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Gene transfer-based therapies utilizing viral vectors have undergone remarkable

advancements and hold significant promise in addressing neurodegenerative

diseases in recent years, whose potential mechanisms include replacing

or silencing pathogenic genes and delivering neurotrophic factors. Current

preclinical research focuses on developing novel strategies in gene modification

to combat neurodegenerative disorders. Numerous clinical trials involving viral

vectors in the nervous system are either on-going or completed. Despite these

advancements, progress in this field remains constrained by immune responses

triggered by viral vectors, which can be triggered through innate and adaptive

pathways. The present review will focus on the advances in the development

and application of viral vector-based gene therapies for neurodegenerative

diseases and summarize the related immune responses, aiming to provide a

forward-looking perspective for this emerging arena.
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1 Introduction

Neurodegenerative diseases (NDs) are a heterogeneous group of complex diseases

characterized by neuronal loss and progressive degeneration of different areas in the

nervous system (1). To date, no effective therapeutics have been developed to slow, halt,

or prevent any NDs (2). As one of the therapeutic vectors widely studied, viral vectors

are now routinely used as tools for studying gene function as well as developing gene-

based therapies for a variety of diseases (3). Viral vectors take advantage of the ability of

viruses to enter a cell, enabling direct intracellular gene product delivery (4, 5). However,

increasing attention is being directed toward the immune responses induced by viral vector

administration, along with the associated side effects. Although significant progress has

been made over the past two decades in understanding innate and adaptive immune

responses to natural infections with viral vectors or viral vector-mediated gene transfer

using various types of vectors (6), further strategies are still required to mitigate the side

effects caused by these immune responses.
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In recent years, viral vector-mediated gene therapies have been

increasingly explored as potential treatments for neurodegenerative

diseases. Although preclinical and clinical data have demonstrated

the relative safety and effectiveness of these in-vivo therapies across

central nervous system (CNS) pathologies, challenges still remain

in the progress of clinical translation (7). In this review, we

will focus on preclinical studies using viral vector-mediated gene

therapy for neurodegenerative diseases, as well as their clinical

translation, and discuss the different types of immune responses

elicited by viral vectors and how they translate into lack of

efficacy or increased toxicity. Importantly, this review integrates

advances in gene delivery with a detailed analysis of host immune

reactions, highlighting the balance between therapeutic potential

and immunological barriers in neurodegeneration.

2 Basic biology of viral vectors

Viral vectors are widely used tools for gene delivery, especially

in the central nervous system (CNS). Common types include

adeno-associated viruses (AAVs), retroviruses (RVs), adenoviruses

(Ads), lentiviruses (LVs) (8). Viral vectors vary in their payload, cell

tropism, immunogenicity and capacity and persistence of transgene

induction (8). In this section, viral vectors commonly used will be

discussed and key features of each vector are compared in Table 1.

2.1 Adenoviruses (Ads)

Adenoviruses have a genome size of 35–40 kb (8), which possess

a capsid that accommodates a 26–45 kb linear, double-stranded

DNA genome (9). Ads effectively infect dividing cells and does not

integrate into the host genome (8), and they bind to various cell

surface proteins to facilitate their entry into the target cells (10).

The type of tissue infected largely depends on the cell tropism

of the virus. It is assumed that Ads infect a broad range of cell

and tissue types, including neuronal cells, dendritic cells, and

hepatocytes preferentially (8). This is mainly because most human

cells express the primary adenovirus receptor and the secondary

integrin receptors (11, 12). Different serotypes exhibit distinct cell

tropisms. For instance, Ad5 shows strong liver tropism mainly

through binding of its hexon protein to coagulation factor X (10).

While Ad35, a group B adenovirus, uses CD46 as its primary

cellular receptor, which is broadly expressed on dendritic and

TABLE 1 Key features of viral vectors.

Vector type Packaging capacity Genome Immunogenicity Transduction e�ciency Gene expression
stability

Adenovirus 26–45 kb dsDNA High High Transient

Adeno-associated virus <5 kb ssDNA Low Moderate Stable

Lentivirus 9–10 kb ssRNA Low Moderate Stable

Retrovirus 8–9 kb ssRNA Low Moderate Stable

Herpes simplex virus 50 kb dsDNA High High Transient

Stomatitis virus 6 kb ssRNA High Moderate Stable

hematopoietic cells, facilitating preferential infection of immune

cell types (13).

Since adenoviral vectors were initially used for brain cell

transduction in the early 1990s (14), they have been applied in

the treatment of cancer, Parkinson’s disease, and Huntington’s

disease (1). Ads were the first DNA virus to enter rigorous

therapeutic development, largely because of its well-defined

biology, genetic stability, large transgene capacity and ease of large-

scale production (9). However, Ad vectors can induce high-level

innate inflammatory responses within the first 24 h of transduction

(15). For instance, Schaack (15) reported that adenoviral early

region proteins upregulate pro-inflammatory cytokines such as IL-

6 and TNF-α, even in the absence of viral replication. In spinal cord

injury models, Islam and Tom observed that Ad vector delivery

induced notable microglial activation and neutrophil infiltration,

highlighting the potential for both therapeutic and detrimental

inflammatory effects (16). Besides, they also have limitations like

short gene expression of 2 weeks to several months (transient) and

high risk of cytopathic effects (8, 16). Additionally, high titters can

result in organ damage and even mortality (16). An intravenous

administration of Ads may induce acute liver injury, as has been

reported in animal models (17). Still, these disadvantages can be

corrected by designing and synthesizing other novel serotypes (8).

For example, the third-generation adenovirus vectors, also referred

to as the helper-dependent or gutless adenovirus, can significantly

reduce in vivo immune response compared to the first- and second-

generation Ads, although high transduction efficiency and tropism

are maintained (18).

2.2 Adeno-associated viruses (AAVs)

Since AAVs were initially discovered as a contaminant in

adenovirus preparations (19), their biological characteristics and

applications have been widely studied. AAVs have a single-stranded

DNA, with genome DNA payloads under 5 kb (8), and have a small

(∼25 nm) icosahedral capsid composed of three types of structural

proteins, namely, VP1, VP2, and VP3 (20). AAVs have the ability to

transduce dividing and nondividing cells, but do not integrate into

the host genome (8). They are capable of expressing transgenes over

several months in nondividing cells (9), and provide a relatively

stable expression in dividing cells as well (21). In comparison

to Ads, AAVs have a long duration of gene expression in vivo

(22). The specificity of adeno-associated virus vector-based cell and
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tissue targeting is determined by the capsid proteins of AAVs (9).

Compared with Ads, a similar cell tropism is shown by AAVs (8).

