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Background: Minimal hepatic encephalopathy (MHE) is a common cognitive 
impairment in patients with end-stage liver cirrhosis. However, the selection of 
sensitive biomarkers and the establishment of reliable diagnostic methods are 
currently challenging. We aimed to explore the abnormal spontaneous brain 
activity in patients with MHE and evaluate the clinical diagnostic value of four 
indicators for MHE using the support vector machine (SVM) method. 
Methods: A total of 45 MHE patients and 40 healthy controls were enrolled. 
Amplitude of low frequency fluctuation (ALFF), fractional amplitude of low 
frequency fluctuation (fALFF), percentage amplitude of low frequency fluctuation 
(PerAF), and regional homogeneity (ReHo) were used to evaluate local 
spontaneous brain activity. SVM analysis was used to construct the classification 
model and evaluate the diagnostic value. 
Results: Two-sample t-test and SVM analysis showed that, compared with 
the healthy control group, MHE patients had decreased ALFF values in the left 
angular gyrus, right inferior temporal gyrus, left postcentral gyrus, precentral 
gyrus, and right supplementary motor area. These regions indicated moderate 
classification efficacy (AUC = 0.75). Decreased ReHo metrics in the right anterior 
cingulate and paracingulate gyri also showed general discriminative power (AUC 
= 0.72). fALFF metrics, whether analyzed independently or combined with other 
indicators, exhibited limited classification performance (AUC < 0.70). Decreased 
PerAF metrics in the right superior parietal lobule, right dorsolateral prefrontal 
cortex, and right middle frontal gyrus achieved a good classification accuracy 
rate (AUC value 0.83; accuracy 81.18%; sensitivity 75.56%; specificity 87.50%), 
outperforming other functional metrics. 
Conclusion: We found that decreased mean PerAF in the right supramarginal 
gyrus, right dorsolateral superior frontal gyrus, and right middle frontal gyrus 
may serve as potential neuroimaging indicators for early identification of 
cognitive impairment in MHE patients, providing critical evidence for clinical 
screening protocols. 
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Introduction 

Minimal hepatic encephalopathy (MHE) is a neurological 
complication characterized by slow subclinical changes in extensive 
neurocognitive function in patients with end-stage liver cirrhosis. 
The disease has an insidious onset, initially presenting with 
mild psychomotor delay or inattention, characterized by reduced 
executive function and memory impairment (1). While not as 
immediately life-threatening as dominant hepatic encephalopathy, 
MHE significantly affects patients’ health-related quality of life and 
daily functioning, potentially leading to driving errors and severe 
traffic accidents. In addition, previous research demonstrated that 
the incidence of MHE in patients with liver cirrhosis can reach 
33%−50% (2). Without effective treatment, ∼40% of patients 
progress to significant hepatic encephalopathy within 6 months 
(3, 4). When overt hepatic encephalopathy (OHE) develops, the 
1-year mortality rate can reach 58% (5), and the duration of 
hospitalization is notably prolonged. Consequently, MHE serves as 
a predictor of higher risk for developing OHE, which is linked to 
poor prognosis and increased overall mortality. At present, MHE 
is the most overlooked detrimental subclinical form of hepatic 
encephalopathy. There is no gold standard for the diagnosis of 
MHE, and only neuropsychological test scores remain the least 
validated method, leading to imprecise results. Early and accurate 
identification, along with targeted intervention, is essential to 
reduce the likelihood of progression to OHE and to enhance 
patients’ quality of life. 

With advancements in magnetic resonance imaging (MRI), 
researchers have used resting-state functional MRI (rs-fMRI) to 
non-invasively examine changes in spontaneous brain activity in 
patients with brain dysfunction. Various algorithms, including 
amplitude of low-frequency fluctuation (ALFF), fractional ALFF 
(fALFF), percent amplitude of fluctuation (PerAF), and regional 
uniformity (ReHo), have been utilized to analyze rs-fMRI data. 
These methods offer valuable insights into the spontaneous activity 
of different brain regions (6, 7). 

