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Objective: This study aims to develop and validate an automated machine 
learning model to predict perioperative ischemic stroke (PIS) risk in endovascularly 
treated patients with ruptured intracranial aneurysms (RIAs), with the goal of 
establishing a clinical decision-support tool.

Methods: In this retrospective cohort study, we analyzed RIA patients undergoing 
endovascular treatment at our neurosurgical center (December 2013–February 
2024). The least absolute shrinkage and selection operator (LASSO) method 
was used to screen essential features associated with PIS. Based on these 
features, nine machine learning models were constructed using a training set 
(75% of participants) and assessed on a test set (25% of participants). Through 
comparative analysis, using metrics such as area under the receiver operating 
characteristic curve (ROCAUC) and Brier score, we  identified the optimal 
model—random forest (RF)—for predicting PIS. To interpret the RF models, 
we utilized the Shapley Additive exPlanations (SHAP).

Results: The final cohort comprised 647 consecutive RIA patients who underwent 
endovascular intervention. LASSO regression identified 13 clinically actionable 
predictors of PIS from the initial variables. These predictors encompassed: 
vascular risk factors (hyperlipidemia, arteriosclerosis); neuroimaging indicators 
of severity (modified Fisher scale, aneurysm location, and neck-to-diameter 
ratio); clinical status (Glasgow Coma Scale score, Hunt-Hess grade, age, sex); 
procedural complications (intraprocedural rupture, periprocedural re-rupture); 
and therapeutic determinants (therapy method and history of ischemic 
comorbidities). Nine machine learning algorithms were evaluated using stratified 
10-fold cross-validation. Among them, the RF model demonstrated the best 
performance, with the ROCAUC of 92.11% (95%CI: 89.74–94.48%) on the test set 
and 87.08% (95%CI: 81.23–92.93%) on the training set. Finally, in a prospective 
validation cohort, the RF predictive model demonstrated an accuracy of 88.23% 
in forecasting the incidence of PIS. Additionally, based on this predictive model, 
this study developed a highly convenient web-based calculator. Clinicians 
only need to input the patient’s key factors into this calculator to predict the 
postoperative incidence of PIS and provide individualized treatment plans for 
the patient.
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Conclusion: We successfully developed and validated an interpretable machine 
learning framework, integrated with a clinical decision-support system, for 
predicting postprocedural PIS in endovascularly treated RIAs patients. This 
tool effectively predicted the likelihood of PIS, enabling high-risk patients to 
promptly take specific preventive and therapeutic measures.
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1 Introduction

Intracranial aneurysms (IAs) are abnormal dilations of blood 
vessels within the brain, characterized by degenerative changes across 
all layers of the vessel wall, leading to vasodilation (1). In adults over 
the age of 50, the prevalence of IAs is estimated to be approximately 
2% (2). The onset of IAs is typically insidious, as they rarely present 
with obvious symptoms or clinical signs prior to rupture. The most 
critical risk posed by IAs is rupture, which can result in catastrophic 
hemorrhage. Ruptured intracranial aneurysms (RIAs) constitute a 
severe neurosurgical emergency, with an annual incidence of 6–9 
cases per 100,000 individuals. The associated mortality rate approaches 
35%, while a significant proportion of survivors sustain permanent 
neurological deficits, leading to long-term disability (3). Currently, 
treatment options for aneurysms primarily consist of surgical clipping 
and endovascular treatment. Endovascular treatment has emerged as 
the preferred choice due to its minimally invasive nature and quick 
recovery time. Consequently, its role in the treatment of RIAs has 
become increasingly prominent in recent years (4, 5).

Despite the advantages of endovascular treatment—namely its 
minimally invasive nature and rapid recovery—the occurrence of 
perioperative complications cannot be ignored. Each year, 310 million 
people worldwide undergo surgery, with more than 600,000 experiencing 
perioperative strokes. The majority of studies focus on ischemic stroke, 
which accounts for approximately 95% of perioperative strokes, 
compared to approximately 5% for hemorrhagic stroke (6, 7). Studies 
demonstrate that perioperative ischemic stroke (PIS) is the primary 
cause of disability and death following RIA treatment (8–10). The expert 
consensus of the American Society of Neurosurgical Anesthesiology and 
Critical Care Sciences defines PIS as an ischemic cerebral infarction that 
occurs during or within 30 days after the operation (11). With the 
growing number of patients undergoing endovascular surgery, the 
occurrence of PIS has attracted increasing attention (12–14). Relevant 
studies have shown that multiple factors (such as hypertension, previous 
stroke, diabetes, and aneurysm morphology) can increase the risk of 
PIS. However, determining which of these risk factors require clinical 
intervention or prevention strategies remains a major challenge (15–17). 
Recent studies suggest that integrating machine learning techniques into 
predictive models can substantially improve the accuracy of risk 
stratification (18–20). Therefore, a systematic synthesis of risk factors 
associated with PIS following endovascular treatment is essential. By 
developing robust machine learning-based predictive models, we can 
enhance the application scope and practicality of risk prediction models 
in clinical practice. This will enable clinicians to make decisions with 
more sufficient data support, thereby reducing the incidence of PIS in 
RIA patients after treatment and achieving the goal of improving long-
term prognosis.

