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Background: Patients with type 2 diabetes mellitus (T2DM) exhibit a heightened 
susceptibility to developing dementia, especially those who already present 
with mild cognitive impairment (MCI). Nevertheless, the fundamental etiology 
remains elusive, underscoring the pressing need for an objective and precise 
diagnostic approach in clinical settings. This study investigates the utilization 
of machine learning algorithms in conjunction with high-resolution sagittal T1-
weighted structural imaging to facilitate automated diagnosis of T2DM patients 
with MCI, differentiating them from both T2DM patients without MCI and 
healthy controls (HCs).
Methods: Thirty patients with T2DM and MCI, thirty T2DM patients without MCI, 
and thirty matched healthy controls (HCs) were enrolled to identify independent 
biomarkers and develop a diagnostic model for early cognitive impairment in 
T2DM. Whole-brain structural features-including cortical surface area, volume, 
thickness, curvature index, folding index, Gaussian curvature, mean curvature, 
thickness standard deviation, nuclear volume, hippocampal volume, and white 
matter volume-were extracted from the images of brains using automated 
segmentation methods. The minimum redundancy maximum relevance (MRMR) 
method was employed to filter out irrelevant and redundant features, reducing 
the dimensionality of the dataset. Subsequently, the least absolute shrinkage and 
selection operator (LASSO) algorithm was applied for further feature selection, 
ensuring the retention of only the most diagnostic features. The Random Forest 
(RF) classifier, a powerful machine learning model within the realm of artificial 
intelligence, was meticulously trained utilizing a curated feature set that had 
undergone rigorous refinement. To ensure the robust diagnostic performance 
and generalizability of the established random forest model, a 5-fold cross-
validation was employed, providing a dependable estimation of the model’s 
effectiveness.
Results: The FreeSurfer software automatically segmented the cerebral imaging 
data into up to 70 regions. For model establishment, a comprehensive set 
of 705 structural features, a series of neuropsychological tests, and standard 
laboratory tests were utilized. Ultimately, 8 features were selected through 
two feature selection strategies aimed at refining the optimal features. These 
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included bilateral brainstem volume, left hippocampus volume, left transverse 
temporal gyrus volume, bilateral posterior corpus callosum volume, left medial 
orbitofrontal cortex Gaussian curvature, glycosylated hemoglobin, blood sugar 
levels, and the Digit Span Test (DST) backward score. The Random Forest (RF) 
model, based on the combined features, exhibited the excellent performance, 
with mean AUCs of 0.959 (95% CI, 0.940–0.997, mean specificity = 94.2%, 
mean sensitivity = 88.3%, mean accuracy = 88.3% and mean precision = 88.3%) 
for the training dataset and mean AUCs of 0.887 (95% CI, 0.746–0.992, mean 
specificity = 85.0%, mean sensitivity = 70.0%, mean accuracy = 70.0% and mean 
precision = 69.6%) for the testing dataset, based on 5-fold cross-validation.
Conclusion: The RF model, leveraging a combination of features, demonstrates 
high accuracy in diagnosing T2DM with MCI. The exclusion of T2DM 
patients with complications may limit generalizability to the broader T2DM 
population, potentially inflating performance estimates. Among these features, 
8 optimal indicators comprising 5 structural features, 1 neuropsychological 
test feature, and 2 standard laboratory test features emerge as the potential 
independent biomarkers for detecting early-stage cognitive impairment in 
T2DM patients. These features hold significant importance in understanding 
the pathophysiological mechanisms of T2DM-related cognitive impairment. 
Our fully automated model is capable of swiftly processing MRI data, enabling 
precise and objective differentiation of T2DM with MCI. This model significantly 
enhances diagnostic efficiency and holds considerable value in clinical practice, 
facilitating early diagnosis of T2DM with MCI.
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Introduction

Diabetes mellitus (DM) represents a chronic metabolic disorder 
primarily distinguished by persistently elevated blood glucose levels. 
It is further classified as a systemic condition capable of impacting 
nearly every organ system within the human body (1–3). Notable 
complications associated with DM encompass stroke, cardiovascular 
disease, peripheral arterial disease, neuropathy, retinopathy, 
nephropathy, and immunocompromise (4, 5). Additionally, DM can 
adversely affect brain tissue and cerebrovascular structures, leading to 
a spectrum of structural and functional disturbances within the 
nervous system (6, 7). In recent decades, DM has transitioned from 
being predominantly viewed as a metabolic ailment to a multifaceted 
disease entity, underscoring the increasing burden and risks posed by 
its emerging complications (8).

Diabetes mellitus has long been recognized as a potential 
precursor to widespread cognitive dysfunction (9, 10). In the specific 
context of type 2 diabetes mellitus (T2DM), cognitive decline 
manifests through a sequential progression encompassing diabetes-
related cognitive decline, mild cognitive impairment (MCI), and 
eventually dementia (10–13). This cognitive dysfunction, 
characterized by impairments in memory, attention, language, and 
executive function, presents a formidable challenge for patients, their 
families, and the wider healthcare community (14). Hence, early 
identification of alterations in T2DM patients with Mild Cognitive 
Impairment (MCI) is crucial not only for optimizing patient care but 
also for advancing future therapeutic strategies.

The effects of T2DM on brain function and cognitive dysfunction 
have garnered considerable attention within the academic community. 

