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Finding a vertical nystagmus, especially when looking straight ahead, should 
alert the neurologist/neuro-otologist for other signs of cerebellar or brainstem 
dysfunction. Upbeat nystagmus (UBN) is a relatively uncommon neuro-otological 
finding that clinicians may encounter in patients presenting with vertigo. This 
phenomenon is closely linked to central vestibular dysfunction, making it 
essential for healthcare providers to recognize and interpret it promptly. Accurate 
identification of UBN can significantly aid in directing patients toward the 
appropriate diagnostic and therapeutic pathways. As our understanding of 
UBN’s pathophysiology has advanced, the clinical significance of this sign 
has become increasingly evident. It is now recognized that UBN can occur 
as an isolated finding or more frequently as part of a broader spectrum within 
defined clinical syndromes. This expanded knowledge has also opened the 
door to various therapeutic approaches tailored to the underlying cause. In 
our study, we want to provide as accurate a picture as possible about the 
origins and clinical presentations of UBN.
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1 Introduction

First described by Stengel in 1935 (1), upbeat nystagmus (UBN) significantly impairs 
patients’ quality of life by producing disabling visual disturbances such as oscillopsia and 
gaze instability. These symptoms underscore the clinical importance of a thorough 
understanding of UBN and its management. However, UBN remains a relatively rare 
finding, limiting opportunities for clinicians and researchers to gain sufficient diagnostic 
and therapeutic experience. Moreover, UBN is frequently linked to lesions in key regions 
of the brainstem (particularly the medulla), as well as the flocculus and the brachium 
conjunctivum (BC). It often presents alongside with other neurological signs, such as 
saccadic contrapulsion or impaired smooth pursuit, further complicating its recognition 
and interpretation. Despite its clinical relevance, the neuroanatomical pathways 
responsible for upward vertical gaze remain incompletely understood. Much of the 
current knowledge about UBN derives from lesion-based and clinical observational 
studies (2), highlighting the need for an integrated synthesis of available evidence. 
Moreover, while individual publications address specific aspects of UBN, a 
comprehensive, unified resource is lacking, forcing clinicians to consult disparate sources 
and potentially leading to fragmented understanding. A consolidated review of UBN is 
therefore warranted to integrate current knowledge, elucidate underlying mechanisms, 
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correlate clinical findings with neuroimaging data, and propose 
evidence-based approaches to diagnosis and treatment. Such a 
resource would be  invaluable for clinicians, researchers, and 
patients alike, ultimately supporting improved care and advancing 
future investigations.

1.1 First descriptions of vertical nystagmus

Vertical nystagmus received limited attention in the early 
medical literature (3, 4) until 1921, when it was experimentally 
induced in animals by severing the anterior semicircular canal 
(SCC) and observed in clinical contexts such as profound 
bilateral visual loss, drug toxicity (e.g., barbiturates, quinine), 
multiple sclerosis, spasmus nutans, brainstem lesions (e.g., 
pontine and medullary tuberculomas and meningiomas), and 
encephalitis lethargica (5). While some authors emphasized the 
importance of distinguishing central from peripheral etiologies 
in cases of vertical or mixed nystagmus (6), Walsh (7) asserted 
that purely vertical nystagmus was a hallmark of central or 
cerebellar pathology. He described cases associated with Arnold-
Chiari malformation, cerebellar ataxia, bilateral pyramidal tract 
signs, and hydrocephalus, reinforcing the central origin  
hypothesis.

2 Characteristics of UBN

Upbeat nystagmus is often a sign of the acute phase of a 
disease tending to resolve spontaneously before other ocular 
motor abnormalities. It is typically present in the primary gaze 
position, both in darkness and during fixation, and must 
be distinguished from nystagmus evoked exclusively by upward 
gaze secondary to a vertical gaze holding neural integrator lesions. 
The slow phases of UBN may have different waveforms, which 
may be linear, decaying due to a “leaky” neural integrator, or more 
commonly, increasing due to an unstable neural integrator (2). 
Unlike downbeat nystagmus (DBN), UBN is minimally affected 
by lateral gaze (8). In some cases, the upward fast phase may have 
a horizontal component alternately directed to the right or to the 
left, in which case it is configured as a “bow-tie nystagmus” (9) or 
have a torsional component. In this last case, it may be due to the 
unilateral BC lesion, which in health conveys excitatory upward-
torsional eye movement signals from the anterior semicircular 
canals (10) or to an associated lesion of pathways controlling the 
VOR in roll (11).