AAVs have at least 12 natural serotypes andmany artificial variants,

each of which exhibits different cell tropisms in the nervous

system (23–26). For instance, AAV2 is one of the most extensively

studied serotypes and primarily transduces neurons after direct

injection into the brain parenchyma (23). AAV5 shows enhanced

transduction in the striatum and cerebellum (23), while AAV8

and AAV9 are capable of crossing the blood–brain barrier (BBB)

following systemic administration, thus enabling widespread CNS

gene delivery (21). Notably, AAV9 preferentially targets neonatal

neurons and adult astrocytes (24). AAV11 has recently been shown

to enhance astrocyte-directed transduction and enable efficient

retrograde labeling of projection neurons, therefore broadening

its potential in circuit-specific interventions (22). These variations

among AAV serotypes provide opportunities to tailor gene delivery

strategies based on cell-type specificity and disease context.

AAV-mediated gene transfer has great potential as a therapeutic

approach (27). Most of the currently developed AAV vectors are

directed toward monogenic diseases (28), but they are also versatile

and enable one to test for other CNS diseases (9). AAV vectors can

lead to severe adverse effects due to off-target expression, such as

hepatotoxicity (6), neurotoxicity (29), and even death in critical

trials (30–32). Using AAV vectors alone does not elicit a strong

immune response similar to that elicited upon using other viruses

(9). AAV vectors can also induce unwanted immune responses,

while about 50% of humans may have neutralizing antibodies due

to previous infections (33, 34). Although certain major obstacles

limit the widespread application of AAV vectors, including limited

insert size, inefficient transduction, narrowed disease case, and

off-target responses, they hold great potential to revolutionize the

clinical management of human diseases (9). Overall, AAVs offer a

relatively safe and versatile platform for CNS gene therapy, though

limitations such as pre-existing neutralizing antibodies and vector

immunogenicity must be addressed in clinical applications.

2.3 Lentiviruses (LVs)

Lentiviruses have a single-stranded RNA genome and may

incorporate constructs up to 9–10 kB in size (35, 36). Lentiviral

(LV) vectors can infect both dividing and non-dividing cells, such

as neurons (8, 37). While it also can preserve long-term and

stable transgene induction (8), which is crucial for adolescents

or pediatric patients (9). Genetic engineering makes it possible

to produce LVs with specific integration sites for the increased

safety of use (38). Unlike Ad or AAV vectors, LV vectors rarely

generate neutralizing antibodies (36). Due to their relatively low-

immunogenic characteristics (35), It is reported to have low

Immunogenicity and elicit no pathogenic effects (39), suggesting

that this vector is relatively safe in vivo. LVs are capable of

infecting a broad range of host cell types, allowing their use

for the treatment of Parkinson’s disease (PD) Alzheimer’s disease

(AD) (1). They have also been demonstrated as efficient gene

transfer vehicles for human solid tumor cells. For example, they

enabled diphtheria toxin A delivery to suppress prostate cancer

xenografts (39), mediated suicide gene therapy using HSV-tk

in hepatocellular carcinoma (40), and outperformed retroviral

vectors in transducing ovarian cancer cells (41). Although certain

problems remain to be addressed, the safe and efficient LV vectors

are nonetheless considered promising as a tool for human gene

therapy (9). These findings highlight the potential of LV vectors

for sustained and low-immunogenic gene delivery in chronic

neurodegenerative conditions.

2.4 Other viral vectors

Another commonly used viral vector is retroviruses (RVs),

which are single-stranded RNA and integrated into the genome

of the host cell (42). They can carry up to 8–9 kb of foreign

DNA for transduction (43, 44). RVs can stably integrate into the

target cell genome (45), so they are useful for ex vivo delivery

of somatic cells. RVs provide a stable and efficient expression

of the transgene to patients (4). They have been used in early

gene therapy trials for severe combined immunodeficiency (SCID),

demonstrating long-term gene correction in hematopoietic stem

cells (46). However, they have limitations including immunogenic

problems and inability to transduce the nondividing cells (43).

Herpes simplex viruses (HSVs) are also one of the recent virus

candidates in gene delivery. HSVs are an enveloped virus with

a double-stranded DNA (dsDNA) Genome (4). They can usually

accommodate up to 40 kb of transgenic DNA (3). Because of its

neurotropic features (47), they have strong tropism for neurons.

For example, HSV vectors have been studied for the delivery of

neurotrophic factors in models of chronic pain and epilepsy (48).

HSVs may initiate strong inflammatory response (4), and result in

transient gene expression in cells infected with them (49). Vesicular

Stomatitis viruses (VSVs) contain a single stranded RNA genome

(50). And their cargo capacity is approximately 6 kb (50). VSVs

are reported to cause humoral and cellular immune response in

previous studies (50, 51). These immunological features, along

with their strong cytolytic activity, support their use as oncolytic

agents and viral vectors in cancer virotherapy (52). These viral

vectors expand the toolkit for gene delivery in the CNS, each

offering unique advantages and limitations depending on the

therapeutic context.

3 Viral vector delivery strategies for
the nervous system

There are many ways to deliver viral vectors to the brain, each

varying in efficiency, target region, and biodistribution. In this

section, we will introduce traditional and novel delivery strategies

and their advantages and disadvantages.

3.1 Intraparenchymal delivery

Intraparenchymal delivery is the most used viral vector delivery

method with high delivery efficiency in studies for treating

neurological diseases. It’s an approach that enables direct delivery to

the target structure, bypassing the blood-brain barrier, and usually
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accomplished via a stereotactic head frame or magnetic resonance

imaging guidance (53, 54). While stereotactic guided injection

is frequently used for intraparenchymal delivery, risk of surgical

intervention and the restricted spread of transgene expression still

needs to be concerned. A clinical study on Parkinson’s disease

patients (NCT00400634) reported severe side effects associated

with surgical procedure (55). Intraparenchymal delivery typically

affects only a limited range of brain regions, with highest vector

distribution and downstream gene product activity around the

injection site (56, 57).

A new technology called interventional MRI-guided

convection-enhanced delivery (iMRI-CED) has been introduced

in recent years, which is the gold standard for verifying accurate

vector delivery in real time (58). Convection-enhanced delivery

(CED) has been shown to improve specificity and delivery

efficiency in a safe, reliable, targeted, and homogeneous manner

across the blood-brain barrier (216–219). Therefore, CED holds

significant potential for broad application in the treatment of

neurological diseases.

3.2 Intravenous delivery

Efficacy of intravenous delivery largely hinges on the ability

of AAV to cross the BBB. Among the naturally existing AAVs,

AAV9 is currently the most commonly used AAV serotype for

CNS transduction in preclinical and clinical studies (59), which

may be attributed to its active-transport mechanisms (60, 61). It

has several advantages including non-invasive, widely distributed,

and targeting both CNS and peripheral tissues. However, this

approach also faces a few challenges. People who have been

exposed to AAVs may pre-existing antibodies that can neutralize

AAVs (6, 62). As it travels through the bloodstream, immune

responses can diminish its efficacy (63). Besides, systemic toxicity

such as off-target effects has also been found in previous

studies (64, 65).