The intricate relationship between T2DM and cognitive decline is 
multifaceted, and although the precise mechanisms underlying this 
connection remain partially elusive, several potential pathological 
processes have come to light. Studies have highlighted hyperglycemia, 
vascular factors, oxidative stress, inflammation, and insulin resistance 
as crucial contributors to cognitive impairment in individuals with 
T2DM (3, 15). Furthermore, extensive research has been conducted 
to identify risk factors for cognitive dysfunction in T2DM patients. 
Numerous studies have pinpointed age, education level, hemoglobin 
A1c (HbA1c) levels, creatine kinase levels, severe hypoglycemia 
events, and malnutrition as independent predictors of cognitive 
impairment in T2DM patients (12, 16, 17). Additional studies have 
further contributed to our understanding of this complex issue by 
developing and validating risk scores for predicting mild cognitive 
impairment in T2DM patients (18, 19). The functional alterations in 
the brain are intrinsically tied to the structural modifications 
occurring across various brain regions, and these structural changes, 
in turn, elicit corresponding functional shifts (3, 6, 14, 20). Emerging 
evidence suggests that subtle neurostructural alterations may precede 
clinical manifestations of cognitive impairment in individuals with 
Type 2 Diabetes Mellitus (T2DM). Advanced neuroimaging studies 
have revealed microstructural brain abnormalities including 
disruptions in white matter integrity, gray matter atrophy, and altered 
functional connectivity in T2DM patients prior to the onset of overt 
cognitive deficits. These preclinical neuroimaging findings underscore 
the potential utility of biomarkers derived from magnetic resonance 
imaging (MRI) and related modalities for identifying individuals at 
elevated risk of diabetic-related cognitive decline. Notably, such 
biomarkers may offer critical diagnostic insights in clinical scenarios 

https://doi.org/10.3389/fneur.2025.1599793
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Li et al.� 10.3389/fneur.2025.1599793

Frontiers in Neurology 03 frontiersin.org

where early neurocognitive symptoms remain subclinical, 
underscoring their value in informing timely intervention strategies 
to mitigate progressive neuronal damage (21). Neuroimaging studies 
have demonstrated that individuals with T2DM exhibit significantly 
greater cerebral atrophy and vascular pathology relative to 
age-matched healthy controls. Of particular significance, quantitative 
MRI analyses reveal accelerated gray matter volume loss, cortical 
thinning in frontal and temporal regions critical for cognitive 
function, and increased amyloid-beta deposition—pathological 
hallmarks collectively implicated in the neurodegenerative cascade 
underlying diabetic-related cognitive impairment. These imaging 
metrics not only correlate with metabolic dysregulation, such as 
chronic hyperglycemia and insulin resistance, but also provide 
mechanistic insights into the synergistic effects of vascular damage 
and neurodegenerative processes on neurocognitive trajectories in 
T2DM populations (22–25). Furthermore, advanced neuroimaging 
analyses have elucidated that T2DM is associated with both 
generalized cortical atrophy and localized neurodegenerative 
alterations within specific morphometric brain networks. Of 
particular significance, these studies have identified overlapping 
neuroanatomical substrates in cognitively salient regions, most 
prominently within the limbic-paralimbic circuitry—a network 
critical for memory consolidation, emotional regulation, and cognitive 
control. Notably, the hippocampus, a medial temporal lobe structure 
integral to episodic memory encoding, and the cingulate gyrus, a key 
node in the salience network involved in attentional modulation, 
emerge as particularly vulnerable to T2DM-related neuropathology. 
These regional vulnerabilities are hypothesized to arise from 
synergistic metabolic stressors, including chronic hyperglycemia, 
vascular inflammation, and neuroinflammatory cascades, which 
collectively disrupt synaptic integrity and promote neuronal apoptosis 
in susceptible circuits (17, 26).

Preclinical investigations utilizing well-established rodent models, 
particularly diabetic rats, have provided critical insights into the 
neuropathological sequelae of diabetes mellitus (DM). These studies 
demonstrate that chronic hyperglycemia induces progressive brain 
atrophy, accompanied by demyelination processes characterized by 
myelin degradation and vacuolar disintegration of white matter tracts. 
Notably, such histopathological hallmarks are recapitulated across 
species, underscoring their translational relevance to human T2DM-
related neurocognitive decline (27). These findings collectively 
underscore the intricate interplay between structural and functional 
brain changes in T2DM and their potential implications for 
cognitive health.

While prior investigations have dissected individual risk factors 
for neurocognitive dysfunction in type 2 diabetes mellitus (T2DM), 
critical knowledge gaps persist regarding the hierarchical importance 
of these variables and their interdependent relationships. Specifically, 
conventional analytical approaches have not systematically integrated 
multidimensional risk profiles, nor have they leveraged artificial 
intelligence (AI) methodologies to unravel the complexity of this 
condition. These limitations underscore the need for innovative, data-
driven frameworks that can dissect the pathogenetic underpinnings 
of T2DM-related neurocognitive dysfunction.

To address this critical gap, our study adopts a novel AI-driven 
approach that harmonizes three interconnected layers of data. In the 
study, a comprehensive set of 705 structural features, a series of 
neuropsychological tests, and standard laboratory tests were utilized. 