2.1 Alexander law and UBN

Upbeat nystagmus (UBN) typically follows Alexander’s law, 
exhibiting maximal fast-phase amplitude in upward gaze. However, in 
some cases, it may paradoxically increase with downward gaze (12, 13) 
or even convert into downbeat nystagmus (DBN) during upward gaze 
(13). These atypical patterns have been associated with lesions of the 
interstitial nucleus of Cajal (INC), which makes unstable the vertical 
neural integrator responsible for gaze holding  - an association 
supported by corresponding MRI findings (2).

2.2 Effect of convergence and vestibular 
stimulation on UBN

Convergence has a variable effect on UBN, being able to increase 
or decrease its intensity up to its suppression or in some cases 
transforming it into a DBN (14–17). At same time, vestibular 
stimulation, such as head-shaking and vibration, may reverse 
nystagmus direction. The changes in nystagmus patterns due to 
convergence and vestibular stimulation are likely due to disruptions 
in circuits that process linear acceleration signals from the otoliths, 
which are essential for generating the correct eye movements during 
head translation (18). A fundamental role in this is played by the 
translational vestibulo-ocular reflex (t-VOR), which during movement 
adjusts compensatory eye movements based on orbital position and 
vergence angle depending on the target position. In this way, during 
translation forward or backward the t-VOR generates horizontal 
movements for targets to the sides, vertical movements for targets 
above or below, and convergence/divergence for targets straight ahead. 
Key brain areas involved in these computations include the medial 
and inferior vestibular nuclei in the spinal cord, which mediate the 
velocity storage mechanism (19, 20), and their projections to the 
cerebellar nodulus, which computes the translational components of 
head movements (21). Disruption of these pathways or velocity 
storage mechanisms may explain the change in direction of nystagmus 
in response to convergence and vestibular stimuli, respectively (22).

2.3 Gravitational dependence of UBN

Changes in head position relative to space, and hence in macular 
input, can abolish (8, 23, 24) UBN, increase its slow-phase velocity 
(25) and change its direction, often transforming it into a DBN (26, 
27). UBN often tends to disappear in the supine or prone position, 
where the effect of the gravitational vector on the maculae is different 
(8). In a patient with a focal hemorrhagic lesion of the left BC, anterior 
vermis and left anterior superior cerebellar hemisphere, UBN was also 
suppressed by a contralateral head tilt due to otolith-ocular reflex 
activation (23). In a patient affected with a lesion at the 
cervicomedullary junction due to multiple sclerosis, the spontaneous 
upward and counterclockwise nystagmus was suppressed by the prone 
position, tilting the head to either side while sitting, and turning the 
head to the right while in the supine position. Moreover, nystagmus 
direction was reversed by hanging the head straight and turning the 
head to the left while the patient was in the supine position (24). 
Change from UBN to DBN were observed in the prone position in a 
patient with a lesion of the BC and moving from upright to a head-
hanging position a patient with cerebellar vermis atrophy (28).

2.4 Spontaneous transformation of UBN in 
other nystagmus type

Another very peculiar feature of UBN is its possible 
spontaneous transformation, in the course of the disease, into a 
hemi-seesaw (29, 30), horizontal, torsional and above all DBN (17, 
22, 24, 28, 31, 32). A very interesting case of the above 
phenomenon is Wernicke’s encephalopathy. The initial thiamine 
deficiency damages the perihypoglossal nuclei, particularly the 
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nucleus intercalatus of Staderini (SIN) and the nucleus of Roller 
(RN) more than the PMT nuclei, resulting in a downward slow-
phase bias and UBN. Over time, recovery is more complete in the 
perihypoglossal than in the PMT nuclei, which fails to provide 
excitatory input to the cerebellar flocculus. The consequence is 
that the cerebellar flocculus no longer exerts inhibitory control 
over upward slow-phase pathways resulting in an upward slow-
phase bias and hence in DBN (30). Obviously, also the contiguity 
of the areas responsible for the vestibular syndrome in the sagittal 
plane may also justify the change in nystagmus direction (33, 34). 
Overall, changes in nystagmus direction with convergence, head 
tilt, vestibular stimuli or simply over the course of the disease 
reflect the tightly interconnected network that maintains balance 
in the pitch plane.