In this study, nine distinct prediction models for PIS were 
developed using machine learning methods, leveraging data from 647 
patients who underwent procedures. Through comparative analysis, 
the most effective predictive model for identifying high-risk patients 
was identified, facilitating its clinical application. To assist healthcare 
professionals in effectively utilizing this model, we have also developed 
a web-based calculator using the collected data. This tool enables the 
identification of high-risk patients and provides them with more 
effective treatment options.

2 Methods

2.1 Source and extraction of data

The design and execution of this retrospective investigation 
followed the STROBE Guidelines (21, 22). Two investigators 
independently collected data from patients with RIAs who 
underwent endovascular treatment at the Second Affiliated Hospital 
of Chongqing Medical University from 25 December 2013 to 1 
February 2024. The data included basic information (age, gender, 
drinking history, smoking history, hypertension, coronary heart 
disease, etc.), aneurysm information (size, location, etc.), and 
treatment method. Approval for this study was obtained from the 
Ethics Committee of our hospital, and all patient data were 
anonymized. No patient-specific information was retained, and 
consent was obtained from the patients.

To further verify the accuracy of the models, prospective data 
were collected at the Second Affiliated Hospital of Chongqing Medical 
University from 12 February 2024 to 1 May 2024, focusing on RIA 
patients who underwent endovascular treatment data.

Inclusion criteria:
Patients were included in the study if they met the 

following conditions:

 1 The aneurysms were saccular;
 2 Patients with aneurysms treated with endovascular coiling 

(EC), stent-assisted coiling (SAC), or flow-diverted (FD) stents;
 3 Patients aged 18–85 years, not pregnant, and fully 

competent to act.

Exclusion criteria:
Patients were excluded from the study if they met any of 

the following:

 1 The aneurysms were non-saccular (e.g., dissecting, fusiform, 
traumatic, and blood blister-like aneurysms);
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 2 Patients treated with hybrid clipping and 
endovascular procedures;

 3 Patients who were adolescents, aged 85 years or older, 
pregnant, lacking voluntary capacity, or had limited decision-
making capacity.

2.2 Endovascular procedures

The neurovascular team decided on specific endovascular therapy 
plans tailored to each patient. Procedures involved endovascular surgery 
following general anesthesia. To avoid embolic occurrences, systemic 
intravenous heparin systemic intravenous heparin was administered 
during the procedure. For patients with RIAs, oral antiplatelet agents 
were not administered after surgery if EC was selected. If SAC was 
chosen, patients received 300 mg of aspirin and 300 mg of clopidogrel 
after surgery. Starting the next day, the regimen was changed to aspirin 
100 mg/d and clopidogrel 75 mg/d. The patient was advised to take 
clopidogrel 75 mg/d for 3 weeks and aspirin 100 mg/d for 6 months. If 
FD treatment was selected, patients were given 300 mg of aspirin and 
300 mg of clopidogrel postoperatively, and the next day, clopidogrel 
75 mg/d for 6 months and long-term aspirin 100 mg/d.

2.3 Outcome measures

We define PIS as any adverse neurological events that occur 
during or within 30 days after surgery in RIA patients receiving 
endovascular treatment. Computerized tomography (CT) 
examinations were conducted directly after the operation, and 
repeated examinations were performed for cases with deteriorated 
neurological function. When CT images do not confirm suspected 
new-onset cerebral infarction, magnetic resonance imaging (MRI) 
examination is performed (16, 23). Patients confirmed by both clinical 
symptoms and imaging were included in the complication group, and 
those without were included in the control group.