By integrating these multidimensional risk factors into a diagnostic 
framework, an artificial intelligence (AI)-driven automatic diagnostic 
model is developed to enable high-fidelity, data-driven assessment of 
neurocognitive dysfunction in type 2 diabetes. Central to this 
framework is the implementation of a Random Forest (RF) classifier, 
an ensemble learning algorithm that overcomes the limitations of 
conventional models through dual innovation. First, its inherent high-
dimensional data processing capability addresses feature redundancy 
in neuroimaging analysis, reduces overfitting risks while preserving 
critical biomarkers through majority voting. Second, the model’s 
nonlinear modeling prowess captures intricate pathophysiological 
interactions, through recursive partitioning of feature space, each 
decision tree encodes nonlinear relationships, such as the threshold 
effects between hippocampal atrophy and HbA1c levels, while the 
forest ensemble aggregates these patterns to reveal higher-order 
synergies between structural brain changes, metabolic dysregulation, 
and cognitive test performance. This model transcends conventional 
diagnostic paradigms by synthesizing heterogeneous clinical, 
metabolic, and neuroimaging variables into actionable risk profiles, 
ensuring both sensitivity and specificity in identifying subtle cognitive 
declines. Furthermore, by analyzing the optimal features in our AI 
automatic diagnostic model, we  gain critical insights to design 
personalized treatment strategies. Specifically, the model identifies 
which modifiable risks have the greatest impact on cognitive decline 
in diabetes. This allows clinicians to tailor interventions to each 
patient’s unique profile. The AI model detects subtle cognitive changes 
earlier than traditional methods by pinpointing risk combinations. 
This multimodal AI model enables clinicians to accurately and 
objectively assess whether patients with type 2 diabetes mellitus have 
concomitant mild cognitive impairment, thereby providing robust 
support for subsequent precise diagnosis and treatment decisions. 
Meanwhile, clinicians receive a flexible framework to delay cognitive 
decline using timely, research-backed treatments. Ultimately, this 
approach showcases AI’s power to translate complex biological 
patterns into practical solutions, bridging the gap between lab 
discoveries and patient treatment.

This innovative model represents a paradigm shift in diagnostic 
precision, leveraging multidimensional data integration to transcend 
conventional diagnostic limitations. By decoding the intricate 
interplay between metabolic dysregulation and neurocognitive 
deficits, it not only accelerates the identification of preclinical diabetes-
related cognitive impairment but also equips clinicians with a dynamic 
risk calculus framework. Such granular diagnostic stratification 
enables the formulation of individualized care pathways, merging 
pharmacotherapeutics, lifestyle optimization, and neurocognitive 
rehabilitation into a cohesive strategy. The model’s capacity to 
operationalize complex biological insights into actionable clinical 
intelligence heralds a new era in preventive neuroendocrinology, 
where timely intervention can potentially disrupt the pathogenic 
cascade linking hyperglycemia to dementia.

Materials and methods

Participants

A total of 90 participants were enrolled in this study, comprising 
30 healthy controls, 30 patients with type 2 diabetes mellitus (T2DM) 
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without mild cognitive impairment (T2DM group), and 30 patients 
with T2DM accompanied by mild cognitive impairment (T2DM-
MCI group). Demographic and clinical data, including gender, age, 
and years of education, were systematically collected and analyzed for 
all participants. The study population was recruited from our hospital 
between October 2015 and June 2024, encompassing individuals with 
T2DM, both with and without MCI. The diagnosis of T2DM was 
established in accordance with the diagnostic criteria outlined by the 
World Health Organization (WHO). For the diagnosis of MCI, the 
criteria proposed by the European Alzheimer’s Disease Consortium 
were applied. This criteria included the following parameters: Mini-
Mental State Examination (MMSE) score > 24, Clinical Dementia 
Rating (CDR) score ≥ 0.5, Montreal Cognitive Assessment (MoCA) 
score < 26, normal activities of daily living (ADL) scores, and 
subjective complaints of memory impairment. All participants 
underwent structural MRI scanning as well as comprehensive 
neurological and neuropsychological evaluations. Prior to the 
commencement of the study, written informed consent was obtained 
from each participant. Only right-handed individuals were included. 
Participants with a history of brain injury, major depression, 
Parkinson’s disease, alcoholism, epilepsy, or any other psychiatric or 
neurological disorder were excluded from the study. Additionally, 
individuals with contraindications to MRI, severe claustrophobia, 
dementia (Mini-Mental State Examination score ≤ 24), or severe 
depression (Hamilton Depression Rating Scale score ≥ 18) were also 
excluded. In our study, patients with T2DM who exhibited 
microvascular complications, specifically neuropathy, retinopathy, 
and nephropathy were excluded from participation. We  enrolled 
thirty volunteers as healthy controls (HC), who reported no vascular 
risk factors, nervous system diseases, psychiatric illnesses, or 
cognitive complaints. For each individual, weight, height, and body 
mass index (BMI) were meticulously measured. This study was 
approved by the Medical Ethics Committee of our institution and was 
conducted in strict adherence to the principles of the Declaration 
of Helsinki.

Neuropsychological assessments

The neuropsychological assessments encompassed a 
comprehensive battery of tests, including the Mini-Mental State 
Examination (MMSE), Montreal Cognitive Assessment (MoCA), 
Hamilton Depression Scale (HAMD), Digit Symbol Coding Test 
(DSCT), Digit Span Test (DST), Verbal Fluency Test (VFT), 
Rey-Osterrieth Complex Figure Test (ROCF), Auditory Verbal 
Learning Test (AVLT), Trail-Making Test (TMT).

Standard laboratory tests

Standard laboratory analyses were conducted to assess a 
comprehensive panel of biomarkers, including glycosylated 
hemoglobin (HbA1c), fasting C-peptide, fasting insulin, fasting 
plasma glucose (FPG), triglycerides (TG), total cholesterol (TC), 
low-density lipoprotein (LDL), high-density lipoprotein (HDL), blood 
urea nitrogen (BUN), homocysteine, urinary microalbumin, uric acid, 
cystatin C, serum creatinine, thyroid stimulating hormone (TSH), free 
triiodothyronine (FT3), and free thyroxine (FT4).