2.5 Neuronal circuits responsible for 
upward and downward postural and ocular 
reflexes

The neuronal circuits responsible for upward and downward 
postural and ocular reflexes are distinct within the central nervous 
system. These specialized pathways underlie the generation of 
different types of vertical nystagmus. Specifically, damage to the circuit 
facilitating upward compensatory and downward anticompensatory 
eye movements can result in UBN, while lesions affecting the circuit 
that facilitates downward compensatory and upward anticompensatory 
responses can lead to downbeat nystagmus (DBN) (35).

The effectiveness of the circuits controlling upward and downward 
vestibulo-ocular reflexes is not equal. Actually, upward eye movement 
reflexes are stronger than downward eye movement. Support for this 
assertion is the observation that optokinetic nystagmus and optokinetic 
after nystagmus as well as nystagmus induced by vertical rotation (36, 
37) predominate for upward direction. Further confirmation is provided 
by the fact that the time constant for DBN is about 15 s, which is like 
that of horizontal nystagmus, whereas for UBN nystagmus it is about 8 s.

One reason for this vertical reflex asymmetry may be due to the 
anatomy of the eye. In fact, at least in the cat, the center of mass of the 
eyeballs is located anterior to the center of rotation (38, 39) and 
therefore, with subject in an upright position and the head in line with 
the trunk, the force of gravity limits the vertical VOR upwards and 
favors the vertical VOR downwards, creating a clear and maximum 
imbalance between the two vertical eye movement systems (Figure 1). 
On the other hand, the load and viscosity of the eye alone may not 
necessitate such a pronounced upward reflex preponderance.

An alternative explanation considers that gaze stability is 
maintained not only by the vestibulo-ocular reflex (VOR) but also by 
the vestibulocollic and cervicocollic reflexes (40). In the case of head 
reflexes, the influence of gravity is significantly greater than that acting 
on the eyes, requiring a robust upward enhancement. Consequently, 
the observed upward bias in the ocular reflex may also serve to 
compensate for potential gain and phase deficits in the head reflex, 
thereby providing effective counteraction to gravitational forces.

In addition, the upward preponderance should be  modulated 
depending on the position of the head re-gravity, so that an influence 
from the otolithic signals, sensing the orientation of the gravity vector, 
is required for inhibiting or enhancing the upward responses 

depending either on the direction of the gravity vector and on the load 
and viscosity in the motor system involved.

2.6 Peripheral source of asymmetry in the 
vertical eye movement reflexes

At the peripheral level, the upward preponderance in vertical eye 
movement reflexes is supported by the anatomical and physiological 
properties of the vertical semicircular canals (VSCCs) (41). VSCC 
activation occurs via an ampullofugal stimulus, with the receptors of 
the anterior SCCs being more effectively stimulated by downward 
rotations and the receptors of the posterior SCC (PSCCs) responding 
more strongly to upward rotations. Because the anterior SCCs 
(ASCCs) are more closely aligned with the sagittal plane than the 
posterior canals, the signals from vertical head rotations are inherently 
asymmetric, producing a stronger response during downward rotations.

2.7 Central source of asymmetry in the 
vertical eye movement reflexes

The most important central pathway facilitating upward eye 
movements is the crossing ventral tegmental tract (CVTT). Additional 
areas potentially involved in such an asymmetry include a circuit 
consisting of Superior Vestibular Nucleus (SVN), the RN and the SIN, 
and a circuit in which the PMT are involved.

3 Pathophysiology for UBN

A damage to one of these circuits would reveal the underlying 
downward imbalance leading to UBN.

FIGURE 1

The figure illustrates that the vertical line passing through the center 
of mass (MC) is positioned anterior to the vertical line passing 
through the center of rotation (RC). In this configuration, with the 
subject in an upright position and the head aligned with the trunk, 
gravity counteracts the upward vertical VOR while facilitating the 
downward vertical VOR. This asymmetry must be counterbalanced 
by specific neural pathways.
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3.1 The CVTT

This complex crossing pathway, responsible for upward eye 
movement facilitation, originates in the upper pole of the SVN, 
courses predominantly in the pons, then in lower midbrain 
tegmentum and finally reaches the III (oculomotor) nucleus (42, 43).

