder, adjustment disorders, 
and PTSD.

Interaction effects between HLB and LLB were statistically 
significant for: adjustment disorder, bipolar disorder, depressive 
disorders, and PTSD (Table 4). For adjustment disorder and PTSD, 
compared to blast-naïve veterans, those with blast exposure were more 
likely to be diagnosed in the VHA. Whereas LLB was independently 
associated with increased likelihood of diagnoses of these conditions 
in the VHA, overlapping confidence intervals for HLB only and both 
HLB and LLB suggest that LLB did not increase the likelihood of 
PTSD and adjustment disorder diagnosis above and beyond HLB 
exposure. Similar to TBI-related conditions, these interactions were 
antagonistic, such that, when compared to blast-naïve veterans, 
veterans were more likely to be diagnosed with depressive disorders if 
they reported HLB exposure either alone or with LLB, whereas bipolar 
disorders were more likely to be  diagnosed by those who only 
experienced HLB (Table 4).

Supplemental analyses

Supplementary Tables 2–4 display results among veterans enrolled 
for two or more years in the VHA during the study period 
(N = 51,541), regardless of utilization. Previous reported findings 
included only VHA utilizers (i.e., those enrolled in the VHA with at 
least one medical encounter per year for 2 years). Case counts 
mirrored those observed in the main analyses although rates of 
conditions were generally lower, consistent with the larger sample size 
that includes VHA nonusers. Adjusted model results are consistent 
with a few exceptions (Supplementary Tables 3, 4). Among TBI-related 
conditions, HLB was additionally associated with sleep disruption 
movement disorders and communication disorders, whereas LLB was 
additionally associated with migraine headaches and non-headache 
pain. The interaction between HLB and LLB was significant for four 
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TABLE 2 Case counts for traumatic brain injury (TBI) and mental health conditions of interest.

Condition Utilized VHA care for 2 or more years (n = 36,641) Diagnosed in VHA after 
2013 survey*

n (%)

Analytic 
sample

Total diagnosed*
n (%)

Diagnosed in 
MDR before 
2013 survey*

n (%)

Diagnosed in 
VHA before 

2013 survey*
n (%)

TBI diagnoses

Any TBIa 5,778 (15.8) 2,989 (8.2) 843 (2.3) 1,593 4.5 35,798

Mild TBIa 5,111 (13.9) 2,780 (7.6) 621 (1.7) 1,069 3.0 36,019

Moderate TBIa 1990 (5.4) 675 (1.8) 311 (0.8) 774 2.1 36,330

Severe TBIa 79 (0.2) 45 (0.1) 17 (0.0) 5 0.0 36,624

Penetrating TBIa 84 (0.2) 62 (0.2) 8 (0.0) 9 0.0 36,633

TBI-related conditions

Tinnitusa 12,147 (33.2) 2,841 (7.8) 2,389 (6.5) 6,632 19.4 34,252

Significant hearing losse 12,112 (33.1) 5,016 (13.7) 2,736 (7.5) 5,764 17.0 33,904