MR image acquisition

All magnetic resonance imaging (MRI) examinations were 
performed using a 3-Tesla Trio MRI scanner (Siemens Healthcare, 
Erlangen, Germany) with a 12-channel phased-array head coil. 
Participants were instructed to maintain a supine position, remain 
motionless, and keep their eyes closed throughout the imaging 
procedure. The three-dimensional High-resolution structural images 
were obtained using a T1-weighted magnetization-prepared rapid 
acquisition gradient echo (MPRAGE) sequence with the following 
parameters: inversion time (TI) = 900 ms, echo time (TE) = 2.52 ms, 
repetition time (TR) = 1,900 ms, flip angle = 9°, 176 slices, slice 
thickness = 1.0 mm, matrix size = 256 × 256, and voxel 
size = 1 × 1 × 1 mm3. Subsequently, conventional brain T1-weighted 
imaging (TE/TR = 2.78/200 ms, flip angle = 70°, 25 slices, slice 
thickness = 4.0 mm, matrix size = 384 × 384, voxel 
size = 0.7 × 0.6 × 5 mm3) and fluid-attenuated inversion recovery 
(FLAIR) imaging (TI/TE/TR = 2500/93/9000 ms, flip angle = 130°, 25 
slices, slice thickness = 4.0 mm, matrix size = 256 × 256, voxel 
size = 0.9 × 0.9 × 4 mm3) were performed on all subjects to exclude 
potential white matter abnormalities and organic brain lesions.

Image processing

The MRI scanner-acquired data were exported to a dedicated 
image-processing workstation, and subsequent offline analysis was 
conducted utilizing the Linux Operating System. Prior to any further 
examination of the 3D brain images, all images were meticulously 
verified to ensure they were unaffected by head motion. Subsequently, 
the data were converted into the MGZ format (a compressed file 
format developed by Massachusetts General Hospital). Utilizing 
FreeSurfer software (version 5.3.0, accessible at http://surfer.nmr.mgh.
harvard.edu), we  measured the structural features encompassing 
cortical surface area, volume, thickness, curvature index, folding 
index, Gaussian curvature, mean curvature, thickness standard 
deviation, nuclear volume, hippocampal volume, and white matter 
volume. The automated processing stream of FreeSurfer encompassed 
several crucial steps, including spatial normalization via Talairach 
coordinate transformation, skull stripping using hybrid watershed/
surface deformation algorithm, topological defect correction with 
spherical inflation-based surface reconstruction, inflation of the 
folded surface, and registration into an average spherical surface 
template. To achieve sub-millimeter precision in segmenting gray/
white matter tissue and cerebrospinal fluid (CSF), a deformable 
surface algorithm was employed.

Features selection

A robust two-step feature selection methodology was 
implemented, integrating Minimum Redundancy Maximum 
Relevance (MRMR) and Least Absolute Shrinkage and Selection 
Operator (LASSO) to identify the most diagnostic features. The 
process was incorporated into a 5-fold cross-validation framework, 
where the data were divided into training and testing sets. Features 
selected based on the training sets were aggregated by voting to 
determine the final set used in the model. Initially, MRMR was applied 
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to the training sets in each fold of the 5-fold cross-validation, selecting 
the top  10 features most relevant to the target variable while 
minimizing redundancy. Subsequently, LASSO was applied to these 
features for further refinement within each fold, using an L1 
regularization term to promote sparsity by shrinking some coefficients 
to zero. This comprehensive approach ensured the retention of only 
the most diagnostic features, thus enhancing model performance and 
interpretability. The final set of features was determined based on the 
voting results from all training folds, identifying the most consistently 
selected features across them.

Models building and evaluation

Following the feature selection, the Random Forest (RF) classifier, 
a powerful machine learning model within the realm of artificial 
intelligence, was meticulously trained utilizing a curated feature set 
that had undergone rigorous refinement. The model architecture was 
configured with 100 decision trees (ntree = 100) to ensure convergence 
of error estimation, with maximum tree depth constrained to 2 levels 
(max_depth = 2) to prevent overfitting. Notably, a 5-fold cross-
validation approach was implemented, offering a robust estimation of 
model utility. Following this cross-validation, the average accuracy 
and Receiver Operating Characteristic (ROC) curves were computed. 
This method provided a robust and unbiased assessment of the 
model’s diagnostic capabilities, thereby ensuring a comprehensive and 
objective evaluation of its utility.

Statistical analyses

Statistical analyses were conducted using IBM SPSS Statistics 
(version 20.0; Armonk, NY). The Kolmogorov–Smirnov test was 
employed to assess data distribution normality. For normally 
distributed variables, intergroup comparisons were performed using 
one-way analysis of variance (ANOVA), with post hoc Bonferroni-
corrected comparisons conducted following significant ANOVA 
results. Non-normally distributed variables were analyzed using the 
Kruskal-Wallis test. Categorical data were evaluated using Chi-square 
tests. Both feature selection and machine learning model construction 
were established on the uAI Research Portal (28). Subsequently, the 
diagnostic value of each model was assessed through the Areas Under 
the Curves (AUCs). Specifically, an AUC exceeding 0.9 was indicative 
of excellent diagnostic efficacy; an AUC ranging from 0.7 to 0.9 
suggested good diagnostic efficacy; an AUC between 0.5 and 0.7 
implied poor diagnostic efficacy; and an AUC not surpassing 0.5 
signified the absence of diagnostic value.