Afferences to SVN come from the anterior semicircular canals, 
both directly both indirectly through the flocculus, via the interstitial 
nucleus of the vestibular nerve (2); the maculae, both directly and 
through the flocculus; the caudal medulla, in which RN and SIN ‘s 
receives a collateral pathway from the CVTT and projects to the 
flocculus, for plausible feedback control; the flocculus, which receives 
inputs from the caudal medulla, ASCCs, maculae and visual apparatus 
and projects to the SVN, ensuring control of the circuit (44).

The CVTT can be regarded as a true anti-gravitational pathway 
controlled by macular input (Figure 2) which constantly modulate 
the tonic activity of the oculomotor nucleus based on the 
orientation of the head and of the gravitational vector, 
counterbalancing gravitational forces in relation to the head and 
eye’s static position and correcting the eyeball’s vertical inertial 
asymmetry. When the head is in upright position, the gravitational 
vector facilitates the CVTT so that the upward eye responses are 
potentiated. In prone or supine positions, the macular input 
changes and diminishes its facilitatory effect in the CVTT, so that 
the eye positions balance is therefore guaranteed only by the 
activity of the pathways that run in the MLF (see below). Finally, 
in the vertical head-down position, the upward facilitatory effect 
of CVTT will be minimal or absent and the gravitational vector 
will tend to favor upward eye movement relative to the head. In 
absence of CVTT-like circuitry compensating for such an eye 
movement due to gravity, an upward slow phase and chin-beating 
nystagmus may occur (45–47). Moreover, by providing the eye 
elevator muscle motoneurons with precise tonic activity, the CVTT 

integrates the function of the excitatory MVN-MLF pathway 
which, in the absence of gravity, would theoretically be sufficient 
by itself to manage the vertical movements of the eye. To put it 
more clearly: the excitatory MVN-MLF pathway controls upward 
eye movements, calculating the eye velocity relative to the orbit in 
response to rotational and/or translational head movements. The 
CVTT adjusts these parameters based on the instantaneous 
gravitational vector, i.e., the spatial position of the head.

The existence of a neuronal circuit facilitating upwards eye 
movements has been confirmed by numerous experiments 
performed in hypogravity and hypergravity (48–50) and above all 
from the clinical findings.

3.2 The SVN-RN/SIN-flocculus circuit

The SVN is also controlled by a loop located within the dorsal 
caudal medulla, consisting mainly of the RN and the SIN, both 
belonging to the perihypoglossal nuclei (PHN), and the flocculus. 
For completeness, it is worth mentioning the nucleus prepositus 
hypoglossi (NPH), which is also part of the PHN but does not 
participate in this specific circuit.

 a Sublingual nucleus of Roller (RN). This very small nucleus 
is particularly well developed in higher primates such as 
chimpanzees and humans (51). It is located just ventral to 
the cranial tip of the hypoglossal nucleus and appears to 
be  the better candidate to play a role in upward eye 
movements (10). In health subject, it receives strong 
excitatory projections from the SVN (52) and send 
inhibitory projections (51) to the flocculus (53) which in 
turn finally sends back inhibitory projections to SVN (53–
55). A medullary lesion affecting the RN disrupts this 
inhibitory control over the flocculus, leading to its 
disinhibition. Consequently, this determines a strong 
inhibition of the SVN, impaired processing of input from 
the anterior semicircular canals (ASCCs), loss of tonic 
activity in the superior rectus and inferior oblique muscles, 
a downward drift of the eyes, and the emergence UBN 
(53, 55).

 b Nucleus intercalatus of Staderini (SIN). This nucleus is 
located between the hypoglossal nucleus and dorsal nucleus 
of the vagus nerve (56) and creates a circuit that overlaps 
with the one described for the RN (57). The strong 
connections existing among perihypoglossal nuclei and 
flocculus, paraflocculus and nodulus (58, 59) suggest their 
role as the vertical cerebello-vestibular integrator involved 
in vertical gaze holding (53, 60–62). Upbeat nystagmus due 
to SIN involvement has been demonstrated in unilateral 
medial medullary infarction (60, 61), chronic lateral 
medullary infarction (63) multiple sclerosis (57), and 
cavernoma in the medulla oblongata (64). Despite the data 
presented, we  believe it is right to remember that some 
authors do not fully agree with the gaze holding function; 
in fact, a patient with a dorsal paramedian lesion involving 
the SIN showed a constant-velocity slow phase rather than 
exponential decay, suggesting that this was not a nystagmus 
due to vertical gaze holding deficit (65).