Hearing problemsb 14,007 (38.2) 4,982 (13.6) 3,189 (8.7) 7,059 21.1 33,452

Dizziness/Vertigob 5,869 (16.0) 891 (2.4) 124 (0.3) 3,138 8.6 36,517

Chronic fatigue 

syndromee
1,269 (3.5) 0 (0) 0 (0) 857 2.3 36,641

Fatiguec 14,354 (39.2) 5,274 (14.4) 552 (1.5) 5,645 15.6 36,087

Sleep apneae 18,589 (50.7) 5,580 (15.2) 2,128 (5.8) 12,236 35.5 34,511

Sleep disorders and 

symptomsb
25,547 (69.7) 10,937 (29.8) 3,423 (9.3) 16,717 50.3 33,213

Sleep disruption 

movement disordersd
1910 (5.2) 349 (1.0) 85 (0.2) 920 2.5 36,556

Gait and coordination 

problemsb
2,124 (5.8) 0 (0) 0 (0) 1,477 4.0 36,641

Skin sensation 

disturbancesb
6,226 (17.0) 0 (0) 0 (0) 3,915 10.7 36,641

Vision problemsb 4,360 (11.9) 2,363 (6.4) 294 (0.8) 993 2.7 36,346

Headacheb 17,104 (46.7) 5,952 (16.2) 1818 (5.0) 11,196 32.2 34,823

Migraine headachese 11,977 (32.7) 4,912 (13.4) 1739 (4.7) 7,454 21.4 34,902

Non-headache painb 34,905 (95.3) 28,576 (78.0) 8,299 (22.6) 21,202 74.8 28,335

Syncope and collapseb 5,221 (14.2) 2,495 (6.8) 236 (0.6) 1,598 4.4 36,405

Altered mental statusb 2,202 (6.0) 602 (1.6) 58 (0.2) 850 2.3 36,583

Cognitive problemsb 5,863 (16.0) 1,204 (3.3) 431 (1.2) 3,081 8.5 36,210

Communication 

disordersb
829 (2.3) 110 (0.3) 46 (0.1) 376 1.0 36,595

Delirium/Dementiab 654 (1.8) 1 (0) 3 (0) 383 1.1 36,638

Memory lossd 874 (2.4) 1 (0.0) 283 (0.8) 588 1.6 36,358

Post-concussive 

syndromec
1,450 (4.0) 765 (2.1) 163 (0.4) 289 0.8 36,641

Mental health diagnoses

Acute stress disordera 2,439 (6.7) 1,543 (4.2) 163 (0.4) 335 0.9 36,478

ADD/ADHDb 3,893 (10.6) 1,105 (3.0) 228 (0.6) 2,502 6.9 36,413

Adjustment disordersa 16,651 (45.4) 8,081 (22.1) 3,386 (9.2) 6,667 20.0 33,255

Anxiety disordersa 17,365 (47.4) 4,260 (11.6) 1735 (4.7) 11,778 33.7 34,904

(Continued)
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additional conditions: skin sensation disturbances, non-headache 
pain, syncope and collapse, and cognitive problems. Like the primary 
analyses, these interaction effects were antagonistic. Among mental 
health diagnoses, HLB was associated with acute stress disorder and 
LLB was additionally associated with depressive disorders.

Discussion

The present analysis leveraged data from the MCS to estimate 
associations and interactions between HLB and LLB exposure and 
diagnoses of TBI, TBI-related conditions, and mental health 
conditions among veterans who utilize the VHA (i.e., those with at 
least one medical encounter per year for at least 2 years). These 
findings add further evidence to the accumulating body of research 
suggesting that BOP, including both HLB and LLB, increases the 
occurrence of these outcomes and are among the first to document 
these associations in active VHA users.

Both HLB and LLB were associated with increased prevalence of 
TBI. Specifically, HLB was associated with greater likelihood of 
receiving a diagnosis in the VHA for TBI (i.e., any TBI, moderate 
TBI), TBI-related conditions (e.g., tinnitus, fatigue, post-concussive 
syndrome, hearing loss, sleep apnea, headache, non-headache pain, 
cognitive problems, vision problems), and mental health conditions 
(i.e., adjustment disorders, anxiety disorders, bipolar disorders, 
depressive disorders, and PTSD). LLB was similarly associated with 
greater prevalence of many, although not all, of these diagnoses. 
Several of the conditions examined could be categorized as, or are 
related to, post-concussive symptoms. HLB was associated with all 
conditions investigated apart from chronic fatigue syndrome, sleep 
disruption movement, and communication disorders. Our findings 
for headaches and cognitive problems were consistent with research 
documenting an association between blast exposure and performance 
on cognitive tasks (17, 35, 36, 54). Prior work has also directly 
compared performance on neurocognitive testing, often reporting 
subtle differences in performance. The current results suggest the 
effect of BOP on cognitive function, even if subtle, may represent a 
subclinical concern that affects ongoing care provided by the 

VHA. Additionally, the observed association between LLB and 
hearing-related conditions underscores the hazard of exposure to loud 
noises during training activities and subsequent long-term effects on 
hearing. This adds to a prior finding that LLB was associated with 
hearing problems in active-duty service members (2) by documenting 
that hearing problems persist beyond active duty service and continue 
to require clinical management; tinnitus and hearing loss are the most 
common service-related veterans disability claims (55).