2.4 Model input features

We considered 24 potential factors, encompassing age, gender, 
alcohol and tobacco use history, hypertension, arteriosclerosis, 
hyperlipidemia, diabetes, previous cerebral ischemia, Glasgow Coma 
Scale (GCS), modified Fisher scale, Hunt and Hess grade, oculomotor 
nerve palsy, aneurysm location, neck, length, maximum diameter, 
ratio of aneurysm neck to maximum diameter, multiple aneurysms, 
perioperative re-rupture, preoperative intracranial hematoma, 
intraprocedural rupture (IPR), time from symptom onset to surgery, 
treatment method (EC, SAC, or FD), and the occurrence of 
PIS. Subsequently, we used the least absolute shrinkage and selection 
operator (LASSO) to identify factors associated with PIS (24).

2.5 Statistical analysis

The missing data were treated in the following ways: groups were 
eliminated if the percentage of missing values was less than 5%, 
random forest (RF) regression was used for interpolation if the 

percentage of missing values was between 5 and 20%, and if the 
percentage of missing values was greater than 20%, the group was 
removed from the final complete dataset. It can be  seen from 
Supplementary Figure 1 that there are no missing values in our data, 
so no special processing has been carried out. R software, version 
4.3.2, was used for all analyses. The distribution of continuous 
variables, which were reported as mean ± standard deviation (SD), 
was tested for normality using the Shapiro–Wilk test; the independent 
sample t-test was used for comparison. The continuous variables with 
a skewed distribution were represented by the quartile and median 
(IQR). Frequencies and percentages were utilized to represent the 
categorical variables, and Fisher’s exact probability method or the 
chi-squared test was applied for statistical analysis. Nine models were 
created based on the feature set of the most significant characteristics 
after the most significant features were filtered out using LASSO 
regression analysis.

Nine learning models—Decision Tree (DT), Light Gradient 
Boosting Machine (LightGBM), eXtreme Gradient Boosting 
(XGBOOST) algorithm, Logistic Regression (LR), RF, Elastic Net 
(ENet), Multi-layer Perceptron (MLP), Support Vector Machine 
(SVM), and K-Nearest Neighbor machine (KNN)—were 
constructed in order to achieve the best predictive performance. 
Area under the receiver operating characteristic curve (ROCAUC) 
and Brier scores were used to assess the model’s performance. 
Clinical decision curve analysis (DCA) evaluation model’s clinical 
viability (25). The relationship between each attribute and PIS was 
shown using R’s Shapley Additive package (SHAP) tool once the 
optimal model had been obtained. The best model will finally 
be  built on a web-based calculator using the shiny package 
(26, 27).

3 Results

3.1 Patient characteristics

This study enrolled 647 patients with RIAs treated with 
endovascular therapy (details shown in Table  1), comprising 424 
females (65.5%) and 223 males (34.5%) with a median age of 
54.9 years. Treatment modalities included EC (n = 199, 30.8%), SAC 
(n = 381, 58.9%), and FD stents (n = 67, 10.3%). Aneurysms were 
predominantly located in the anterior communicating artery (AcomA, 
27.5%) and the posterior communicating artery (PcomA, 27.5%), 
followed by the middle cerebral artery (MCA, 15.8%), internal carotid 
artery (ICA, 11.1%), anterior cerebral artery (ACA, 4.9%), vertebral 
artery (VA, 3.2%), posterior inferior cerebellar artery (PICA, 2.3%), 
posterior cerebral artery (PCA, 2.3%), choroidal artery (ChoA, 2.6%), 
basilar artery (BA, 1.4%), and ophthalmic artery (OA, 1.2%).

A total of 166 patients (25.66%) experienced PIS within 30 days 
after endovascular therapy. Following feature screening, all variables 
exhibited complete data. To develop and validate the prediction 
model, the study population was randomly divided into a training 
group (75%, n = 485) and a validation set (25%, n = 162). Patients 
were further classified into the complication group (n = 166) and the 
control group (n = 481). As depicted in Figure  1, this allocation 
adhered to a predefined study flowchart. There were no statistically 
significant differences in patient characteristics between the training 
and testing datasets.
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TABLE 1 Comparison of variables between the complication group and the control group.