FIGURE 2

Pathways and circuits facilitating upward slow phase. Afferent inputs 
to the superior vestibular nucleus (SVN) originate from the anterior 
semicircular canals - both directly and indirectly via the flocculus 
through the interstitial nucleus of the vestibular nerve (NIVN)–as well 
as from the maculae, following similar direct and indirect pathways 
via the flocculus. From the upper pole of the SVN, the crossing 
ventral tegmental tract (CVTT) emerges and projects to the 
oculomotor (III) nucleus. Additionally, a collateral branch of the CVTT 
reaches the nucleus of Roller (RN) in the caudal medulla, which, by 
inhibiting the flocculus (−), modulates its inhibitory influence on the 
SVN. The “+” sign indicates facilitatory effect of CVTT for upward 
slow phase. LVN: lateral vestibular nucleus.
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3.3 The “cell groups of the paramedian 
tracts” (PMT)

PMT is a collective term used to refer to clusters of neurons 
scattered along the midline fibers tracts in the pons and medulla 
(66, 67) which receives inputs from all known premotor cell groups 
of the oculomotor system (52, 68–73) and project to the flocculus, 
paraflocculus, and vermis of the cerebellum (50, 66–68). The PMT 
contributes to neural integrator function by relaying eye movement 
signals to the vestibulocerebellum (67, 74). Particularly, the 
mid-medullary PMT-cell group in the monkey, the nucleus 
pararaphales (75, 76) receives vertical eye position signals from the 
interstitial nucleus of Cajal and therefore relays vertical eye position 
signals to the floccular complex. Thus, medullary lesions that affect 
the nucleus pararaphales may result in UBN (33, 77–81) and 
vertical gaze-evoked nystagmus (GEN). In addition, the PMT 
provide the cerebellum with a form of efference copy (or corollary 
discharge) of eye movement commands for the optimization of gaze 
control, including the fidelity of the neural integrator for eye 
movements or more long-term adaptive control of eye movements 
(74, 82).

3.4 The brachium conjunctivum

For the sake of completeness, we also report the crossing path of 
the BC, which has long been considered responsible for UBN. This 
pathway arises from the SVN, runs rostrally in the caudal tegmentum, 
and decussate in the caudal midbrain before projecting projects to the 
III (oculomotor) nucleus, which excites the motoneurons of the 
superior rectus and inferior oblique muscles, bilaterally. For a long 
time, this pathway was thought to be involved in the excitatory control 
of upward eye movements in the rabbit (83), until it was shown that 
this pathway was most likely confused with the CVTT, since these 
tracts are very close to each other in the lower pontine tegmentum (38, 
39), and this is valid also in humans (23, 84, 85). Clinical data would 
confirm that a lesion of the BC does not determine an up-beat 
nystagmus consequent to the imbalance due to the predominance of 
the tonic activity of the system controlling downward movements as 
one would expect (86) but rather a down beat GEN (87) or a positional 
downbeat nystagmus (88). Moreover, some cases of spontaneous UBN 
due to involvement of the region through which the BC passes are 
characterized by large median tumoral or hemorrhagic lesions, always 
associated with damage to the cerebellar vermis, which in itself may 
lead to UBN (2, 78).

3.5 What is the role of the pathways that 
run through the medial longitudinal 
fasciculus?

To better understand the role of the pathway running through the 
medial longitudinal fasciculus (MLF) in the genesis of UBN, valuable 
insights can be gained from patients with lesions of this pathway, in 
whom high-acceleration head rotations reveal an asymmetrical 
vertical vestibulo-ocular reflex (VOR) gain deficit. Specifically, upward 
VOR gain is less severely affected than downward VOR gain (89, 90). 
This finding supports the notion that upward VOR signals are 

transmitted not only via the MLF but also through extra-MLF 
pathways (91).

Additional noteworthy observations in such patients include the 
absence of spontaneous vertical nystagmus and the presence of 
predominantly upbeat GEN (53, 89–91). The lack of spontaneous 
vertical nystagmus suggests a relatively symmetrical role of the MLF 
in vertical VOR control. Meanwhile, the presence of upbeat GEN 
confirms MLF damage, indicating that the lesion deprives the 
interstitial nucleus of Cajal—a key component of the vertical neural 
integrator—of vestibular input integrator (2).