3.3 Intracerebralspinal fluid injection
(intra-CSF)

Another method is intra-CSF injection including intra-

cerebroventricular injection (ICV), intrathecal injection (IT),

and intracisternal magna injection (ICM). ICV refers to direct

administration into ventricles in the brain, allowing the AAV to

permeate the barrier and spread widely across different brain

regions (66, 67). IT delivers AAV via injection into the spinal canal

through the lumbar puncture, resulting in broad coverage of the

brain and spinal cord (68). ICM is a technique similar to IT, while

its injection site is the cisterna magna (CM). Intra-CSF injection

can bypass the BBB and spread widely within the CNS. Compared

with intravenous delivery, intra-CSF injection minimizes systemic

exposure and avoids neutralization by circulating antibodies.

However, it has insufficient coverage, leading to limited access to

deeper brain regions and the presence of surgical risks (69–71).

3.4 Intranasal delivery

Intranasal delivery is an alternative and non-invasive option

which can directly deliver viral vectors through the nose to the

brain (72). Intranasal delivery has been used in clinical studies to

deliver small-molecule agents to the brain, such as nerve growth

factor (NGF) and brain-derived neurotrophic factor (BDNF), thus

treating neurodegenerative diseases (73–75). Intranasal delivery is

easy to perform and can be repeated, even by patients themselves

(72). It is also capable of bypassing the BBB (72). However,

intranasal delivery holds limitations. Although it minimizes

systemic exposure (76), the cells along the delivery pathways, such

as olfactory sensory neurons and trigeminal nerves, may also be

transduced and cause off-target effects (72).

3.5 FUS-BBBO

Beyond invasive approaches, focused ultrasound with

microbubble-mediated BBB opening (FUS-BBBO) is an emerging

non-invasive approach for viral vector delivery in treating

neurological diseases. It has the potential to overcome existing

delivery limitations by providing a means of non-invasive,

site-specific gene transfer to the brain, offering advantages

such as improved safety and targeted delivery (77–81).

Various administration routes have been explored, including

intravenous, intranasal, and local injection, which have expanded

its applicability for gene therapy across multiple neurodegenerative

disorders (81–84). Recent studies have demonstrated the successful

application of FUS-BBBO in various neurodegenerative and

neurological conditions. For example, AAV has been used in

models of Alzheimer’s disease and Huntington’s disease, while

HSV has been applied in glioblastoma (83–85). Importantly,

FUS-BBBO may reduce systemic immune activation by enabling

lower vector doses, thereby potentially lowering the risk of pre-

existing neutralizing antibodies and allowing for safer repeated

administration (83). Despite these advantages, FUS-BBBO has its

challenges. One primary concern is still the possibility of off-target

side effects and toxicity due to the intravenous administration (59).

In summary, FUS-BBBO offers a promising delivery strategy that

enhances brain-targeted gene therapy while potentially mitigating

immune-related complications.

4 Immune responses against AAV
injection

As the most widely studied and used viral vectors in the

field of therapeutic application to neurodegenerative diseases, AAV

injection was found to trigger both innate and adaptive immune

responses in the current preclinical studies. As mentioned above,

immune responses were also reported in other viral vectors after

transduction (15, 35, 86–88). In this section, we would like to focus

only on the immunogenicity of AAV vectors after administration

and have further discussion. Figure 1 has summarized the main

mechanisms of immune responses. Responses triggered by brain

are less likely to be strong, given its immune-privileged nature

(6). The responses are most likely linked to adaptive responses in
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FIGURE 1

Mechanism of immune responses against AAV-mediated gene transfer. The graph shows the di�erent type of immune responses that are elicited

upon injection of AAV vectors. Toxicities are underlined and listed next to the components of the immune responses that contribute. PAMP,

Pathogen-Associated Molecular Pattern; MDA5, Melanoma Di�erentiation-Associated protein 5; CpG, unmethylated CpG motifs; DCs, dendritic

cells; dRNA, double stranded RNA; MHC, Major Histocompatibility Complex. Created in BioRender. Wang, Y. (2025) https://BioRender.com/4dt5yfl.

most humans, except for young children who are less likely to have

immune memory to AAV capsid (6).

4.1 Innate immune responses

Innate immunity is the first barrier against pathogens as

it mounts rapidly and does not require specific adaptation to

the pathogens (62). Its response depends on the recognition

of pathogen-associated molecular patterns (PAMPs), which are

carried by viruses or viral vectors (89). Both the capsid and theDNA

components of AAV may contribute to the activation of innate

immunity, resulting in adverse reactions and immune toxicity.

In the context of AAV-mediated gene transfer, one mechanism

is considered to trigger inflammatory responses is a PAMP

within the capsid proteins binding to Toll-like receptor 2 (TLR2)

(90), positively expressed on myeloid dendritic cells. Another

mechanism involves the AAV double-stranded DNA (dsDNA)

genome, in particular its unmethylated CpG sequences, recognized

by Toll-like receptor 9 (TLR9) (91–94). TLR9 engagement

increased antigen presentation on class I major histocompatibility

complex (MHC-I) and further associated with enhanced activation

of AAV-specific CD8+ T cell (94–96). Further CpG Depletion of

Vector Genome in animal models has shown that a reduction of

the vectors’ CpG motifs blunts CD8+ T cell responses without

modifying B cell responses (97, 98). In addition to the vector

DNA genome, double stranded RNA (dsRNA) may also participate

in the induction of innate immunity from long-term AAV

transduction, which could interact with melanoma differentiation-

associated protein 5 (MDA5) (99). It is well known that MDA5

is cytoplasmic viral RNA sensor serving as a cytoplasmic pattern

recognition receptor (PRR) and ubiquitously expressed. MDA5 is

capable of activating type I interferons (type I IFNs) signaling

pathways after virus infection, leading to the expression of type

I IFNs (99). Besides, it is also found that AAV vectors activate

type I IFNs expression in plasmacytoid dendritic cells (pDCs)

of human and murine (93). TLR9 can interact with myeloid

differentiation primary response gene 88 (MyD88) for downstream

signaling, leading to type I IFNs production in pDCs and further

promoting activation of CD8+T cells (93, 96). pDCs recognize

AAV genomes via TLR9 and release type I interferons, which in

turn activate conventional dendritic cells to prime capsid-specific

CD8+ T cells—highlighting the interplay between innate sensing

and adaptive immune activation (62). These studies underscore

the important role of type I IFNs in bridging innate and adaptive

immunity following AAV administration.

4.2 Adaptive immune responses

An adaptive immune response requires a longer time than

innate immunity and is considered the second line of defense

against pathogens. It is characterized by antigen-specific and the

ability to eliminate pathogens while generating an immunological

memory (62). AAV-specific adaptive responses can be induced by

previous natural infection or they can be stimulated or recalled by

AAV gene transfer.