The effect of LLB alone remained significant when adjusting for 
interaction effects, suggesting that LLB imparts a unique effect on 
likelihood of PTSD and adjustment disorders independent of HLB 
exposure. These diagnoses were identified when veterans received 
clinical care provided by the VHA, but it remains unclear whether 
these diagnoses reflect continued treatment for a previous TBI or a 
subsequent TBI. This raises the possibility of important differences 
between blast-induced TBI and non-blast TBI regarding recovery 
from the effects of the injury. Although this has been previously 
reported from cross-sectional studies (16, 56), the current study 
provides additional support using longitudinal and medical 
record data.

Significant interaction effects between HLB and LLB exposure 
were observed for several TBI-related and mental health conditions, 
but not for TBI itself. For mental health conditions, individuals with 
HLB with or without LLB were at increased risk of diagnosis. In 
contrast, for sleep apnea and other sleep disorders and symptoms, 
individuals with HLB exposure only were significantly more likely to 
be diagnosed in the absence of LLB. LLB was not associated with 
increased likelihood of diagnosis for sleep conditions but was 
associated with increased risk of adjustment disorder and PTSD both 
with and without associated HLB.

These findings highlight the need to consider both the 
independent and interactive effects of different blast exposures when 
evaluating long-term risks to brain health. For example, HLB and LLB 
could be  associated with distinct underlying pathophysiological 
mechanisms, such as acute neurotrauma from HLB compared to 
chronic subclinical inflammatory changes associated with 
LLB. Further, LLB risk was based on MOS categories, a strategy that 
could result in groups of individuals with different experiences in 

TABLE 2 (Continued)

Condition Utilized VHA care for 2 or more years (n = 36,641) Diagnosed in VHA after 
2013 survey*

n (%)

Analytic 
sample

Total diagnosed*
n (%)

Diagnosed in 
MDR before 
2013 survey*

n (%)

Diagnosed in 
VHA before 

2013 survey*
n (%)

Manic-depressive 

disordere
4,488 (12.2) 1,020 (2.8) 865 (2.4) 2,497 7.0 35,776

Bipolar disordersa 2,587 (7.1) 529 (1.4) 393 (1.1) 1,607 4.4 36,248

Depressive disordersa 19,416 (53.0) 6,218 (17.0) 3,303 (9.0) 13,093 39.3 33,335

Personality disordersa 2068 (5.6) 836 (2.3) 231 (0.6) 916 2.5 36,410

PTSDa 14,516 (39.6) 2,450 (6.7) 2,637 (7.2) 10,844 31.9 34,004

Schizophreniaa 357 (1.0) 51 (0.1) 75 (0.2) 226 0.6 36,566

*Total diagnosed, diagnosed in MDR before 2013 survey, and diagnosed in VHA before 2013 survey are among the entire eligible sample (n = 36,641); Numbers diagnosed in VHA after 2013 
survey (outcomes of interest) were calculated among the condition specific analytic sample that excludes cases diagnosed in the VHA before the 2013 survey. aArmed Forces Health 
Surveillance Division; all conditions required 1 inpatient or 2 outpatient visits within 180 days except for schizophrenia which required 1 inpatient or 4 outpatient visits without a time limit in 
accordance with these criteria. bFarmer et al. (50); sensitive criteria. cBelding et al. (32); sensitive criteria. dBelding et al. (67); criterion of two inpatient or outpatient visits within 1 year. eCarey 
et al. (49); sensitive criteria.
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TABLE 3 Adjusted prevalence ratios between HLB and LLB on subsequent mental health, traumatic brain injury and sensory/symptomology diagnosis in 
the VHA, among millennium cohort study participants who utilized the VHA for 2 or more years.

Condition Adjusted LLB Adjusted HLB HLB x LLB Interaction

PR 95% CI p-value* PR 95% CI p-value* PR 95% CI p-value*

Traumatic brain injury diagnoses

Any TBIa 1.16 (0.99, 1.35) 0.08 2.69 (2.33, 3.10) <0.0001 0.87 (0.71, 1.07) 0.19

Mild TBIa 1.13 (0.94, 1.36) 0.28 2.61 (2.18, 3.12) <0.0001 0.97 (0.75, 1.25) 0.80

Moderate TBIa 1.33 (1.07, 1.66) 0.03 3.43 (1.79, 4.20) <0.0001 0.75 (0.56, 1.01) 0.09