Results

Demographic characteristics, clinical parameters, and 
neuropsychological data of the T2DM-MCI, T2DM, and HC cohorts 
are summarized in Tables 1, 2. The three groups exhibited comparable 
baseline profiles, with no statistically significant differences observed 
in age, sex distribution, educational attainment, systolic/diastolic 

TABLE 1  Demographic and clinical characteristics of T2DM-MCI, T2DM, and HC groups.

Data T2DM-MCI (n = 30) T2DM (n = 30) HC (n = 30) F-value
(t/χ2)

p value

Demographic data

Age (years) 55.9 ± 6.54 54.97 ± 5.54 53.17 ± 6.57 1.491 0.231

Gender (male/female) 12/18 19/11 14/16 3.467 0.177a

Education (years) 10.43 ± 2.94 11.90 ± 2.92 11.80 ± 2.99 2.316 0.105

Diabetes duration (years) 6.93 ± 5.46 7.93 ± 5.98 — 0.699 0.933

Clinical data

HbA1c (%) 9.13 ± 2.07 8.84 ± 1.72 5.50 ± 0.36 49.505 <0.001* #

Fasting glucose 

(mmol/L)
9.14 ± 3.05 8.56 ± 1.97 5.47 ± 0.63 25.769 <0.001* #

BMI (kg/m2) 25.59 ± 3.31 24.08 ± 3.02 23.45 ± 2.59 4.052 0.021*

LDL cholesterin 

(mmol/L)
3.36 ± 1.06 2.93 ± 0.78 3.10 ± 0.67 1.874 0.160

HDL cholesterin 

(mmol/L)
1.16 ± 0.33 1.18 ± 0.30 1.40 ± 0.33 5.167 0.008* #

Total cholesterin 

(mmol/L)
5.24 ± 1.45 4.96 ± 1.37 5.21 ± 0.96 0.432 0.651

Diastolic blood pressure 

(mmHg)
80.60 ± 10.33 82.90 ± 9.80 79.77 ± 9.17 0.895 0.441

Systolic blood pressure 

(mmHg)
130.57 ± 18.25 131.37 ± 14.78 128.13 ± 18.10 0.194 0.749

All subjects (T2DM-MCI, T2DM, HC) were matched for age, gender, and education. Values are the mean ± standard deviation. aChi-square test for gender. The comparisons of demographic 
and clinical data among three groups were performed with ANOVA. The level of significance for intergroup differences was set at p < 0.05. *Denotes p < 0.05 T2DM-MCI vs. HC with post hoc 
test, Bonferroni corrected. #Denotes p < 0.05 T2DM vs. HC with post hoc test, Bonferroni corrected. No significant difference was shown between T2DM and T2DM-MCI with post hoc test, 
Bonferroni corrected. BMI, body mass index; HbA1c, glycosylated hemoglobin; HDL, high-density lipoprotein; LDL, low-density lipoprotein.
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FIGURE 1

The maximum relevance-minimum redundancy (mRMR) algorithm, reducing irrelevant and redundant data.

blood pressure. The entire brains were analyzed using automated 
segmentation methods to extract an extensive dataset comprising 705 
structural features. These features encompassed a variety of metrics, 
including cortical surface area, volume, thickness, curvature index, 
folding index, Gaussian curvature, mean curvature, thickness standard 
deviation, nuclear volume, hippocampal volume, and white matter 
volume. To facilitate model establishment, a comprehensive dataset 
was organized, incorporating this extensive set of structural features, 
along with a series of neuropsychological data and standard 
laboratory data.

To refine the dataset and enhance model performance, the 
minimum redundancy maximum relevance (MRMR) method was 
employed to eliminate irrelevant and redundant features (Figure 1). 
Subsequently, the least absolute shrinkage and selection operator 
(LASSO) algorithm was applied for further feature selection, ensuring 
that only the optimal features were retained (Figure 2).

Through these two rigorous feature selection strategies, eight 
optimal features were ultimately selected including bilateral 
brainstem volume, left hippocampus volume, left transverse 
temporal gyrus volume, bilateral posterior corpus callosum 

TABLE 2  Comparison of the neuropsychological test results among T2DM-MCI, T2DM and HC groups.

Test T2DM-MCI 
(n = 30)

T2DM (n = 30) HC (n = 30) F-value
(t/χ2)