After AAV vector administration, T and B lymphocytes are

activated following molecular recognition of an antigen presented

by antigen-presenting cells (APCs) (62). Cytotoxic CD8+T cell

responding via MHC class I to AAV capsid protein can affect

therapeutic efficacy (94, 95, 100), possibly by clearing AAV-

transduced cells thus inducing inflammation in the target tissue

(101, 102). It is also reported that increased AAV-antigen presented

on capsid-derived MHC class I together with higher CD8+T

cells activation in dose-dependent in vitro experiments (103, 104).

The concurrent presentation of CD4+ T helper cells activated

by capsid-derived MHC class II facilitate both humoral and cell-

mediated immune responses (105). AAV-specific B cell responses

induced by previous natural infections can neutralize the viral

vectors before they can deliver their payload, thus precluding a

successful AAV-mediated gene transfer (6). Efforts have made to

avoid its neutralization by modification to the vector’s capsid (106).

However, it showed limited success as many of the antibodies bind

to domains that are crucial for transduction (106, 107). We can see

that T cells play an important part in adaptive Immune responses

against viral vectors. Liver toxicity caused by T cells directed to

epitopes, which bind with low affinity to MHC class I molecules,
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is more worthy of our attention. Therefore, cellular responses,

in particular the T cells, are needed to further study and make

a breakthrough.

4.3 Immune responses against the
transgene product

Anti-transgene immune responses were documented in the

clinical trials, mostly after intramuscular delivery of AAV vectors

(108, 109). For example, evidence of T cell-mediated anti-transgene

cytotoxic T cell responses was documented in a phase I/II trial

of intramuscular gene transfer in Duchenne muscular dystrophy

patients (108). The risk of antibody responses to the transgene

product is influenced by many factors, including the route of vector

administration, specific vector design, types of viral vectors, and

vector dose. Additional host factors may include specific aspects

such as tissue inflammation, target tissue and the host genetic

background (105). Clinical experience indicates that immune

responses directed against AAV vectors are dose dependent (110,

111). Compared to Ad and LV vectors, AAV vectors have relatively

weak and transient innate response and least efficient inducer

of CD8+ T cells (105). The clinical data presented suggest that

disease-specific conditions, such as the ongoing inflammation

in muscle dystrophies (108), are likely to increase transgene

immunogenicity after gene transfer.

4.3.1 Therapeutic strategies for immune
responses against AAV injection

Therapies are mostly administered only once in studies

nowadays, with repeated dosing precluded. According to clinical

trials, AAV vectors administration leads to the development of

anti-AAV IgG and NAbs (112), which could be a potential reason

for preventing vector readministration. Nevertheless, preclinical

studies also show that administration of immunomodulatory

regimens (113) or B-cell depletion prior to gene transfer (114)

can effectively block humoral immune responses against AAV

vectors. These encouraging results leading to attempts in a

clinical trial testing rituximab, a B-cell depleting monoclonal

antibody targeting CD20 and reducing antibody responses, in

combination with rapamycin (an immunosuppressant) in humans

as a strategy to enable vector readministration (NCT02240407).

Induction of antibodies to a transgene product could be very

harmful as such antibodies could complicate traditional protein

therapy. An animal study showed that, immunosuppressants

such as rapamycin, which inhibits mTOR signaling to reduce T

cell proliferation and inflammation. Ibrutinib inhibits Bruton’s

tyrosine kinase (BTK), thereby suppressing B cell activation

and antibody production. Both drugs, when given alone, reduce

primary antibody responses against AAV capsid (115), blunting

recall responses and reducing numbers of circulating antibody-

secreting plasma cells, and the combination of therapy is more

effective. In a clinical trial, about a third of the patients

who received Onasemnogene abeparvovec, an FDA approved

AAV9 vector therapy for SMA, showed liver damage associated

with an inflammatory reaction comprised mainly of CD8+ T

cells, but all patients recovered after treatment with steroids,

which broadly suppress immune activity and are especially

effective in controlling CD8+ T cell-mediated cytotoxicity

(116). However, in some cases, some patients fail to respond

and still reject the AAV-transduced cells (117, 118). Besides,

immunosuppression would be required for lengthy periods of

time or even for the lifespan of the gene transfer recipients.

Taken together, these findings emphasize the importance of

different immunomodulatory strategies to improve gene therapy

outcomes, including pharmacological immunosuppressants (such

as rapamycin and ibrutinib) and biological agents targeting B cells

(such as rituximab). Figure 2A is provided to visually summarize

these therapeutic approaches.

FIGURE 2

Immunomodulatory strategies and hepatic immune tolerance. (A) Major immunosuppressive approaches used to reduce anti-transgene immune

responses, categorized by their main cellular targets. (B) Liver’s role in immune tolerance mediated by key resident cells such as Kup�er cells and liver

sinusoidal endothelial cells (LSECs). Created in BioRender. Wang, Y. (2025) https://BioRender.com/r8hrxah.
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4.3.2 Hepatic immune tolerance in AAV-mediated
gene therapy

Moreover, hepatic gene transfer is getting more attention in

the field of immune tolerance. The liver’s inherent tolerogenic

nature, due to constant exposure to non-self antigens, makes it

an ideal target for inducing systemic immune tolerance through

gene therapy, preventing uncontrolled immune activation (119).

Studies have shown that liver-directed AAV gene transfer can not

only reduce systemic immune responses but also eradicate pre-

existing antibodies against therapeutic proteins, such as factor VIII

in hemophilia A models, highlighting the liver’s role in establishing

durable immune tolerance (62, 120). Therefore, liver becomes

a preferred target organ for gene therapy not only for liver-

specific diseases but also for disorders that require systemic delivery

(121). Studies using AAV-mediated gene transfer to liver in mice

and primate models indicated that hepatocyte-restricted transgene

expression can induce a robust, antigen-specific peripheral

tolerance (122, 123). Tolerance is induced through a combination

of mechanisms. One mechanism is that Kupffer cells, a type of

antigen presenting cells (APCs) resident in the liver, seem to have

a less mature phenotype compared to other professional APCs

(124, 125), thus leading to poor T cell-activation. Besides, Kupffer

cells secret the anti-inflammatory cytokine IL-10, contributing to

the suppression of CD8+ T cell responses (126, 127). Another

important factor is liver sinusoidal endothelial cells (LSECs), who

also act as professional APCs (128, 129). LSECs promote tolerance

through the induction of T regulatory cells (Tregs), whose depletion

in mice observed increased transgene immunogenicity (130, 131).

Additional mechanisms include CD4+T cell anergy (132), T

cell degradation (133) were proposed in the establishment and

maintenance of liver tolerance. These key cellular mechanisms are

visually summarized in Figure 2B. Overall, these findings highlight

the complex interplay between innate and adaptive immunity in

response to AAV vectors. Understanding how early innate signals

shape long-term adaptive outcomes is essential for designing safer

and more effective gene therapies. Substantially more studies are

needed to address adverse immune responses.