Severe TBIa – – –

Penetrating TBIa – – –

TBI-related conditions

Tinnitusa 1.11 (1.04, 1.18) 0.004 1.27 (1.17, 1.37) <0.0001 0.98 (0.86, 1.10) 0.69

Significant hearing 

losse
1.10 (1.03, 1.18) 0.01 1.37 (1.26, 1.48) <0.0001 0.94 (0.83, 1.07) 0.39

Hearing problemsb 1.11 (1.04, 1.18) 0.002 1.27 (1.18, 1.37) <0.0001 0.95 (0.85, 1.06) 0.38

Dizziness/Vertigob 0.96 (0.85, 1.07) 0.49 1.30 (1.14, 1.49) 0.002 1.06 (0.86, 1.32) 0.57

Chronic fatigue 

syndromee
0.91 (0.72, 1.14) 0.58 0.96 (0.71, 1.31) 0.87 0.85 (0.50, 1.44) 0.64

Fatiguec 0.95 (0.88, 1.03) 0.29 1.16 (1.05, 1.28) 0.01 1.01 (0.86, 1.19) 0.93

Sleep apneae 0.97 (0.93, 1.01) 0.10 1.10 (1.05, 1.16) 0.001 0.91 (0.84, 0.99) 0.04

Sleep disorders and 

symptomsb
0.99 (0.96, 1.03) 0.70 1.13 (1.08, 1.17) <0.0001 0.92 (0.86, 0.97) 0.01

Sleep disruption 

movement disordersd
1.34 (1.10, 1.62) 0.02 1.31 (1.02, 1.69) 0.12 0.96 (0.65, 1.41) 0.88

Gait and coordination 

problemsb
1.11 (0.95, 1.30) 0.26 1.45 (1.20, 1.76) 0.003 0.82 (0.59, 1.13) 0.26

Skin sensation 

disturbancesb
1.00 (0.91, 1.11) 0.93 1.27 (1.13, 1.42) 0.0008 0.83 (0.68, 1.01) 0.07

Vision problemsb 1.10 (0.91, 1.34) 0.37 1.47 (1.15, 1.87) 0.02 0.94 (0.64, 1.38) 0.75

Headacheb 1.07 (1.02, 1.12) 0.01 1.33 (1.26, 1.41) <0.0001 0.97 (0.89, 1.06) 0.49

Migraine headachese 1.07 (1.00, 1.14) 0.07 1.44 (1.34, 1.55) <0.0001 1.08 (0.97, 1.21) 0.18

Non-headache painb 1.01 (0.99, 1.03) 0.33 1.08 (1.05, 1.10) <0.0001 0.97 (0.93, 1.01) 0.12

Syncope and collapseb 1.07 (0.92, 1.24) 0.43 1.48 (1.23, 1.78) 0.002 0.75 (0.55, 1.01) 0.10

Altered mental statusb 1.06 (0.87, 1.30) 0.56 1.79 (1.41, 2.25) 0.0002 0.78 (0.54, 1.13) 0.26

Cognitive problemsb 1.17 (1.06, 1.30) 0.006 1.98 (1.78, 2.21) <0.0001 0.86 (0.74, 1.01) 0.08

Communication 

disordersb
1.50 (1.12, 2.01) 0.05 1.56 (1.05, 2.31) 0.10 0.79 (0.44, 1.40) 0.49

Delirium/Dementiab 1.16 (0.83, 1.61) 0.50 1.94 (1.37, 2.76) 0.02 1.41 (0.84, 2.35) 0.16

Memory lossd 1.46 (1.15, 1.85) 0.02 2.63 (2.05, 3.38) <0.0001 0.81 (0.56, 1.17) 0.38

Post-concussive 

syndromec

1.13 (0.77, 1.66) 0.70 2.24 (1.54, 3.27) 0.01 1.21 (0.71, 2.09) 0.67

Mental health diagnoses

Acute stress disordera 1.27 (0.91, 1.78) 0.27 1.88 (1.25, 2.81) 0.10 0.51 (0.26, 1.02) 0.15

ADD/ADHDb 1.01 (0.90, 1.13) 0.85 1.02 (0.87, 1.18) 0.85 0.19 (0.95, 1.49) 0.18

Adjustment disordersa 1.25 (1.18, 1.33) <0.0001 1.69 (1.58, 1.81) <0.0001 0.77 (0.70, 0.86) <0.0001