p value

MMSE 27.93 ± 1.31 28.43 ± 1.07 28.43 ± 1.17 1.774 0.176

MoCA 22.93 ± 1.95 27.00 ± 0.83 27.77 ± 1.28 99.370 <0.001* #

DST-forwards 8.93 ± 1.08 8.87 ± 0.82 9.57 ± 1.38 3.584 0.032

DST-backwards 4.67 ± 0.88 5.03 ± 0.89 5.53 ± 1.17 5.805 0.004*

TMT-A 63.80 ± 21.66 51.97 ± 17.44 48.57 ± 16.61 5.484 0.006* #

TMT-B 80.77 ± 26.59 67.73 ± 24.19 61.33 ± 22.74 4.877 0.010*

WAIS 35.63 ± 8.33 41.23 ± 10.83 46.23 ± 11.99 7.658 0.001*

ROCF-immediate recall 19.00 ± 6.64 22.63 ± 6.95 24.08 ± 8.49 3.754 0.027*

ROCF-copy 31.97 ± 3.88 32.55 ± 4.11 33.17 ± 1.90 0.911 0.406

ROCF-delayed recall 

(20 min)
18.20 ± 6.19 21.85 ± 7.13 23.65 ± 7.74 4.659 0.012*

VFT 40.60 ± 7.04 44.10 ± 8.29 44.83 ± 6.06 2.970 0.057

AVLT-immediately recall 19.50 ± 4.55 22.77 ± 3.83 22.83 ± 5.00 5.406 0.006* #

AVLT-recognition 21.10 ± 3.60 21.87 ± 1.48 22.90 ± 1.45 4.252 0.017*

AVLT-delayed recall 

(5 min)
7.23 ± 2.40 7.80 ± 1.56 8.20 ± 1.94 1.775 0.176

AVLT-delayed recall 

(20 min)
6.83 ± 2.64 7.33 ± 1.77 7.87 ± 2.18 1.620 0.204

Values are the mean ± standard deviation. The comparisons of each neuropsychological test among three groups were performed with ANOVA. The level of significance for intergroup 
differences was set at P < 0.05. *Denotes p < 0.05 T2DM-MCI vs. HC with post hoc test, Bonferroni corrected. #Denotes p < 0.05 T2DM-MCI vs. T2DM with post hoc test, Bonferroni corrected. 
No significant difference was shown between T2DM and HC with post hoc test, Bonferroni corrected. MMSE, mini-mental state examination; MoCA, montreal cognitive assessment; DST, 
digital span test; TMT, trail making test; WAIS, Wechsler adult intelligence scale; ROCF, Rey-Osterrieth complex figure; VFT, verbal fluency test; AVLT, auditory verbal learning test.

https://doi.org/10.3389/fneur.2025.1599793
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Li et al.� 10.3389/fneur.2025.1599793

Frontiers in Neurology 07 frontiersin.org

volume, left medial orbitofrontal cortex Gaussian curvature, 
glycosylated hemoglobin levels, blood sugar levels, and the Digit 
Span Test (DST) backward score. The optimal structural features 
were shown in Figure 3.

The Random Forest (RF) model, based on the combined 
features, exhibited the excellent performance, with mean AUCs of 
0.959 (95% CI, 0.940–0.997, mean specificity = 94.2%, mean 
sensitivity = 88.3%, mean accuracy = 88.3% and mean 

FIGURE 2

After applying the LASSO feature selection method, a total of 8 optimal features were retained (p < 0.05). (A) The least absolute shrinkage and selection 
operator (LASSO) algorithm, highlighting feature selection through regularization. (B) LASSO coefficients and corresponding optimal features.

FIGURE 3

The optimal structural features were selected including bilateral brainstem volume, left hippocampus volume, left transverse temporal gyrus volume, 
bilateral posterior corpus callosum volume, left medial orbitofrontal cortex Gaussian curvature.
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precision = 88.3%) for the training dataset and mean AUCs of 
0.887 (95% CI, 0.746–0.992, mean specificity = 85.0%, mean 
sensitivity = 70.0%, mean accuracy = 70.0% and mean 
precision = 69.6%) for the testing dataset, based on 5-fold cross-
validation (Table 3). The receiver operating characteristic (ROC) 
analysis revealed superior discriminative capacity and the 
unwavering robustness of the random forest model (Figure 4).

Discussion

This study demonstrates the feasibility of developing an 
artificial intelligence (AI) framework utilizing routine 
T1-weighted MRI, clinical biomarkers, and neuropsychological 
scales to differentiate type 2 diabetes mellitus (T2DM) patients 
with mild cognitive impairment (MCI), non-cognitively impaired 
T2DM individuals, and healthy controls. We  identified eight 
characteristic signatures reflecting the multifactorial 
pathophysiology of T2DM-MCI. Notably, the combined features 
of bilateral brainstem volume reduction, left hippocampal atrophy, 
diminished left transverse temporal gyrus volume, and posterior 
corpus callosum thinning potentially align with established 
neurodegeneration patterns in metabolic disorders. The inclusion 
of glycosylated hemoglobin and blood glucose levels further 
underscores the potential interaction between chronic 
hyperglycemia and neural degeneration (29–31). The Random 
Forest (RF) model exhibited robust diagnostic performance 
(training AUC = 0.959, testing AUC = 0.887), emphasizing the 
complementary value of integrating structural MRI metrics, 
metabolic, and neuropsychological data. The RF model 
demonstrates exceptional capability in automatically capturing 
nonlinear relationships and higher-order interactions among 
variables through its hierarchical cascade structure of decision 
trees, eliminating the need for stringent assumptions regarding 
data distributions. Particularly evident in its capacity to 
synergistically integrate structural MRI metrics, metabolic 
parameters, and neuropsychological test outcomes—a critical 
requirement for deciphering the complex pathophysiological 
interplay in diabetic cognitive impairment.

The structural alterations identified in T2DM-MCI patients 
predominantly localize to hub regions of the default mode 
network (DMN) and executive control network (ECN), offering 
insights into the neural mechanisms of diabetes-associated 
cognitive decline. Reduced left hippocampal volume, a hallmark 
feature in our study, is a critical node of the DMN, which is 
responsible for episodic memory and self-referential processing 
(32). Hippocampal atrophy in T2DM may arise from chronic 
hyperglycemia-induced oxidative stress and impaired insulin 
signaling, disrupting synaptic plasticity and promoting amyloid-β 
deposition (33). This aligns with findings from Gold et al. (34) 
who demonstrated reduced hippocampal volume in diabetic 
patients correlating with poor glycemic control. Along with 
structural changes in the hippocampus, there could be  also 
abnormalities in its functional properties. The study by Chen et al. 
(35) revealed a significant decrease in spontaneous brain activity 
in the hippocampal region of patients with cognitive impairment. 
In addition, the multimodal meta-analysis revealed complex 
conjoint and dissociated alterations in brain structure and T
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function in patients with T2DM-MCI, primarily involving the 
DMN, limbic system, cerebellum, insula, and visual cortex (36).