5 Preclinical and clinical studies of
viral vector delivery for
neurodegenerative diseases treatment

In recent years, many preclinical studies and clinical trials

on the application of viral vector delivery for neurodegenerative

diseases have been conducted. We detail the specific pathogens

and therapeutic genes involved in each disease and discuss the

outcomes achieved by each way. Table 2 provides a comprehensive

summary of clinical studies on neurodegenerative diseases. It is

worth mentioning that, while this summary provides a broad

perspective, viral vector-based gene therapy has been expanded to

address diseases beyond the scope discussed here.

5.1 Alzheimer’s disease (AD)

As a progressive neurodegenerative disorder, the earliest phase

of Alzheimer’s disease happens in parallel with accumulating

amyloid β, inducing the spread of tau pathology. More than 40

Alzheimer’s disease-associated genetic risk loci already have been

identified, of which the APOE alleles have the strongest association

with the disease (134). Preclinical and clinical studies have explored

various strategies through viral vector delivery for the treatment of

AD, including risky genes and related pathways.

5.1.1 Targeting APOE
The common apolipoprotein E (APOE) alleles (ε4, ε3, and

ε2) are important genetic risk factors for late-onset Alzheimer’s

disease. The primary physiological function of apoE is to mediate

lipid transport in the brain and periphery (135). However,

pathogenically, apoE seeds amyloid-β (Aβ) plaques in the brain

with apoE4 driving earlier and more abundant amyloids (135).

Studies have shown that the APOE4 allele is the strongest genetic

risk factor for late-onset AD (136), increasing the risk up to 15-

fold in homozygous individuals (137), whereas APOE2 is associated

with a reduced risk and delayed onset of AD (138). In the brain,

apoE is produced mostly by astrocytes. In one study, AAV8-GFAP-

apoE, which is astrocyte-specific, was injected into apoE3-targeted

replacement (apoE3-TR) or apoE4-targeted replacement (apoE4-

TR) mice. In the apoE4-TR background, apoE4 decreases apoE

lipidation and enhances Aβ accumulation, whereas apoE2 has the

opposite effects (139). This indicates the therapeutic potential of

APOE2 in the treatment of AD. In another study, AAV gene

delivery of APOE2 using an AAV vector rescues the detrimental

effects of APOE4 on brain amyloid pathology (140). Furthermore,

Günaydin et al. have recently found that AAVrh10 delivery of novel

APOE2-Christchurch (APOE2Ch) variant can better suppress

amyloid and Tau pathology in “amyloid mice” and “tau mice”

than APOE2 (141), which makes APOE2Ch variant a promising

therapy for APOE4-associated AD. A clinical trial (NCT03634007)

using AAVrh10hAPOE2 (LX1001) to treat patients with APOE4

homozygote Alzheimer’s Disease was completed last year, including

15 patients. A recent interim report from the Phase 1/2 trial,

showed favorable biomarker responses and good tolerability in

APOE4 homozygous Alzheimer’s patients, supporting continued

clinical development, with further results eagerly anticipated to

assess long-term efficacy.

5.1.2 Expressing neurotrophic factors
Neurotrophic factors, including BDNF and NGF, have been

shown to exert neuroprotective functions for AD (142). Microglia

activation and reactive oxygen species (ROS) inhibition may

exert neuroprotective effects against Aβ-induced neurotoxicity

through NGF/TrkA signaling (143, 144). In a preclinical study,

AAV2-NGF(CERE-110) was shown to be neuroprotective and

neurorestorative to basal forebrain cholinergic neurons in the rat

fimbria-fornix lesion and aged rat models (145). As compared

to AAV2 vector, AAV2/5 vectors consistently showed higher

transduction efficiency. Nagahara et al. used lentiviral gene delivery

of NGF to the aged primate basal forebrain restoring cholinergic

neuronal markers significantly (146). These experiments conducted

in both rats and monkeys, led to the initiation of a Phase I clinical

study to evaluate the safety and efficacy of NGF in Alzheimer’s

disease subjects. A pilot phase 1 clinical trial on 49 AD participants,

AAV2-NGFwas safe and well-tolerated through 24months, but did
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TABLE 2 Summary of clinical studies on neurodegenerative diseases.

Disease NCT number Drug name Viral vector Therapeutic gene Administration method Phases Status References

Alzheimer’s Disease NCT00876863 CERE-110 AAV2 NGF Stereotactic injection 2 Completed (212)

NCT00087789 CERE-110 (AAV2-NGF) AAV2 NGF Stereotactic injection 1 Completed –

NCT05040217 AAV2-BDNF AAV2 BDNF Stereotactic injection 1 Recruiting –

NCT04133454 AAV-hTERT AAV TERT Intravenous and intrathecal 1 Unknown status –

NCT03634007 LX1001 AAVrh10 APOE2 Intrathecal 1, 2 Recruiting (213)

Parkinson’s Disease NCT02418598 AAV-hAADC-2 AAV2 AADC Putaminal infusion 1, 2 Terminated –

NCT05603312 AAV-GAD AAV2 GAD Subthalamic infusion 1, 2 Recruiting –

NCT00400634 CERE-120 AAV2 NTN Stereotactic surgery 2 Completed (55)

NCT00985517 CERE-120, AAV2-Neurturin AAV2 NRTN Substantia nigra and putamen surgery 1, 2 Completed (214)

NCT01621581 AAV2-GDNF AAV2 GDNF Convection-enhanced delivery 1 Completed –

NCT00229736 AAV-hAADC-2 AAV2 AADC Intrastriatal infusion 1 Completed –

NCT00252850 CERE-120, AAV2-NTN AAV2 NTN Stereotactic injection 1 Completed (215)

NCT05822739 BBM-P002, BBM003 AAV ND Intracranial injection 1 Not yet recruiting –

NCT00643890 AAV-GAD AAV2 GAD Stereotactic infusion 2 Terminated (175)

NCT00195143 AAV-GAD AAV2 GAD Subthalamic infusion 1 Completed (174)

NCT04167540 AAV2-GDNF AAV2 GDNF Image-guided infusion 1 Active, not recruiting –

NCT01973543 VY-AADC01 AAV2 AADC Intrastriatal injection 1 Completed (157)

NCT03065192 VY-AADC01 AAV2 AADC Intrastriatal injection 1 Completed –

NCT03562494 VY-AADC02 AAV2 AADC ND 2 Active, not recruiting –

NCT04127578 LY3884961 AAV9 GBA1 Intra-cisterna magna 1, 2 Recruiting –

NCT00627588 ProSavin LV AADC/CH1 Intraparenchymal 1, 2 Completed (160)

NCT01856439 ProSavin LV AADC/CH1 Intraparenchymal 1, 2 Terminated (160)

Huntington Disease NCT05541627 AB-1001 AAVrh10 CYP46A1 Intracerebral injection 1, 2 Active, not recruiting –

NCT05243017 AMT-130, rAAV5-miHTT AAV5 HTT Stereotactic infusion 1, 2 Recruiting –

NCT04120493 AMT-130, rAAV5-miHTT AAV5 HTT Stereotactic infusion 1, 2 Recruiting –

Frontotemporal Dementia NCT04747431 PBFT02 AAV FTD-GRN Intra-cisterna magna 1, 2 Recruiting –

NCT04408625 PR006 AAV9 FTD-GRN Intra-cisterna magna 1, 2 Recruiting (195)

Multiple System Atrophy NCT04680065 AAV2-GDNF AAV2 GDNF ND 1 Recruiting –
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not improve cognition (147). Further analysis of this trial revealed

that it was not able to induce the cholinergic pathways which were

needed for the improvement of cognition in AD patients, due to the

limited spread of the injected AAV2- vectors coupled with incorrect

stereotactic targeting (147). More research may be needed to find

more suitable vectors to improve AAV transfection efficiency in

the future.