Anxiety disordersa 1.00 (0.95, 1.04) 0.93 1.09 (1.03, 1.15) 0.001 0.92 (0.84, 1.01) 0.10

Bipolar disordersa 1.03 (0.89, 1.20) 0.67 1.40 (1.17, 1.69) 0.002 0.68 (0.50, 0.92) 0.02
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other domains such as combat, training, and exposure to trauma in 
addition to differences in LLB. From this perspective, the interaction 
effects provide insight into the effects of HLB on these different groups 
of individuals, suggesting the possibility that the long-term effects of 
HLB may differ across these groups. For clinical outcomes, the 
presence of HLB exposure may be  a more robust predictor of 
psychological outcomes than certain neuropsychiatric and sleep-
related outcomes. LLB may contribute more subtly, or in the case of 
MOS, be additionally influenced by other variables such as combat 
exposure or training, or in ways that are not readily captured. 
Understanding these differential effects can help inform exposure 
tracking protocols, guide individualized screening strategies, and 
refine clinical decision-making for veterans with varying blast 
exposure histories. Ultimately, this work underscores the complexity 
of blast-related brain health outcomes and the importance of tailoring 
interventions to the type and context of exposure.

Implications for care

Although previous research has documented associations among 
HLB and LLB on long-term health outcomes, there is a paucity of 
work evaluating health care utilization within the VHA due to BOP 
exposure. These results underscore the strong association between 

blast exposure and adverse health outcomes, particularly the high 
magnitude of risk observed for TBI, memory loss, and post-concussive 
syndrome. Veterans exposed to blasts during their military service 
may continue to face significant repercussions linked to BOP 
exposure. The conditions examined herein (e.g., TBI, mental health 
conditions) represent significant burden on health care systems both 
for the direct clinical management of the condition and the secondary 
effects on physical health (57, 58). These results highlight that the 
long-term effects of BOP exposure on physical health and mental 
health represents a concern not only for the DoD, but also for entities 
such as VHA that provide care for veterans.

Regarding military health policy and preventive care, our results 
highlight the need for systematic tracking and planned analysis of 
both HLB and LLB exposures over the course of a service member’s 
career. Incorporating blast exposure histories—using tools such as 
MOS risk categories or standardized self-report instruments—into 
routine medical records could help the DoD and VHA better 
anticipate long-term healthcare needs, enable early screening for 
at-risk individuals, and guide the development of targeted 
rehabilitation and clinical monitoring protocols. Further, 
incorporating blast exposure into disability evaluations for VHA 
should be considered in future. From a policy standpoint, this study 
supports the implementation of occupational blast exposure 
surveillance systems and the development of evidence-based exposure 

TABLE 3 (Continued)

Condition Adjusted LLB Adjusted HLB HLB x LLB Interaction

PR 95% CI p-value* PR 95% CI p-value* PR 95% CI p-value*
Manic-depressive 

disordere

0.99 (0.88, 1.11) 0.85 1.32 (1.14, 1.52) 0.001 0.87 (0.69, 1.09) 0.24

Depressive disordersa 1.03 (0.99, 1.07) 0.25 1.20 (1.15, 1.27) <0.0001 0.89 (0.83, 0.97) 0.01

Personality disordersa 1.12 (0.92, 1.37) 0.36 0.93 (0.69, 1.25) 0.63 1.24 (0.80, 1.92) 0.38

PTSDa 1.17 (1.13, 1.23) <0.0001 1.52 (1.45, 1.59) <0.0001 0.82 (0.76, 0.87) <0.0001

Schizophreniaa 1.14 (0.79, 1.64) 0.58 1.37 (0.83, 2.27) 0.38 0.80 (0.37, 1.76) 0.58

LLB–low-level blast, determined by occupational risk; HLB–high-level blast, self-reported. Models adjusted for military (service branch, total days deployed, pay grade) and demographic 
factors (age, sex, race, ethnicity, education, marital status), enrollment panel, diagnosis of the condition in the MDR before the 2013 survey, and the interaction between HLB and LLB. *False 
discovery rate (FDR) adjusted p-values. aArmed Forces Health Surveillance Division; all conditions required 1 inpatient or 2 outpatient visits within 180 days except for schizophrenia was 
required 1 inpatient or 4 outpatient visits without a time limit in accordance with these criteria. bFarmer et al. (50); sensitive criteria. cBelding et al. (32); sensitive criteria. dBelding et al. (67); 
criterion of two inpatient or outpatient visits within 1 year. eCarey et al. (49); sensitive criteria.