Variables All (n = 647) Complication 
group (n = 166)

Control group 
(n = 481)

p-Value

Age, median (Q1, Q3) 54.9 (19, 53) 59.3 (39, 59) 53.5 (19, 52) <0.001

Sex, n% 0.002

  Male 223 (34.467) 42 (25.301) 181 (37.630)

  Female 424 (65.533) 124 (74.699) 300 (62.370)

Previous ischemic comorbidity, n% <0.001

  Have 45 (6.955) 23 (13.855) 22 (4.574)

  Not 602 (93.045) 143 (86.145) 459 (95.426)

Arteriosclerosis, n% <0.001

  Have 234 (36.167) 81 (48.795) 153 (31.809)

  Not 413 (63.833) 85 (51.205) 328 (68.191)

Hypertension, n% <0.001

  Have 262 (40.495) 82 (49.396) 180 (37.422)

  Not 385 (59.505) 84 (50.624) 301 (62.578)

Hyperlipidemia, n% <0.001

  Have 441 (68.161) 147 (88.554) 294 (61.123)

  Not 206 (31.839) 19 (11.445) 187 (38.877)

Diabetes, n% 0.744

  Have 40 (6.182) 11 (6.627) 29 (6.029)

  Not 607 (93.818) 155 (93.373) 452 (93.971)

Smoking, n% 156 (24.111) 38 (22.892) 118 (24.532) <0.001

Alcohol, n% 67 (10.355) 17 (10.241) 50 (10.395) <0.001

Oculomotor nerve palsy, n% 0.036

  Have 37 (5.719) 8 (4.819) 29 (6.029)

  Not 610 (94.281) 158 (95.181) 452 (93.971)

Hunt and Hess Grade, n% <0.001

  I 279 (43.122) 28 (16.867) 251 (52.183)

  II 280 (43.277) 83 (50.000) 197 (40.596)

  III 63 (9.737) 33 (19.880) 30 (6.237)

  IV 25 (3.864) 22 (13.253) 3 (0.624)

Modified Fisher scale, n% <0.001

  I 276 (42.658) 22 (13.253) 254 (52.807)

  II 190 (29.366) 45 (27.108) 145 (30.146)

  III 100 (15.456) 45 (27.108) 51 (10.603)

  IV 81 (12.519) 50 (30.120) 31 (6.445)

GCS, median (Q1, Q3) 13.9 (3, 15) 12.7 (3, 14) 14.3 (5, 15) <0.001

Perioperative aneurysm re-rupture, n% <0.001

  Have 58 (8.964) 38 (22.892) 20 (4.158)

  Not 589 (91.036) 128 (77.108) 461 (95.842)

Aneurysm location, n%* <0.001

  AcomA 178 (27.512) 37 (22.289) 141 (29.314)

  PcomA 178 (27.512) 43 (25.904) 135 (28.067)

  ACA 32 (4.946) 10 (6.024) 22 (4.574)

  MCA 102 (15.765) 29 (17.470) 73 (15.177)

(Continued)
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3.2 Important features and model 
performance

Through 10-fold cross-validation, the optimal lambda value for 
LASSO feature selection was determined, resulting in the 
identification of 10 features with non-zero coefficients (Figures 2A,B). 
Subsequently, a machine learning model was developed to predict 
PIS following endovascular procedures using these 13 variables. The 
performance of the predictive model was assessed using DCA, 
precision-recall area under the curve (PRAUC), ROCAUC, and Brier 
score shown in Figures 3, 4. The RF model demonstrated higher 
ROCAUC and PRAUC values and a lower Brier score compared to 
other models. Ten cross-validations were performed on all nine 
models. Figure 5 displays the performance metrics for the training 
set and test data. The RF model outperformed the other eight models. 
Additionally, DCA confirmed that RF is the best diagnostic tool for 
predicting PIS (Figure 3A). The Youden index indicates that a cutoff 
probability of 36.66% is ideal for the RF. The performance of the 
established RF model was evaluated using data from the test set 

(n = 162), with the following results: ROCAUC = 87.08% (95% CI: 
81.23–92.93%), accuracy = 0.78, balanced accuracy = 0.79, 
index = 0.58, kap = 0.55, sensitivity = 0.84, specificity = 0.75, and F1 
Score = 0.73.

Furthermore, the established RF model was analyzed using the 
SHAP software package, as depicted in Figure  6. This analysis 
illustrates the magnitude of the impact of continuous and categorical 
variables on PIS in the sample using hive plots and box plots, 
respectively, and the correlation between the size of the eigenvalues 
and the predicted effects using bar plots.