BDNF is the most abundant neurotrophic factor in the adult

brain, and its levels decline in the entorhinal cortex in AD

(148). BDNF is usually combined with TrkB (149), and the

BDNF/TrkB signaling promotes the accumulation of amyloid

precursor protein (APP) thereby inhibiting amyloid cleavage and

reducing Aβ production (150). MRI-guided infusion of AAV2-

BDNF to the entorhinal cortex of the non-human primate resulted

in safe and accurate targeting and distribution of BDNF to

both the entorhinal cortex and the hippocampus (151). This

encouraging result was further translated to a phase 1 study

on early Alzheimer’s Disease and mild cognitive Impairment

(NCT05040217), which aims to assess the safety and distribution of

AAV2-BDNF, potentially offering a disease-modifying intervention

by restoring neurotrophic support to affected brain regions.

This trial is currently ongoing, with surgical treatments for the

Alzheimer’s cohort expected to be completed by December 2027.

These studies highlight the therapeutic potential of NGF and BDNF

gene delivery in AD, although limitations in vector spread and

targeting underscore the need for optimized delivery strategies in

future clinical applications.

5.1.3 Expressing TERT
Telomerase reverse transcriptase (TERT) is the enzyme

responsible for maintenance of the length of telomeres (152).

TERT haploinsufficiency decreases BDNF and increases amyloid-

β (Aβ) precursor in murine brain (153). While increased levels of

TERT in AD mouse models results in reduced Aβ accumulation,

improved spine morphology, and preserved cognitive function. As

an attractive target widely explored in cancer research, telomerase

has gained attention for its role in neurodegeneration. A preclinical

study investigating the modulation of TERT in both adult and

old mice, delays physiological aging and extends longevity through

AAV9-TERT gene therapy (154). Paving the way for AD patients in

a phase I clinical trial currently underway, both IV and IT delivery

of AAV encoding TERT are being evaluated (NCT04133454),

aiming to assess safety and transgene expression in patients with

mild-to-moderate AD.

5.2 Parkinson’s disease (PD)

Parkinson’s disease (PD) is one of the common

neurodegenerative diseases in middle-aged and elderly people,

characterized by loss of dopaminergic neurons in the substantia

nigra (SN). The focal nature of SN pathology in PD has been long

considered amenable to gene therapy. 3–5% of Parkinson’s disease

is explained by genetic causes linked to known Parkinson’s disease

genes, whereas 90 genetic risk variants collectively explain 16–36%

of the heritable risk of polygenic Parkinson’s disease (47), leading

to approaches that can target genes directly linked to the disease.

5.2.1 Expressing AADC
Aromatic L-amino acid decarboxylase (AADC) is an enzyme

that is crucial for the synthesis of dopamine from its precursor,

L-DOPA. The absence of AADC reduces dopamine synthesis in

the brain. Enhanced L-DOPA to dopamine conversion leads to

restored motor function and a measurable behavioral outcome in

animal models of Parkinson’s disease by AAV-AADC transduction

(155). After infusion into parkinsonian nonhuman primate (NHP)

putamen, AADC transgene expression remained unchanged at

the 8-year point with no signs of neuroinflammation and other

side effects (156). Transitioning from preclinical models to clinical

trials, the AAV-AADC gene therapy has also shown encouraging

outcomes. Magnetic resonance imaging-guided phase 1 trial of

AAV2-hAADC(VY-AADC01) gene therapy for Parkinson’s disease

have demonstrated safety, stable expression for up to 3 years, and

modest improvement in symptoms (157–159) (NCT01973543). In

another clinical trial(NCT00627588 and NCT01856439), ProSavin,

a lentiviral vector-based AADC gene therapy delivering all three

rate-limiting enzymes (TH, AADC, and GCH1) were administered

to patients with advanced Parkinson’s disease, motor scores

of Unified Parkinson’s Disease Rating Scale (UPDRS) were

significantly improved at 6-month follow-up (160).

It is worth noting that, AADC gene therapy has also been used

in patients with AADC deficiency. Delivery of AAV2-hAADC to

patients with AADC deficiency has been proven to be safe and

effective in several clinical trials (161, 162). These encouraging

results have led eladocagene exuparvovec (AAV2-AADC) to be

the first FDA-approved gene therapy for the treatment of AADC

deficiency. These clinical experiences in AADC deficiency have also

informed dosing strategies and delivery approaches for Parkinson’s

disease applications. Together, these findings support the continued

development of AAV2-AADC gene therapy for both Parkinson’s

disease and AADC deficiency.

5.2.2 Expressing neurotrophic factors
Neurotrophic factors like GDNF and NRTN support neurons’

growth, survival, and differentiation. GDNF, in particular, is

essential for supporting dopaminergic neuron survival (163–166).

Preclinical studies in both rodent and primate models have

shown that AAV2-GDNF delivery to the substantia nigra and

striatum increases dopaminergic neuron survival and improves

motor function. In MPTP-treated rats, AAV-GDNF preserved

striatal synaptic plasticity and reduced rotational asymmetry

(165). In parkinsonian monkeys, AAV-GDNF enhanced dopamine

activity and improved motor coordination without inducing

toxicity (164, 166). Based on these findings, a Phase 1 clinical

trial (NCT01621581) involving 25 patients reported that AAV2-

GDNF delivery was safe and well tolerated across three escalating

doses. Although the trial confirmed consistent GDNF expression,

it did not provide conclusive evidence of clinical efficacy. An

ongoing study (NCT04167540) is expected to further evaluate

therapeutic benefit and optimal dosing. Together, these results

highlight the translational potential of GDNF gene therapy for
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Parkinson’s disease, while also emphasizing the need for further

clinical validation.

Neurturin (NRTN), a member of the GDNF family of

neurotrophic factors with known potential to protect and restore

the function of dopaminergic substantia nigra neurons. Striatal

delivery of AAV2-NRTN (CERE-120) to aged rhesus monkeys

enhances activity of the dopaminergic nigrostriatal system, as

indicated by increased 18F-fluorodopa uptake and tyrosine

hydroxylase expression (167). CERE-120 is also proven to provide

structural and functional neuroprotection and neurorestoration

in MPTP-treated monkeys, leading to improvements in motor

function (168). However, AAV2-neurturin delivery to the putamen

and substantia nigra bilaterally in PD patients showed no

significant benefit over sham surgery, possibly due to impaired

retrograde transport in advanced disease stages (169). These

findings highlight the discrepancy between preclinical and clinical

outcomes, emphasizing the importance of timing and delivery

strategies in gene therapy for PD.