TABLE 4 Adjusted prevalence ratios examining the combined effect between HLB and LLB exposure on subsequent mental health, traumatic brain 
injury and sensory/symptomology diagnosis in the VHA.

Condition Ref: Neither LLB Only HLB Only HLB and LLB

TBI-related conditions

Sleep apneac Ref 0.97 (0.93, 1.01) 1.10 (1.05, 1.16) 0.97 (0.92, 1.03)

Sleep disorders and symptomsb Ref 0.99 (0.96, 1.03) 1.13 (1.08, 1.17) 1.03 (0.98, 1.07)

Mental health diagnoses

Adjustment disordersa Ref 1.25 (1.18, 1.33) 1.69 (1.58, 1.81) 1.64 (1.52, 1.76)

Bipolar disordersa Ref 1.03 (0.89, 1.20) 1.40 (1.17, 1.69) 0.98 (0.77, 1.25)

Depressive disordersa Ref 1.03 (0.99, 1.07) 1.20 (1.15, 1.27) 1.10 (1.04, 1.17)

PTSDa Ref 1.17 (1.13, 1.23) 1.52 (1.45, 1.59) 1.46 (1.39, 1.53)

LLB–low-level blast, determined by occupational risk; HLB–high-level blast, self-reported. Bold typeface indicates p < 0.05. Models adjusted for military (service branch, total days deployed, 
pay grade) and demographic factors (age, sex, race, ethnicity, education, marital status), enrollment panel, diagnosis of the condition in the MDR before the 2013 survey, and the interaction 
between HLB and LLB. aArmed Forces Health Surveillance Division; all conditions required 1 inpatient or 2 outpatient visits within 180 days. bFarmer et al. (50); sensitive criteria. cCarey et al. 
(49); sensitive criteria.
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thresholds that inform safe training practices, consistent with recent 
DoD policy (59).

Understanding the full implications for treatment and 
management of these conditions requires a better understanding of 
the potential mechanisms (e.g., neurological, psychological) by which 
BOP exposure may increase likelihood of diagnosis for the observed 
conditions. Possible effects of BOP exposure on brain structure and 
function have been previously documented (12, 13, 19, 26, 39, 60, 61). 
Previous research has noted the association between TBI and 
psychological health, though it remains unclear whether this is due to 
structural or functional damage to the brain or psychological 
mechanisms due to a traumatic event (62).

Of particular concern for preventive efforts are the outcomes of 
LLB including PTSD, adjustment disorder, hearing conditions, and 
cognitive problems. These associations were independent of HLB, 
suggesting the possibility that service members chronically exposed 
to LLB during training activities may have an increased likelihood of 
these disorders in the future. This is further supported by findings that 
chronic LLB exposure, rather than acute LLB exposure, is typically 
associated with increased symptom reporting (33, 35, 38, 39).

Strengths, limitations, and future directions

The presented study results need to be  considered within the 
context of limitations. First, HLB was self-reported. Service members 
reported whether they had been exposed to a blast/explosion (i.e., 
HLB), but were not asked to provide additional information regarding 
characteristics of that HLB exposure (e.g., distance, intensity, 
frequency). Additionally, it was not possible to directly link medical 
record data to the individually reported HLB events, which limits the 
ability to verify the severity of specific exposures.