3.3 Model application

Using the shiny package, the developed RF model has been 
integrated into a web-based application for practical use. Users can 
input patient data into the model following the instructions provided 
in the figure. For example, for a male patient aged 83 with an aneurysm 
located in an AcomA, no arteriosclerosis, no hyperlipidemia, no 

TABLE 1 (Continued)

Variables All (n = 647) Complication 
group (n = 166)

Control group 
(n = 481)

p-Value

  PCA 15 (2.318) 2 (1.205) 13 (2.703)

  ICA 72 (11.128) 17 (10.241) 55 (11.435)

  ChoA 17 (2.628) 8 (4.819) 9 (1.871)

  PICA 15 (2.318) 3 (1.807) 12 (2.495)

  VA 21 (3.246) 12 (7.229) 9 (1.871)

  BA 9 (1.391) 4 (2.410) 5 (1.040)

  OA 8 (1.237) 1 (0.604) 7 (1.455)

Aneurysm neck, median (Q1, Q3) 4.15 (0.6, 3.6) 4.41 (1, 3.5) 4.07 (0.6, 3.6) <0.001

Aneurysm maximum diameter, median (Q1, Q3) 4.82 (0.7, 4.2) 4.85 (2.7, 5.6) 3.6 (0.7, 4.2) <0.001

Ratio of aneurysm neck to maximum 0.945 (0.12, 0.84) 1.05 (0.32, 0.88) 0.911 (0.12, 0.83) <0.001

Diameter, median (Q1, Q3)

Multiple aneurysms, n% 0.039

  Have 157 (24.266) 51 (30.723) 106 (22.037)

  Not 490 (75.734) 115 (69.277) 375 (77.963)

Intracranial hematoma 0.034

  Have 65 (10.046) 23 (13.855) 42 (8.732)

  Not 582 (89.953) 143 (86.145) 439 (91.268)

Time, median (Q1, Q3) 7.93 (1, 5) 6.16 (1, 4) 8.5 (1, 5) <0.001

IPR, n%* 0.027

  Have 37 (5.719) 15 (9.036) 22 (4.574)

  Not 610 (94.281) 151 (90.634) 459 (95.426)

Therapy method, n%* <0.001

  EC 199 (30.757) 41 (24.699) 158 (32.848)

  SAC 381 (58.887) 100 (60.241) 281 (58.420)

  FD 67 (10.355) 25 (15.060) 42 (8.732)

*AcomA, Anterior communicating artery; PcomA, posterior communicating artery; ACA, anterior cerebral artery; MCA, middle cerebral artery; PCA, posterior cerebral artery; ICA, internal 
carotid artery; ChoA, choroidal artery; PICA, posterior inferior cerebellar artery; VA, vertebral artery; BA, basilar artery; OA, ophthalmic artery; IPR, intraprocedural rupture; EC, 
endovascular coiling; SAC, stent-assisted coiling; FD, flow-diverted.
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previous ischemic comorbidity, GCS score of 15, modified Fisher scale 
of 2, Hunt and Hess Grade of 2, ratio of aneurysm neck to maximum 
diameter of 5.8, no IPR and treated with FD stents (Figure 7), the 
model estimated a 28.11% probability of PIS.

It is important to note that the best prediction probability for this 
model may be  truncated to 19.40%. Therefore, patients with a 
predicted probability exceeding 36.66% are considered at higher risk 

for PIS. Medical professionals and caregivers should closely monitor 
individuals with these characteristics and take appropriate actions. 
Additionally, a web-based calculator based on the proposed model 
was developed for use by physicians. It is accessible at: Prediction 
model of perioperative ischemic stroke in the neuroscience center of 
the Second Affiliated Hospital of Chongqing Medical University 
(shinyapps.io).

FIGURE 1

Flow chart of model making process and research procedure. (A) The figure shows how to obtain data from the electronic medical record system. A 
total of 23 variables were collected, and 13 variables were selected to build the machine learning model. (B) Study flow chart.

FIGURE 2

(A,B) LASSO regression was used to select the best features.
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3.4 Prospective study to validate

The data of 34 patients were prospectively collected for 
verification, with 23.53% (8 out of 34) of these patients developing 
PIS. The model achieved an accuracy of 88.23% on the validation 
dataset. Notably, all four patients with a predicted PIS probability 
above the predefined threshold subsequently developed complications, 
yielding a positive predictive value (PPV) of 100%. Conversely, among 
patients classified as low-risk, four false-negative cases were identified, 
while the remaining patients remained complication-free.