Finally, the induction of UBN following an MLF lesion requires 
selective or predominant damage to the bilateral pathways responsible 
for the upward VOR, while sparing those involved in the downward 
VOR. This selective damage may explain why upbeat nystagmus is 
infrequently observed in cases of internuclear ophthalmoplegia (24).

4 Symptoms of upbeat nystagmus 
syndrome

The symptomatology of Upbeat Nystagmus Syndrome (UBNS) is 
essentially characterized by oscillopsia, motion illusion and sagittal 
imbalance. Oscillopsia, the most disabling symptom, is caused by the 
displacement of images on the retina due to the involuntary slow 
phase of nystagmus. In the absence of an efferent copy, which is 
generated only in the presence of a voluntary movement, the 
pathological displacement of the eyes creates a motion illusion of the 
visual scene in the vertical plane. The illusion is less intense compared 
to the magnitude of the slow-phase eye movements (92) presumably 
due to a reduction in the sensitivity of visual motion perception which 
is useful to mitigate the annoyance of illusory oscillations. 
Consequence of motion illusion due to oscillopsia is a compensatory 
vestibulo-spinal reflex (VSR) that contributes to the sagittal imbalance. 
By analogy with other vestibular vertigo syndromes, one would expect 
a tendency to fall forward due to motor compensation of an apparent 
backward tilt. In fact, under physiological conditions, extension of the 
head and/or trunk activates the vertical VOR, which is responsible for 
a slow downward phase and then the vestibulo-collic and vestibulo-
spinal reflexes to compensate for the extension. Under pathological 
conditions, the tonic asymmetry generated not by the subject’s 
movement but by the central vestibular pathways dysfunction causes 
a downward eye movement and generates a retropulsion 
misperception characterized by an illusory head and/or body 
extension. The resulting postural compensation aims to compensate 
for the illusory extension, which is characterized by retropulsion and 
postural oscillations in the posterior–anterior direction. Contrary to 
these physiopathological premises some patients behaved differently, 
showing a tendency to fall backwards, in the same direction as patients 
with downbeat nystagmus (11).

5 Additional oto-neurological signs

Due to the presence of spontaneous upbeat nystagmus, smooth 
pursuit in the vertical plane is altered, constituting a “false” (extrinsic) 
alteration. On the other hand, the alteration of smooth pursuit is 
greater than would be expected from spontaneous nystagmus alone 
and the specific impairment of downward vertical pursuit suggests a 
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direct and more extensive lesion affecting the pathways involved (93). 
Based on the possible associated lesions, it is possible to highlight 
other possible signs. For example, in patients with Wernicke 
encephalopathy a bilateral and symmetric loss of the horizontal VOR 
and a horizontal GEN can be highlighted due to the involvement of 
the NPH/MVN complex, which is located medial to the medulla and 
just below the area postrema (30, 94). Another possible finding 
associated with upbeat nystagmus is saccadic contrapulsion, 
characterized by hypermetria (overshooting) away from the side of the 
lesion and hypometria (undershooting) toward it. This phenomenon 
may result from the disruption of either: (1) the climbing fiber tracts 
that originate in the inferior olivary nucleus and project to the 
cerebellar vermis before crossing the midline (77); (2) the outputs 
from the fastigial nucleus that pass through the BC (85, 95).

6 Sites of lesions

The sites of lesions responsible of upbeat nystagmus must 
be sought in:

 1 Lesion of CVTT, which carries signals from the ASCCs to the 
elevator muscles of the eyes (Figure 3). Several possible sites of 
CVTT lesion have been demonstrated in humans:
 a Lesions affecting the upper pole of the SVN and the initial 

portion of the pathway, in the posterolateral region of the 
inferior pontine tegmentum (96)

 b Lesions affecting the intermediate segment of the CVTT, 
near the decussation, in the central part of the pons (44)

 c Lesions affecting the final portion of the CVTT, in the 
anterior midbrain tegmentum (97)

 d Bilateral lesions affecting the anterior pontine tegmentum 
and the adjacent posterior basis pontis in the middle and 
upper pons (8, 98, 99).

 2 Lesions affecting caudal medulla (77):
 a Lesion affecting the RN, which play a fundamental role in 

upward eye movements (33) (Figure 4)

 b Disruption of the mid-medullary nucleus pararaphales of 
the PMT, involved in vertical gaze holding (67, 74)

 c Lesions affecting the SIN, also involved in vertical gaze 
holding (53, 60–62) whose role is however questioned (65).