Over the past decade, an increasing number of rs-fMRI 
studies have examined changes in spontaneous brain activity 
in MHE patients with liver cirrhosis. However, inconsistencies 
have been observed across brain regions identified by different 
algorithms. For instance, Chen et al. (8) used ALFF analysis and 
found abnormal changes in the precuneus and adjacent cuneus, 
visual cortex, and left posterior cerebellum in MHE patients. 
Ni et al. (9) reported significantly lower ReHo values in the 
bilateral precuneus, supplementary motor areas, and precuneus 
of MHE patients using ReHo analysis. MHE patients exhibit 
widespread diffuse abnormalities in baseline brain activity across 
different brain regions (8–11). However, most of these differential 
brain regions lack specificity for the early detection of MHE. 
Even with the use of a fully quantitative neuroimaging meta-
analysis that combines ALFF, fALFF, and ReHo to investigate 
changes in spontaneous brain activity, consistent findings across 
studies remain elusive. Cao et al. (12) conducted a meta-analysis 
involving ALFF, fALFF, and ReHo. They found that alterations 
in the fronto-striato-cerebellar and visual-sensorimotor networks 
could represent potential pathophysiological mechanisms of HE 
in cirrhotic patients. Qin et al. (13) only found that changes 

in spontaneous brain activity in the left superior frontal gyrus 
and median/paracingulate gyrus were associated with MHE. 
The non-specificity and inconsistencies in the identification of 
different brain regions hinder the development of a comprehensive 
understanding of the underlying neural mechanisms. Further 
research is necessary to progress in this field. 

Furthermore, previous studies relied on univariate group-
level difference analyses, which failed to capture the information 
embedded in the spatial distribution patterns of brain activity. 
Therefore, univariate differences between groups cannot replace 
the diagnostic assessment of MHE patients. This limitation 
contributes to the heterogeneity observed in research outcomes. 
In recent years, advances in machine learning methods have 
led to the widespread usage of algorithms that can thoroughly 
explore the potential value of data, playing a crucial role in 
clinical decision-making (14, 15). Common machine learning 
algorithms include support vector machines (SVM), K-nearest 
neighbor, naive Bayes, logistic regression, decision trees, and 
deep neural networks. Among them, SVM has demonstrated 
promising performance in assisting disease diagnosis, particularly 
when applied to specific disease types, characteristic attributes, 
and classification models (16). This approach incorporates multiple 
dimensions of brain data for cross-validation, enabling the 
identification of potential patterns in the dataset (17). It offers 
several advantages, including ease of implementation, robustness, 
superior classification performance, a low likelihood of overfitting, 
and excellent diagnostic accuracy, particularly in small to medium-
sized datasets. These features make it an effective tool for analyzing 
and interpreting neuroimaging data. This makes SVM a valuable 
tool for studying neuroimaging biomarkers in the functional 
imaging of psychiatric disorders (18, 19). Therefore, machine 
learning-based classification of local brain activity characteristics 
in MHE patients, along with the integration of multi-dimensional 
spatial information, may provide more specific results for the 
early diagnosis of MHE. In the present study, MHE patients and 
healthy controls (HCs) were prospectively included. The sensitivity 
and specificity of spontaneous brain activity signals in rs-fMRI 
brain regions, including ALFF, fALFF, PerAF, and ReHo, were 
analyzed and compared for classification and diagnosis using 
machine learning methods. We hypothesized that PerAF would 
show superior diagnostic accuracy compared to other amplitude 
metrics in SVM-based classification. This study aimed to help 
clinicians in the early identification of MHE patients and to 
promote the development of clinical diagnostic and treatment 
techniques for MHE. 

Methods 

Study subjects 

The study was approved by the Ethics Committee of the 
First Affiliated Hospital of Guangxi Medical University (Nanning, 
China), and it conforms to the provisions of the Declaration of 
Helsinki. All the study subjects provided written informed consent 
prior to enrollment. Patients were recruited from those hospitalized 
at the Second Affiliated Hospital of Guangxi Medical University 

Frontiers in Neurology 02 frontiersin.org 

https://doi.org/10.3389/fneur.2025.1603396
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Zhang et al. 10.3389/fneur.2025.1603396 

between May 2022 and November 2023. A total of 48 cirrhotic 
patients with MHE and 42 HCs with no history of cirrhosis 
were enrolled. Only chronic cirrhotic patients without OHE were 
involved. The patients included in this study had hepatitis B-
induced liver cirrhosis and did not take drugs that affect cognition. 
All subjects underwent rs-fMRI scans. Exclusion criteria are as 
follows: (a) a history of OHE (past or present, based on clinical 
assessment), (b) drug or alcohol abuse, (c) brain lesions, (d) known 
psychiatric disorders, and (e) head motion exceeding 3.0 mm or 
3.0◦ during MRI scan. 