5.2.3 Expressing GAD
Glutamic acid decarboxylase (GAD) is an enzyme catalyzing

the synthesis of GABA. GABA depletion may contribute to

increased motor symptoms (170, 171), and non-motor symptoms

are also related to the dysfunction of the GABAergic pathway (170).

In preclinical studies, AAV-mediated GAD expression in the

subthalamic nucleus (STN) of rat and NHP models ameliorates

parkinsonian behavioral phenotype (172, 173), Additionally, it

demonstrated neuroprotective effects on nigral dopamine neurons,

suggesting broader disease-modifying potential (172). These

encouraging preclinical outcomes also lead to following phase I

clinical trials (NCT00195143), in which AAV-GAD gene therapy

for Parkinson’s disease has proven to be safe and tolerable (174).

In a phase 2 randomized trial (NCT00643890), patients in the

AAV2-GAD group exhibited significantly greater improvement

in motor function, as measured by UPDRS Part III scores, at

both 6 and 12 months compared to the sham group (54, 175).

Further study of the mechanism underlying this trail has found

that only the patients who received GAD gene therapy developed

a unique treatment-dependent polysynaptic brain circuit, termed

as the GAD-related pattern (GADRP), which could be useful in

future clinical trials for isolating true treatment responses (176).

These results support the potential of GAD gene therapy not only to

alleviate motor symptoms but also to offer insight into circuit-level

changes associated with therapeutic efficacy.

5.2.4 Targeting disease gene: GBA1
Variants in the GBA1 gene, which encodes lysosomal acid

glucocerebrosidase (GCase), are among the most common genetic

risk factors for Parkinson’s disease and are associated with

earlier onset, faster disease progression, and more severe non-

motor symptoms (177). In preclinical studies, rAAV9-GBA1 was

unilaterally delivered to the substantia nigra pars compacta (SNpc)

in mice and NHPs. This treatment led to increased GCase activity,

promoted clearance of alpha-synuclein aggregates, and enhanced

survival of dopaminergic neurons, indicating potential disease-

modifying effects in PD (178, 179).

Building on these findings, a Phase 1/2 clinical study

(NCT04127578) using AAV9-GBA1 (LY3884961) delivered via

intra-cisterna magna injection is currently ongoing to assess its

safety, tolerability, and biological activity in GBA1-associated PD

patients. These developments suggest that targeting GBA1 by AAV-

mediated gene delivery may offer a promising therapeutic strategy

for a well-defined genetic subgroup of PD, although clinical efficacy

remains to be validated.

5.3 Huntington disease (HD)

Huntington’s disease is a progressive, fatal, neurodegenerative

disorder caused by an expanded CAG repeat in the huntingtin

gene(HTT), which encodes an abnormally long polyglutamine

(polyQ) repeat in the huntingtin protein (180). The mutant HTT

protein causes selective neuronal degeneration, especially in the

striatum and cortex (180). Therefore, directly targeting the HTT

gene using viral vectors offers a rational and potentially disease-

modifying therapeutic approach.

5.3.1 Targeting HTT
As a monogenic inheritance of Huntington’s disease, HTT

is an appealing candidate for its gene therapy. Besides, miRNA

dysregulation has been consistently reported in HD patients,

transgenic HD mice, and in in vitro experimental models (181–

184). It was also found that downregulation was dominant in

the abnormal miRNA expressions (183). Consequently, delivering

microRNAs that silence the mutant HTT gene has been widely

studied in preclinical studies. Spronck et al. (185) performed

intrastriatal injection of an AAV expressing a miRNA targeting

humans HTT (AAV5-miHTT) at different doses in Q175 knock-

in mice, reduced mutant HTT protein levels, and improved

motor performance. Fukuoka et al. (186) introduced AAV-

miR132 into the striatum of R6/2 mice, enhancing synaptic

plasticity, and improving neuronal function. Keeler et al. (187)

performed bilateral intrastriatal injection of AAV9-GFP-miRHtt

in Q140/Q140 knock-in mice and enhanced striatal neuron

survival. The animal models mentioned above are commonly used

transgenetic models of Huntington’s disease, and all of them are

able to exhibit significant HD-like phenotypes. These strategies

showed a decrease in mutant huntingtin mRNA and protein

levels, lowered the mutant huntingtin aggregates in striatum and

cortex, improved performance in behavioral tests, and slowed down

disease progression. From the bench to the clinic, rAAV5-miHTT

(AMT-130) is currently being investigated in Phase 1/2 clinical

trials (NCT04120493, NCT05243017) for adults with early manifest

HD. This trial involves stereotactic intrastriatal delivery and aims to

evaluate safety, biodistribution, and preliminary efficacy. Together,

these findings underscore the potential of AAV-mediated HTT-

lowering therapy to slow disease progression in HD, especially

when initiated in the early stages.

5.3.2 Expressing CYP46A1
Increasing evidence suggests that CYP46A1, a gene encoding a

member of the cytochrome P450 superfamily enzymes, has a role in
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the pathogenesis and progression of neurodegenerative disorders,

and that increasing its levels in the brain is neuroprotective

(188, 189). This approach is grounded in its potential to

modulate cholesterol catabolism, leading to the conversion of

cholesterol into 24 (S)-hydroxy-cholesterol (24S-OHC), a brain-

specific oxysterol involved in cholesterol turnover. In preclinical

studies, AAV-CYP46A1 infection in model mice for Huntington’s

disease restored cholesterol homeostasis, restored cholesterol

homeostasis, enhanced cholesterol turnover, and normalized

neuronal function (190, 191). Moreover, this intervention increased

levels of lanosterol and desmosterol, which were found to

protect striatal neurons expressing Exp-HTT from death in vitro

(191). These findings support the hypothesis that modulating

cholesterol metabolism may counteract HD pathogenesis by

restoring neuronal homeostasis and enhancing cell survival. A

Phase 1 trial (NCT05541627) of intracerebral bilateral injections of

AAVrh10.CAG.hCYP46A1 (AB-1001) within the striatum in early

manifest patients is currently ongoing.

5.4 Frontotemporal dementia (FTD)

GRN mutations cause frontotemporal dementia (GRN-FTD)

due to deficiency in progranulin (PGRN), a lysosomal and secreted

protein with unclear function, which plays roles in lysosomal

homeostasis, neuronal survival, and inflammation regulation

(192). Deficiency of the gene GRN results in gangliosidosis

in frontotemporal dementia, causes neurodegeneration

through lysosomal dysfunction, defects in autophagy, and

neuroinflammation (193, 194).