 3 Rarer sites of lesions are the anterior vermis of the cerebellum 
(2, 24, 28, 78) and the thalamus (24), moreover without a 
precise explanation of the mechanisms.

7 Etiology

The most frequent central causes of UBNS are reported in Table 1.

7.1 UBN in peripheral vestibular diseases

Although UBN is typically associated with central vestibular or 
brainstem lesions, rare cases of peripheral origin have been 
documented. Ichimura and Itani (100) reported a case of persistent 
positional UBN in a patient with bilateral posterior canal benign 
paroxysmal positional vertigo (BPPV) due to canalolithiasis. The 
nystagmus was elicited during the transition from an upright seated 
to a straight supine position, characterized by a latency of 
approximately 2 s and a maximum duration of 110 s. The absence of 
neurological signs, normal brain imaging, and spontaneous resolution 
supported a peripheral etiology. Similar cases have been described in 
earlier literature (101, 102). More frequently, a mixed spontaneous 
nystagmus with an upbeat component is seen in peripheral vestibular 
dysfunction. For instance, Fetter and Dichgans documented such a 
case in superior vestibular neuritis (VN) (103–105). In a retrospective 
study by Ling et al. (106), 43 patients with UBN were reviewed, and 
peripheral vestibular disorders were identified in 14 (32.6%) of them. 
These included 10 cases of superior acute unilateral vestibulopathy 
(AUVP), 1 complete AUVP, 1 probable labyrinthine infarction, 1 
isolated acute unilateral utricular vestibulopathy, and 1 probable 

FIGURE 3

Crossing ventral tegmental tract (CVTT) lesion facilitating down slow 
phase and upbeat nystagmus. A lesion affecting the segment of the 
CVTT directed to the oculomotor nucleus deprives the elevator 
muscles of inputs from the anterior semicircular canals (ASSCs). As a 
result, a downward-directed slow phase and an upbeat nystagmus 
(UBN) will occur. The sign “0” indicates the disappearance of the 
facilitatory effect of CVTT for upward slow phase.

FIGURE 4

Caudal medulla lesion facilitating down slow phase and upbeat 
nystagmus. A medullary lesion affecting the nucleus of Roller (RN) 
disrupts its inhibitory control over the flocculus, resulting in 
disinhibition. Consequently, this leads to strong inhibition (heavy 
arrow) of the superior vestibular nucleus (SVN), impaired processing 
of input from the anterior semicircular canals (ASCCs), loss of tonic 
activity in the superior rectus and inferior oblique muscles, a 
downward drift of the eyes, and the emergence of upbeat 
nystagmus (UBN). The sign “0” indicates the disappearance of the 
facilitatory effect of CVTT for upward slow phase.
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Ménière’s disease. Therefore, while rare, peripheral causes of UBN 
must be  considered. A comprehensive diagnostic approach  - 
integrating clinical history, symptomatology, neurological and 
neuroimaging evaluation, and especially what we call “semeiological 
features with different diagnostic weight” (e.g., nystagmus direction 
and characteristics, smooth pursuit, saccadic eye movements, skew 
deviation) are essential for accurate localization and differentiation.

Table  2 reports key points for distinguish between central or 
peripheral origins of the UBN.

8 Treatment of UBN and related 
symptoms

Management UBN may be  either causal or symptomatic, 
depending on the underlying etiology. In cases of toxic, metabolic, 
deficiency-related, or autoimmune conditions, identification and 
elimination of the triggering factor may allow for resolution or 
reduction of the nystagmus. However, when causal treatment is not 
feasible and spontaneous remission does not occur, symptomatic 
therapy becomes necessary.

The primary aim of symptomatic treatment is to improve visual 
stability and reduce oscillopsia, while preserving normal ocular motor 
function, and enhancing postural control.

Although carbamazepine, an antiepileptic agent, has occasionally 
been reported to reduce UBN (107), the most commonly employed 

pharmacological agents include baclofen, 4-aminopyridine (4-AP), and 
memantine, which may be used individually or, in cases of insufficient 
efficacy, in various combinations.

Baclofen, a GABA B receptor agonist, reduces the slow-phase 
velocity of nystagmus and alleviates oscillopsia (108) by potentiating the 
inhibitory influence of the vestibulocerebellum on vestibular nuclei.