MHE was diagnosed based on neuropsychological tests, 
including the Number Connection Test-A (NCT-A) and the Digit-
Symbol Test (DST). The diagnosis of MHE was made when the 
scores on both tests were >2 standard deviations (SD), which was 
below the mean value of age-matched controls. 

Three MHE patients were excluded from the study due to head 
motion (n = 1), data missing (n = 1), and poor image quality (n = 
1). Furthermore, two HCs were excluded due to head motion (n = 
1) and poor image quality (n = 1), leaving 45 MHE patients and 40 
HCs in the final analysis. 

MRI data collection 

MRI data were acquired using a 3 Tesla  MR  scanner (TIM 
Trio; Siemens Medical Solutions, Erlangen, Germany) equipped 
with a 32-channel head coil. All subjects were positioned in the 
standard head coil and secured with foam padding to minimize 
head movement. They were instructed to remain still, keep their 
eyes closed, and stay awake during the scan. High-resolution axial 
T1-weighted FLASH sequence images were obtained from each 
subject to detect clinically silent lesions. An interleaved ascending 
acquisition was used, with odd-numbered slices acquired first. 
Functional images were acquired using a gradient-echo echo-
planar imaging (GRE-EPI) sequence sensitive to BOLD contrast 
(TR = 2,170 ms, TE = 30 ms, flip angle = 90◦ , FOV = 192 × 
192 mm², matrix = 64 × 64, slice thickness = 2 mm, slice gap = 
0.3 mm). Axial scanning was performed over 70 layers, and 186 
dynamic imaging scans were acquired. 

Data preprocessing 

The rs-fMRI data processing was performed using the 
MATLAB (R2017b) platform (MathWorks, Natick, MA, USA; 
https://uk.mathworks.com/products/matlab). Data preprocessing 
and calculations were carried out using the RESTplus (v1.27) 
analysis toolkit (http://restfmri.net/forum/restplus) and Statistical 
Parametric Mapping (SPM 12, v7771, http://www.fil.ion.ucl.ac.uk/ 
spm). The preprocessing steps included discarding the first 10 
time points, slice timing correction, 24-parameter head-motion 
correction (includes rigid-body registration operations where the 
translation in the X, Y, and Z directions exceeds 3 mm and 
the rotation exceeds 3◦ , 12-parameter gradient non-linearity 
compensation modeling and 6-parameter B0 inhomogeneity 
correction). Then, spatial normalization to the standard Montreal 
Neurological Institute (MNI) template with a resampled voxel size 

of 3 × 3 × 3 mm3 . Spatial smoothing was applied after calculating 
ReHo, although it was initially omitted. After completing the 
calculation, the ReHo image was smoothed, linear trends were 
removed, and nuisance covariates (including white matter signals, 
cerebrospinal fluid signals, the Friston-24 head motion parameters, 
and global mean signal) were regressed out (20). The data were 
thereafter filtered using the conventional frequency band (0.01– 
0.08 Hz) (19, 21). The preprocessed fMRI data was further applied 
to the next analysis. 

Data calculations 

After preprocessing, ALFF, fALFF, PerAF, and ReHo analyses 
were computed using RESTplus software. We obtained the ALFF 
value as follows: First, convert the time series of whole brain signal 
strength into the frequency domain power spectrum through a 
fast Fourier transform (FFT). The power spectrum was calculated, 
and the mean square root was used as the ALFF value. However, 
the fALFF value of each voxel was obtained by dividing the ALFF 
value under 0.01–0.08 Hz frequency spectrum by that of the entire 
frequency band. Finally, zALFF and zfALFF, known as standardized 
values, were obtained by subtracting the global mean value and 
further dividing it by the standard deviation. 