4 Discussion

The occurrence of PIS following endovascular therapy is a 
critical concern for practitioners. This study selected the best 
model as the RF model through the method of machine learning, 
which has good accuracy (84%) and sensitivity (85%) in 
identifying PIS. On this basis, a simple and easy-to-operate online 
calculator was developed, providing clinicians with an efficient 
and scientific method and tool for comprehensively predicting 
and evaluating the risk of PIS in RAI patients after endovascular 

FIGURE 3

(A) Nine machine learning models were analyzed using decision curves. The most effective diagnostic method for perioperative ischemic stroke is the 
random forest model. (B) Calibration plots of the nine models. The random forest model obtained lower Brier scores than the other models.

FIGURE 4

(A,B) Characteristic curves of nine machine learning models in the training and test sets. The random forest model had better AUROC.
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therapy, and offering a preliminary theoretical basis for 
targeted treatment.

RIAs often lead to subarachnoid hemorrhage (SAH), which can 
predispose to cerebral vasospasm (CVS), with over 50% of CVS patients 
being at risk of developing ischemic nerve damage (28), thereby 
increasing the likelihood of cerebral ischemia. However, quantifying 
CVS poses challenges. Frontera et al. demonstrated that the Modified 
Fisher scale was more accurate in predicting symptomatic vasospasm 
after SAH (29). Therefore, using the Modified Fisher scale as an 
evaluation of CVS is also a good choice. Meanwhile, studies have shown 
that the modified Fisher score, Hunt and Hess classification, and GCS 
are reliable indicators for evaluating the prognosis of patients (30). 
Therefore, this study investigated their relationship with PIS. As depicted 
in Figure  6C, the Modified Fisher scale and Hunt and Hess grade 
showed a strong positive correlation with the occurrence of PIS, whereas 
the GCS exhibited a strong negative correlation with the occurrence of 
PIS. In this study, the incidence of PIS was 7.97% for grade I, 23.68% for 
grade II, 45.00% for grade III, and 61.73% for grade IV. Different Hunt 
and Hess grades also demonstrated varying incidence rates of PIS: 
10.75% for grade I, 30.35% for grade II, 52.38% for grade III, and 72.00% 
for grade IV, with statistically (p < 0.001). According to the latest 
guidelines (31), a higher modified Fisher scale and Hunt and Hess 
Grade indicate that earlier surgical intervention may be beneficial in 
reducing the occurrence of cerebral ischemia and improving functional 
outcomes. Therefore, successful operation as early as possible may be an 
effective method to reduce the incidence of PIS in clinical studies.

Perioperative aneurysm re-rupture is one of the most serious 
adverse events in the endovascular treatment of aneurysms. Existing 
studies have reported that it can increase the incidence of PIS in 
patients with RIAs (32). According to various studies, several 
mechanisms may contribute to perioperative re-rupture. First, 
aneurysm rupture may be linked to variations in vascular fragility (33). 
Furthermore, mechanical disruption of the aneurysmal wall may occur 

during therapeutic embolization procedures due to device-tissue 
interactions, particularly involving neurointerventional instruments 
such as microguidewires, microcatheters, or embolization coils. This 
iatrogenic trauma predisposes to IPR, particularly in cases with fragile 
vascular architecture (34, 35). The size of the instrument used may 
be related to the size of the perforation as well as the prognosis. The 
morbidity and mortality of small puncture wounds caused by micro-
guidewires with a diameter of approximately 0.33 mm are lower than 
those caused by coils or microcatheters (36). Microcatheters with 
diameters of 0.5–1.0 mm and coils with diameters similar to those of 
micro-guidewires tend to produce more aneurysm wall tears (35, 36). 
Coils 2–20 mm in diameter lead to larger perforations and may 
increase PIS morbidity and mortality. Third, simple intra-aneurysm 
injection of contrast agent may also induce perioperative aneurysm 
re-rupture, and the sudden increase in arterial pressure caused by 
patient pain may also be an important factor in perioperative aneurysm 
re-rupture (33–35). Therefore, effectively preventing the occurrence of 
perioperative aneurysm re-rupture may be  an effective preventive 
measure to reduce the occurrence of PIS in patients with RIAs.