4-aminopyridine (4-AP), a potassium channel blocker, has 
demonstrated efficacy in attenuating UBN and associated visual 
disturbances, restore impaired upward smooth pursuit (93, 109), and 
modulate macular-driven vertical gaze control (27). The lack of 
efficacy in darkness suggests its action may involve facilitation of 
visually dependent parallel pathways that suppress UBN in lighted 
conditions. Moreover, 4-AP may increase cerebellar Purkinje cell 
excitability, thereby enhancing parallel compensatory circuits.

Memantine, a non-competitive NMDA receptor antagonist, may 
be beneficial in selected patients (110).

In summary, pharmacological management of UBN should 
be tailored to the etiology and symptom burden, with consideration 
given to both targets and patient-specific responses.

9 Conclusion

A highly significant finding, often indicative of central vestibular 
dysfunction, is UBN. Only recently has its diagnostic importance been 
widely recognized, thanks to advancements in research on its origin 
and pathophysiology. We now have a detailed understanding of the 
neural structures responsible for the precise control of eye movements 
in the vertical plane, allowing us to focus on these structures when 
encountering UBN.

TABLE 1 Most frequent causes of UBNS.

Vascular pathologies

Infarction of medulla (27, 60, 61, 64, 77, 

111–118)

Infarction of pontomesencephalic 

junction (10, 119)

Infarction of BC (84, 85)

Inflammatory and autoimmune diseases

Meningitis

Brainstem encephalitis (120)

Multiple sclerosis

Anti-GAD antibodies, including stiff-

person syndrome (121–123)

Middle ear disease (124)

Variants of Guillain-Barre syndrome such 

as Bickerstaff encephalitis and Miller-

Fisher syndrome (121, 125, 126)

Paraneoplastic

Anti-Hu antibodies due to pancreatic 

endocrine neoplasm (26)

Anti-Ma2 antibodies encephalitis (127)

Neoplasm

Tumor of cerebellar vermis (128)

Tumor of the medulla (8, 129)

Hereditary neurodegenerative disease

Episodic ataxia type 2 (positionally 

induced)

Ataxia telangiectasia

Cerebellar degeneration (130)

Lodder-Merla syndrome type 1 (131)

Toxic conditions

Wernicke’s encephalopathy (13, 32, 

132, 133)

Tobacco and nicotine intoxication 

(46, 134, 135)

Organophosphate poisoning (136)

Organoarsenic poisoning (137)

Visual pathway diseases

Leber’s congenital amaurosis (2, 138)

Congenital disorders of the anterior 

visual pathways (139)

Malformative conditions

Arnold Chiari disease (140)

Miscellanea

Central diabetes insipidus (141)

Pelizaeus-Merzbacher disease (142)

Fisher’s syndrome (143)

Transient finding in infants (144, 

145)

Congenital upbeat nystagmus (146–

148)

Creutzfeldt-Jacob disease (149)

Amitriptyline discontinuation (150)

Hydrocephalus (24)

Hyperemesis gravidarum (151–153)

TABLE 2 Key points of peripheral and central UBN.

UBN Peripheral Central

Spontaneous Very rare Frequent

Positional Frequent Frequent

Presence in primary eye 

position

Yes Yes

Presence of horizontal 

components

Rare Possible (bow-tie 

nystagmus)

Presence of torsional 

components

Frequent Possible

Modification by lateral 

gaze

Frequent, for torsional 

component

Rare

Alexander law Yes Variable

Slow phase velocity trend Linear Linear, increasing or 

decreasing

Visual fixation inhibition Yes, for vertical component No

Modification by 

convergence

No Yes

Modification with 

different head positions

Only in BPPV Often

Association with other 

oculomotor 

abnormalities

No Often
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Today, UBN is considered a highly localizing pathological sign, 
and its identification should prompt thorough neuroimaging studies 
to detect the most common acute or chronic structural causes.

As a result, therapy for UBN and related symptoms can be causal. 
When this is not feasible, treatment can be symptomatic.

The goal of our study is to provide a comprehensive and detailed 
overview of UBN and to offer possible explanations for the different 
functional aspects observed in the presence of this finding. This paper 
would serve as a valuable resource not only for specialists evaluating 
these patients in a clinical setting but also for general practitioners 
who may encounter this sign and pathology in non-specialized 
contexts, such as in emergency care.
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