Preclinical studies performed AAV-driven expression of

progranulin to animal model of frontotemporal dementia due

to GRN mutations (195, 196). Results have shown that it not

only increased progranulin levels in the cerebrospinal fluid,

but also normalized histological and biochemical markers of

progranulin deficiency, including reduced lipofuscin accumulation

and improved lysosomal enzyme activity (195, 196). These studies

support the translation of GRN gene therapy for FTD from

preclinical studies into the clinic. Interim results of a phase 1/2

trial showed preliminary insights into the safety and bioactivity of

PR006 (AAV90-GRN), demonstrating increased CSF progranulin

and reduced neurofilament light chain (NfL), a biomarker of

neurodegeneration, while its long-term safety and potential efficacy

remain to be confirmed in ongoing studies (NCT04408625,

NCT04747431) (195).

5.5 Other neurodegenerative diseases

In other neurodegenerative diseases, GDNF can also be used

in patients with Multiple System Atrophy (MSA), a rare and

rapidly progressive disease involving multiple brain systems, as

it has a trophic effect on the Purkinje cells (197). A Phase 1

clinical trial delivering AAV2-GDNF to the putamen in patients

with either a possible or probable diagnosis of MSA has been

ongoing since 2023 to evaluate its safety and potential clinical

effect (NCT04680065). Amyotrophic lateral sclerosis (ALS), a

progressive neurodegenerative disease affecting motor neurons,

has also been a target of experimental GDNF-based therapies.

Delivering a retroviral vector encoding GDNF into hind limb

muscles of rodent models of ALS increased motor neuron survival

and delayed the “ALS-related” decline in performance on motor

tests, demonstrating functional benefits in preclinical models (198).

Injection of AAV-GDNF showed evidence of retrograde transport

of GDNF to motor neurons and impeded neurodegeneration in

transgenic models of ALS (199). In addition to GDNF, preclinical

studies using AAV-IGF1 in rodent models of ALS have also shown

a significant reduction in motor neuron loss and improvement

in behavior, particularly in motor function and survival extension

in some models (200–202). However, further clinical translational

studies are needed to assess the safety and efficacy of these

approaches in humans.

In addition to adult-onset neurodegenerative disorders, recent

clinical advancements in CNS-targeted gene therapy have been

largely driven by rare monogenic pediatric diseases that share

progressive neurodegenerative characteristics. Among them, spinal

muscular atrophy (SMA) has become a flagship example of

CNS-targeted gene therapy, with the FDA-approved AAV9-based

Zolgensma demonstrating significant clinical efficacy. In the pivotal

trial NCT02122952, systemic administration of Zolgensma, an

AAV9–mediated gene therapy targeting the SMN1 gene, led to

marked improvements in motor function and survival in SMA1

patients (203), findings further supported by a comparative study

with a natural history cohort (204). The success of Zolgensma

was further confirmed in the phase III SPR1NT trials, where

presymptomatic infants with two or three copies of SMN2

achieved age-appropriate motor milestones, such as sitting and

walking, underscoring the benefits of early intervention (205–

207). However, the application of AAV9-based gene therapy also

presents immunological challenges. In clinical trials including

STR1VE and SPR1NT, immune-mediated adverse events such as

transient hepatotoxicity and thrombocytopenia were commonly

reported. These responses are likely due to host reactions against

the AAV9 capsid or transgene product. To manage this, all patients

received prophylactic corticosteroids (typically prednisolone), with

liver function and hematologic parameters closely monitored and

treatment adjusted accordingly (205, 207). Beyond SMA, Gene

therapies for mucopolysaccharidoses (MPS, e.g., NCT03580083)

and Rett syndrome (e.g., NCT06856759) are actively being

explored. While most treatments remain in early or mid-stage

trials with limited clinical efficacy so far, these efforts provide

important proofs of concept for CNS-targeted gene therapy. Their

progress offers valuable lessons on delivery strategies and immune

response management, paving the way for future applications in

adult neurodegenerative diseases.

6 Discussion

Immune responses-mediated toxicity caused by viral vectors

affects the efficacy of gene therapy. Although immunosuppression

has been used successfully to blunt some of the viral vector-induced

immune responses, it has failed in other cases. Thus, the design

of more effective and less immunogenic viral vectors is needed,

for example by incorporating DNA-depleted AAV capsids (empty
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capsids) (208, 209). In addition, further optimized viral vectors

could aim to improve the efficiency of transduction and the stability

and persistence of gene expression, thus significantly expanding the

application scope of viral vectors. With the rapid development of

gene therapy, gene editing technologies have played a crucial role.

Viral vectors are able to precisely deliver gene editing tools, such

as CRISPR-Cas9, to target cells, particularly in in vivo experiments

(210, 211). In this way, researchers can preciselymanipulate specific

genes, such as knocking out harmful genes, inserting functional

ones or repairing mutations. This not only broadens the potential

applications of gene editing technology but also plays an important

role in basic research and disease treatment. Traditional strategies

to deliver viral vectors lack spatial precision and thus cannot target

regionally defined neural circuits. New and non-invasive methods,

like FUS-BBBO, are increasingly being adopted and more novel

delivery methods are to be explored.

As the safety and efficacy of virus as a vector are established,

future studies examining vector-mediated delivery of different

molecules for treating different neurodegenerative diseases is to

be proved. The promising results from preclinical studies and the

encouraging data from ongoing clinical trials provide a hopeful

outlook for the application of gene therapy in neurological diseases.

Still, significant challenges need to be resolved before gene therapy

for neurodegenerative diseases becomes widely accepted. In some

diseases, although some diseases have reproducibly positive data in

preclinical models, clinical trials didn’t show significant results. It

remains to be determined if lack of success in clinical trials reflects a

lack of biological effect of intervention, limitations of the technical

delivery methods or failure to reverse the course of the advanced

disease at the time of intervention. For neurodegenerative diseases,

the disease may have progressed to a point with limited possibilities

of intervention, that’s why early diagnosis is crucial for attaining a

better outcome. Since available clinical trials have limited follow-

up data, future research should focus on long-term studies to better

understand the efficacy and safety of these therapies.

7 Conclusion

In summary, we can see immune responses after vector

administration and immune system-mediated toxicity continue to

challenge the success of gene transfer by viral vectors especially

when high doses are required to correct the targeted genetic

disease. Some novel approaches, such as hepatic gene transfer, can

mitigate immune toxicity to a certain extent. Given that numerous

mechanisms and molecules have been extensively studied as

potential protective interventions for neurodegenerative diseases,

viral vector-mediated gene therapies, particularly those utilizing

AAV vectors, have emerged as a highly promising approach in

both preclinical and clinical studies. Before gene therapy for

neurodegenerative diseases can be widely adopted, significant

hurdles must be overcome by improving evidence-based strategies,

mitigating immune-related adverse effects, and conducting larger

clinical trials with longer follow-up periods.
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