Interestingly, this study also found that the location of the 
aneurysm was one of the most crucial factors in the RF model. The 
rate of PIS in aneurysms at different locations is also different: AcomA 
was 20.78%, PcomA was 24.15%, ACA was 31.25%, MCA was 28.43%, 
PCA was 13.33%, ICA was 23.61%, ChoA was 47.06%, PICA was 
20.00%, VA was 57.14%, BA was 44.44%, OA was 12.50%, and the 
difference was statistically significant (p < 0.001). The latest research 
shows that the incidence of symptomatic cerebral vasospasm after 
surgery varies among RIA patients with aneurysms at different 
locations (37). Since cerebral vasospasm often leads to ischemic 
stroke, the probability of occurrence of PIS is different. Meanwhile, 
Kocur et al. found that the difficulty of establishing surgical access for 
aneurysms at different locations varies, thereby resulting in different 
probabilities of vascular injury and spasm (38). It can be seen from 

FIGURE 5

(A) Nine machine learning models in the training set and their performance measures. (B) Nine machine learning models in the test set and their 
performance measures.
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this that endovascular therapy should be  carried out by more 
experienced doctors or more carefully, which may be an effective 
measure to reduce the occurrence of PIS.

Meanwhile, studies have shown that different endovascular 
treatment methods (EC, SAC, and FD) for IAs cause different ischemic 
events, and thus, the probability of developing PIS also varies (39–41). 
During EC treatment, potential sources of embolization include 
fragile plaques, iatrogenic dissection in the parent vessel, air bubbles, 

and materials such as hydrophilic coating materials on catheters and 
guide wires during insertion or contrast media injection (9, 42, 43). 
SAC and FD procedures often involve larger-diameter assisted 
catheters and longer procedure times, which increases the risk of 
vascular embolism caused by catheters and mechanical operations 
(44–46). Additionally, the experience of the endovascular 
neurosurgeon plays a crucial role; less experienced surgeons may 
require longer procedure times, potentially increasing the risk of 

FIGURE 6

SHAP analysis of the random forest model. (A) Shows the relationship between the importance of each feature. (B) Shows the relationship between 
continuous variables and PIS. (C) Shows the relationship between classified variable and PIS.
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intraoperative thrombosis (47). In this study, the incidence of PIS 
differed among treatment groups: EC (20.60%), SAC (26.25%), and 
FD (37.31%). Therefore, prior to aneurysm intervention, 
individualized selection of interventional stent types or whether to use 
stents for different patients, and minimizing the operation time and 
steps during the operation, may be an effective strategy to reduce the 
occurrence of PIS.

In this study, machine learning techniques were used to develop 
a predictive model for PIS following interventional treatment of RIAs, 
using nine distinct prediction models. The RF model, identified as the 
most effective, provides clinicians with enhanced insights into the 
likelihood of PIS occurrence among different patients. Identifying 
high-risk patients allows proactive implementation of appropriate 
preventive measures aimed at reducing PIS incidence and alleviating 
the associated medical insurance burden (48).

5 Limitations

Our study has several limitations that warrant consideration. 
First, despite our dataset comprising over 600 patients, the data were 
sourced from a single center, potentially limiting the generalizability 
of our findings. Furthermore, while we  analyzed multiple key 
factors, there may be additional variables that were not included in 
our analysis, which could impact the predictive accuracy of our 
model. Second, the size of our research sample for developing the 
prediction model was relatively small. Larger datasets are essential 
for robust training and testing of predictive models to enhance 
reliability and applicability in clinical settings. Finally, the data used 
in this study were derived solely from a single center, which may not 

yield consistent results when applied to different institutions. Future 
research efforts will focus on collecting extensive datasets and 
incorporating diverse features from multiple centers to refine the 
model and optimize its suitability for broader clinical applications.

6 Conclusion

PIS stands as the most prevalent complication associated with 
the endovascular treatment of aneurysms. In our study, we developed 
nine distinct prediction models for PIS, ultimately selecting the RF 
model as the optimal predictor based on its superior performance 
across various metrics in both training and test datasets. The RF 
model consistently demonstrated the lowest Brier score and high 
accuracy compared to other classifier models evaluated. By deploying 
this model and creating a user-friendly web-based calculator, 
we anticipate it will serve as a valuable tool in clinical practice. This 
technology enables healthcare providers to effectively identify 
patients at heightened risk of PIS during endovascular treatment, 
facilitating the timely implementation of appropriate preventive 
measures. This approach can enhance the application scope and 
practicability of risk prediction models, which will enable clinicians 
to make decisions with more adequate data support, thereby 
improving patient prognosis and reducing the incidence of PIS.
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