Concurrent thinning of the bilateral posterior corpus 
callosum, a major white matter tract connecting parietal-occipital 
regions, likely impairs interhemispheric communication within 
the ECN and dorsal attention network (DAN), exacerbating 
deficits in working memory and attentional control (37). The 
observed reduction in left transverse temporal gyrus volume and 
left medial orbitofrontal cortex (mOFC) curvature anomalies 
implicate dysfunction in multisensory integration and salience 
network (SN) regulation (38). The transverse temporal gyrus is 
not only central to auditory processing but also contributes to 
higher-order cognitive functions through its connections to 
frontoparietal networks (39). Atrophy in this region may reflect 
early neurodegeneration in parieto-temporal circuits, 
compounded by diabetes-related microvascular damage. 
Meanwhile, abnormal gaussian curvature in the mOFC, a key SN 
node, may suggest altered cortical folding patterns due to 
metabolic stress. The mOFC integrates visceral and emotional 
stimuli, and its structural anomalies may disrupt SN-ECN 
interactions, impairing decision-making and error monitoring 
(40). Notably, the inclusion of the Digit Span Test (DST) backward 
score - a measure of working memory - further underscores ECN 
inefficiency, potentially tied to frontal-striatal circuit disruption 
from hyperglycemia-induced white matter lesions.

The bilateral brainstem volume reduction highlights the 
vulnerability of neuromodulatory nuclei to diabetic 
pathophysiology, particularly within monoaminergic systems. The 
brainstem houses serotonergic (raphe nuclei) and noradrenergic 
(locus coeruleus) neurons that regulate SN activity and arousal 
(41). Volume loss in these regions may diminish the brain’s 
capacity to prioritize salient stimuli, contributing to attentional 
deficits in T2DM-MCI. This aligns with diffusion tensor imaging 

studies showing diabetes-associated axonal degeneration in 
corticospinal tracts (42). Furthermore, elevated glycosylated 
hemoglobin (HbA1c) and blood glucose levels likely exacerbate 
neurodegeneration through advanced glycation end-product 
(AGE) accumulation and blood–brain barrier dysfunction, 
particularly in glucose-sensitive regions like the hippocampus 
(43). Chronic hyperglycemia accelerates cerebral hypometabolism 
in frontotemporal networks, mirroring Alzheimer’s-like metabolic 
patterns (44).

Chronic hyperglycemia and elevated HbA1c levels likely drive 
cognitive impairment in T2DM-MCI through multiple synergistic 
pathways, including AGE accumulation, oxidative stress, and 
blood–brain barrier (BBB) dysfunction (44, 45). Prolonged 
hyperglycemia accelerates the formation of AGEs, which crosslink 
with extracellular matrix proteins, impairing neuronal plasticity 
and microvascular integrity (45). AGEs also bind to their receptors 
(RAGE) on endothelial cells, triggering pro-inflammatory 
cascades that exacerbate neuroinflammation and synaptic loss, 
particularly in the hippocampus and prefrontal cortex - regions 
critical for memory and executive function (45). The studies 
demonstrated that AGE accumulation in T2DM patients correlates 
with reduced gray matter volume and cognitive decline (6, 46, 47). 
Concurrently, hyperglycemia-induced oxidative stress depletes 
endogenous antioxidants, leading to mitochondrial dysfunction 
and neuronal apoptosis, as observed in diabetic rodent models 
(48). Hyperglycemia further disrupts cerebral hemodynamics and 
BBB permeability, fostering a neurotoxic milieu. Elevated blood 
glucose levels impair endothelial function, reducing cerebral 
blood flow and causing chronic hypoxia in glucose-sensitive 
regions like the hippocampus (49). BBB leakage, mediated by tight 
junction protein degradation, allows influx of neurotoxic plasma 
components (e.g., fibrinogen, thrombin), which activate microglia 
and astrocytes, driving neuroinflammation (50). This process is 

FIGURE 4

ROC curves illustrating the performance of the random forest model using combined features via 5-fold cross-validation. (A) The ROC curve depicting 
the performance of the random forest model on the training dataset. (B) The ROC curve depicting the performance of the random forest model on 
the testing dataset.
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compounded by insulin resistance, which diminishes 
neuroprotective insulin signaling pathways essential for neuronal 
survival and tau phosphorylation regulation (33). Brundel et al. 
(23) reported that T2DM patients exhibit accelerated white matter 
hyperintensities and cortical thinning, paralleling Alzheimer’s 
disease-like neurodegeneration. The bilateral posterior corpus 
callosum thinning observed in our study may thus reflect BBB 
breakdown and Wallerian degeneration due to sustained metabolic 
insult. The interplay between metabolic dysregulation and 
structural brain changes may propagate a vicious cycle of cognitive 
decline. Hyperglycemia-induced hippocampal atrophy disrupts 
the DMN, impairing memory consolidation, while prefrontal 
cortex damage undermines ECN efficiency. Reduced brainstem 
volume, as identified in our model, may dysregulate 
monoaminergic systems (e.g., serotonin, norepinephrine), 
impairing SN-mediated attention and error monitoring. Notably, 
the DST backward score  - a marker of working memory  - 
correlates with frontal-striatal circuit integrity, which is vulnerable 
to glucose toxicity. These network-level disruptions align with the 
“common soil” hypothesis, positing shared vascular and 
inflammatory pathways between T2DM and neurodegeneration. 
Future interventions targeting AGE inhibitors, antioxidant 
pathways, or BBB stabilization may mitigate diabetes-associated 
cognitive decline.