Low-level blast risk was estimated using MOS as a proxy for 
exposure risk. This method is consistent with prior work (2, 15, 47, 63) 
and allows for large-scale estimation, but it does not capture individual 
variation in cumulative exposure, time in service, or specific training 
environments. However, prior work supports the validity of MOS as 
a proxy, showing that MOS-based classifications correspond to actual 
exposure experiences (47). Although imperfect, this method provides 
a reasonable and validated strategy for modeling LLB exposure in 
large cohort studies, including the MCS (1, 15). In addition to its 
utility in epidemiological research, MOS may also hold practical value 
for identifying individuals at elevated risk for blast-related brain 
health outcomes. Recently directed tracking of BOP (59) incorporates 
MOS-based risk stratification into military and post-service healthcare 
systems which is intended to support targeted mitigation strategies 
during training (e.g., modified exposure limits, protective equipment), 
and early identification of individuals who may benefit from clinical 
monitoring or intervention. This approach is expected to enhance 
prevention and treatment efforts by allowing the MHS and VHA to 
proactively address the needs of service members and Veterans most 
likely to exhibit blast-related health concerns. The continued 
improvement of objective tools to measure exposure, such as body-
mounted sensors, biometric wearables, and biospecimen data, may 
improve the precision of BOP exposure estimates. Although practical 
limitations currently restrict the broad application of these tools, they 
have strong potential to complement self-report and administrative 
data in future research.

Second, our primary analytic sample focused on veterans who had 
been identified as VHA users (i.e., enrolled in the VHA with at least 
one medical encounter per year for at least 2 years), meaning all 
participants had to meet eligibility criteria that typically require 
documented health concerns related to military service. Although this 
sample may be representative of VHA users broadly, generalizability 
to veterans who do not regularly use or are not eligible for VHA 
services may be limited (64–66). In addition, there is potential for 
collider bias, as exposures to blast and experience of conditions may 
result in a greater likelihood of veterans using VHA care. Veterans 
from lower-risk occupational backgrounds would therefore likely only 
be  represented in this sample if they exhibited sufficient service-
related symptoms to access care, which may bias the sample toward 
more symptomatic individuals in this group. Regardless, our results 
provide a valuable source of information regarding cost burden to the 
government for continued healthcare services following separation 
from service.

Finally, the analyses from the present research were limited by 
features of the study design. For example, we  were unable to 
evaluate whether TBI may have moderated the associations 
between HLB and LLB and other subsequent health outcomes. 
Detailed TBI data were not available in the 2013 survey cycle, 
therefore we were unable to determine if TBI diagnoses occurred 
concurrent to reported HLB. Additionally, not all VHA medical 
records included diagnosis order, therefore we  were unable to 
apply exact AFHSB case definitions that require the ICD code to 
be the first or second diagnostic code.

Despite these limitations, the present research has notable 
strengths including its use of a large, representative sample and 
prospective design. We  were also able to account for several 
demographic and military factors, including deployment with and 
without combat experience. These strengths, combined with the 
ability to link self-report data with VHA medical records, enabled one 
of the first prospective examinations of long-term health outcomes 
associated with BOP exposure to date.

Conclusion

Our findings underscore the significant impact of blast exposure 
on post-service health outcomes among veterans, including TBI, 
TBI-related physical health conditions, and mental health diagnoses. 
These findings add to a growing body of literature about the potential 
adverse health outcomes associated with blast exposure experienced 
during military service. We  employed a prospective design and 
ascertained clinical diagnoses recorded in the VHA. These results have 
potential to inform preventive measures, intervention strategies, and 
healthcare policies tailored to mitigate the adverse consequences of 
blast exposure on the well-being of military personnel post-separation. 
Increased understanding of the effects of HLB and LLB on long-term 
health outcomes can guide targeted treatment and support 
mechanisms for individuals exposed to blast during their 
military service.

The implications of this work extend beyond the U.S. military. 
International forces employ similar weapon systems and conduct 
comparable training activities that can generate meaningful levels of 
overpressure, including breaching, artillery, and shoulder-fired 
weapons. As such, our findings may inform global efforts to 

https://doi.org/10.3389/fneur.2025.1599351
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Martindale et al. 10.3389/fneur.2025.1599351

Frontiers in Neurology 13 frontiersin.org

characterize, monitor, and mitigate the effects of BOP exposure 
across coalition partners. In addition, certain law enforcement 
agencies, particularly tactical units such as law enforcement Special 
Weapons and Tactics (SWAT) teams, explosive breachers, and sniper 
teams, may be subject to similar patterns of LLB exposure during 
training and operations. These communities may likewise benefit 
from policy changes aimed at improving exposure tracking, 
implementing protective measures, and monitoring long-term 
neurological and psychological outcomes associated with 
occupational blast exposure. Moving forward, continued research 
efforts and targeted interventions are essential to mitigate the long-
term effects of blast exposure and improve outcomes for military and 
paramilitary populations.
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