PerAF value refers to the percentage of resting-state BOLD 
fluctuation about the mean signal intensity over the entire time 
series. We calculated the PerAF of each voxel with the following 
equations. The PerAF of each voxel was calculated as follows: 

PerAF = 

 
1 

N 

N 

i=1 

    Xi − μ 

μ 

    
 

× 100% (1) 

μ = 
1 

N 

N 

i=1 
(2) 

Note: Xi = signal intensity at the time point i, μ = mean 
value of the time series, N = total number of time points of the 
time series. 

ReHo values across the whole brain were calculated using 
Kendall’s coefficient of concordance at a voxel-wise level in three 
frequency bands to assess the similarity of the time series of its 26 
nearest voxels (27 voxels are more sensitive than 19 and 7 voxels) 
(22). The standardized ReHo value was obtained by dividing each 
subject’s ReHo value by the mean value of the entire brain. Finally, 
the ReHo maps for each participant were smoothed by a Gaussian 
filter of 6-mm full width at half maximum (FWHM) to reduce noise 
and residual differences and were used in statistical analysis (23). 

Statistical analysis 

Demographic variables 
The statistical analysis was performed using SPSS 26.0 software 

(IBM, Armonk, NY, USA). Categorical variables were presented as 
count (n), while continuous variables were expressed as the mean ± 
SD. The Chi-square test was employed to compare the distribution 
of genders between the MHE and HC groups. A two-sample t-test 
was utilized to compare differences in age, years of education, and 
neuropsychological scores between the two groups. All tests were 
two-tailed, and P < 0.05 was considered statistically significant. 
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Two-sample t-tests were performed to detect the differences 
of the ALFF, fALFF, PerAF, and ReHo maps between MHE and 
HCs using RESTplus software. Frame-wise displacement (FD, 
Jenkinson) parameters were regressed to avoid the influence of 
head motion, and the ALFF, fALFF, PerAF, and ReHo results were 
corrected for multiple comparisons by the Gaussian Random Field 
(GRF) (voxel P < 0.01, cluster P < 0.01, cluster size > 100 voxels, 
two tailed). 

Classification analysis using SVM 
As a supervised learning method designed for class separation, 

SVM differs from traditional statistical approaches by mapping 
non-linear data into a high-dimensional feature space and 
identifying the optimal hyperplane with maximum marginal 
separation for effective data classification. The goal of hyperplane 
localization is to get the support vector as far away from the 
nearest data point as possible. Nested cross-validation was used 
in this study. The outer loop is used for the final classification 
performance evaluation, the inner loop is used for feature selection 
and model parameter tuning, and the intergroup comparison (t-
test) and ROI screening are only performed within the training 
fold of the outer loop. The leave-one-out method was used to 
split the training set and test set data; the grid search method and 
cross-validation method were used to find the optimal parameters 
c (penalty coefficient) and g (γ). In this process, the inner loop 
performs the cross-validation of the best hyperparameter function 
and provides the best hyperparameters of the model to the outer 
loop. After multiple cross-validations of the outer loop, the optimal 
hyperparameters of the model can be obtained, which can not only 
prevent data information leakage but also obtain relatively low 
model deviation. Therefore, our model still has good stability and 
reliability on new and independent data sets. The LIBSVM package 
(libsvm 3.24, https://www.csie.ntu.edu.tw/$\sim$cjlin/libsvm/) was  
used on the MATLAB 2017b platform to develop the classifier. The 
area under the receiver operating curve (AUC) was evaluated to test 
the predictive performance of the established model. 

Results 

Demographic and clinical characteristics 

Demographic and clinical data are summarized in Table 1. 
No significant differences were observed in age (P = 0.395), 
gender (P = 0.577), and education year (P = 0.732) between 
the two groups. The NCT-A and DST scores exhibited significant 
differences between the two groups (both P < 0.001). 

Abnormal regional brains 

Table 2 summarizes the altered regions in the whole-brain 
analysis applying the four-amplitude metrics. Compared to the 
HCs group, MHE patients showed decreased ALFF in the left 
angular gyrus, right inferior temporal gyrus, left postcentral gyrus, 
precentral gyrus, and right supplementary motor area; decreased 
PerAF in the right supramarginal gyrus, right dorsolateral superior 

TABLE 1 Demographic and clinical data of cirrhotic patients and healthy 
controls. 