The machine learning framework developed in our study 
demonstrates that a strategically curated combination of 
neuroanatomical, metabolic, and neuropsychological features 
holds substantial discriminative power for early T2DM-MCI 
detection. The eight optimal features selected through MRMR-
LASSO - spanning bilateral brainstem volume, left hippocampal 
atrophy, and glycosylated hemoglobin levels - reflect a multimodal 
pathophysiology that single-modality approaches might overlook. 
Notably, the integration of structural MRI metrics (e.g., left 
medial orbitofrontal cortex gaussian curvature) with biochemical 
markers (HbA1c, blood glucose) and the DST backward score 
aligns with emerging evidence that diabetes-related cognitive 
decline arises from synergistic interactions between neural 
degeneration and metabolic dysregulation. The parameters for the 
Random Forest (RF) model, including the number of decision 
trees (100) and maximum tree depth (2), were rigorously 
optimized through an automated hyperparameter tuning 
algorithm (51) in training dataset. By leveraging a widely 
recognized Python package for hyperparameter tuning, this 
methodology ensures reproducibility and alignment with best 
practices in machine learning. This data-driven approach ensured 
that the final model parameters were objectively optimized for 
both diagnostic performance and clinical applicability. The RF 
model’s robustness (training AUC = 0.959, testing AUC = 0.887) 
underscores the clinical viability of AI-driven tools for parsing 
complex, high-dimensional datasets. Its superior specificity 
(94.2% in training, 85.0% in testing) suggests particular utility in 
minimizing false positives during early screening, a critical 
advantage given the subtlety of T2DM-MCI manifestations.

Our study still had several limitations. Our study’s sample size 
was relatively small, attributable to stringent inclusion criteria. 
Though this situation bolstered cohort homogeneity, it potentially 
curtailed findings’ generalizability. The model’s sensitivity, 
specificity, and generalizability in actual clinical settings are likely 

to encounter challenges and limitations. The exclusion of T2DM 
patients with microvascular complications (e.g., neuropathy, 
retinopathy, nephropathy) undoubtedly introduces spectrum bias. 
While this exclusion was necessary in our initial proof-of-concept 
study to control for potential confounding effects and isolate the 
relationship between T2DM, brain structure, and cognitive status, 
the exclusion of T2DM patients with complications might limit 
generalizability to the broader T2DM population, potentially 
inflating performance estimates. Our cohort represents a ‘cleaner’ 
phenotypic subgroup, and consequently, the excellent diagnostic 
performance reported here may be over-optimistic when applied 
to the broader, more heterogeneous T2DM population seen in 
clinical practice, which includes patients with a wide range of 
comorbidities and complications. Therefore, it is critically 
important to emphasize that external validation in independent, 
larger, and more representative cohorts—specifically those 
including T2DM patients across the full spectrum of disease 
severity and complication profiles—is an essential next step. Such 
validation is a mandatory prerequisite for any future clinical 
translation of this model. In our future studies, we would utilize a 
larger sample size to further substantiate the findings of our 
current research. The disparity between training and testing 
performance highlights the need for external validation in diverse 
cohorts. While our current model has already demonstrated 
strong performance and broad applicability, we intend, in future 
work, to further consolidate its generalizability by incorporating 
additional multicentre datasets for external validation. The 
model’s reliance on routine T1-weighted MRI enhances scalability 
but may exclude dynamic functional or microstructural insights 
from advanced modalities like diffusion tensor imaging. Future 
research could integrate longitudinal HbA1c trajectories or 
amyloid-PET data to refine diagnostic accuracy, while also 
exploring the mechanisms in depth. In the follow-up study, a 
longitudinal study incorporating both MCI patients and the 
patients who revert from T2DM with MCI to T2DM alone will 
be  conducted to investigate the diagnostic potential of our 
Random Forest model. Acknowledging the limitations of this 
study is crucial. The relatively modest sample size, although 
comparable to earlier pioneering studies in this specific field, 
inherently limits the generalizability of our findings and may 
introduce instability in the feature selection process. While the 
repeated cross-validation strategy and the reported confidence 
intervals help provide a more robust assessment under this 
constraint, the performance estimates would benefit from 
validation in a larger, independent cohort. Therefore, a primary 
direction for our future work will be to recruit a larger number of 
participants to further validate and refine the proposed model, 
enhance the stability of the identified biomarkers, and improve 
the overall generalizability of the results.

Conclusion

The Random Forest model exhibits remarkable diagnostic 
accuracy for T2DM patients with MCI. The external validation in 
more representative cohorts including patients with complications 
is essential before clinical implementation. Within this feature set, 
eight optimal indicators have been identified as potential 
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independent biomarkers for early-stage cognitive impairment 
detection in T2DM. These indicators consist of five structural 
features, one neuropsychological test feature, and two standard 
laboratory test features, all of which are crucial for elucidating the 
pathophysiological mechanisms of T2DM-related cognitive 
impairment. Our fully automated RF model demonstrates the 
capability to rapidly process magnetic resonance imaging data, 
thereby enabling precise and objective differentiation of T2DM 
patients with MCI from HCs and T2DM patients. This 
advancement not only significantly enhances diagnostic efficiency 
but also holds substantial promise for clinical application, offering 
a valuable tool for the early diagnosis of cognitive impairment in 
T2DM patients.
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