Variables MHE 
(n = 45) 

HCs 
(n = 40) 

P-value 

Gender (male/female) 42/3 36/4 0.577a 

Age (years) 52.76 ± 8.49 50.25 ± 7.57 0.395b 

Education (years) 11.47 ± 2.78 11.85 ± 2.91 0.732b 

NCT-A (score) 64.00 ± 13.37 35.95 ± 10.98 <0.001b 

DST (score) 24.78 ± 4.13 39.13 ± 5.15 <0.001b 

Child-Pugh (score) 8.00 ± 1.93 – – 

aThe P-value of the two groups was calculated by the Chi-square test. 
bThe P-value of the two groups was calculated by a two-sample t-test. 
MHE, minimal hepatic encephalopathy; HC, healthy control; DST, digital symbol test; 
NCT-A, number connection test-A. 

TABLE 2 Abnormal brain regions in the MHE patients compared to HCs. 

Regions MNI co-
ordinate 
(mm) 
(X, Y, Z) 

Cluster 
size 

Peak 
t-value 

ALFF Angular_L (−48, −69, 24) 215 −4.187 

Temporal_Inf_R (48, −66, −3) 122 −5.000 

Postcentral_L (−45, −9, 33) 336 −5.573 

Precentral_R (33, −24, 63) 278 −4.988 

Supp_Motor_Area_R (3, 6, 60) 321 −5.564 

fALFF – – – – 

PerAF SupraMarginal_R (60, −18, 24) 9921 −5.923 

Frontal_Sup_R (27, 66, 12) 306 −4.865 

Frontal_Mid_R (36, 39, 42) 106 −4.775 

ReHo Cingulum_Ant_R (6, 15, 24) 11212 5.712 

Differences between the MHE and HCs group were assessed for significance using the two-
sample t-test, and the statistical threshold was corrected for multiple comparisons with GRF 
(voxel P < 0.01, cluster P < 0.01, cluster size > 100 voxels). 
AAL, Automated anatomical labeling; MNI: Montreal Neurological Institute; ALFF: 
Amplitude of low-frequency fluctuation; fALFF: Fractional amplitude of low-frequency 
fluctuation; PerAF: Percent amplitude of fluctuation; ReHo: Regional homogeneity. 
Angular_L: left angular gyrus; Temporal_Inf_R: right inferior temporal gyrus; Postcentral_L: 
left postcentral gyrus; Precentral_R: right precentral gyrus; Supp_Motor_Area_R: right 
supplementary motor area; SupraMarginal_R: right supramarginal gyrus; Frontal_Sup_R: 
right dorsolateral superior frontal gyrus; Frontal_Mid_R: right middle frontal gyrus; 
Cingulum_Ant_R: right anterior cingulate and paracingulate gyrus. 

frontal gyrus, and right middle frontal gyrus; decreased ReHo in 
the right anterior cingulate and paracingulate gyrus. There were 
no brain regions with significant differences in the fALFF metrics 
between the two groups. The details were presented in Figures 1–3. 

SVM analysis 

The mean ALFF, fALFF, PerAF, and ReHo values of altered 
brain regions were used as features separately or together in the 
SVM models distinguishing the MHE patients and HCs. Table 3 
and Figure 4 illustrate the results of the SVM classification between 
45 MHE patients and 40 HCs. Thus, the best discrimination 
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FIGURE 1 

The group differences in ALFF value between MHE patients and HCs. Cold colors indicate decreased ALFF in the left angular gyrus, right inferior 
temporal gyrus, left postcentral gyrus, left precentral gyrus, and right supplementary motor area (voxel P < 0.01, cluster P < 0.01, GRF correction, 
cluster size > 100 voxels). 

was obtained when PerAF metrics (Figure 4C) in the right 
supramarginal gyrus, right dorsolateral superior frontal gyrus, and 
right middle frontal gyrus were used as features for an accuracy 
of 81.18%, a sensitivity of 75.56% and a specificity of 87.50% 
respectively. This was followed by the classification based on ALFF 
and fALFF (Figures 4A, B), which achieved an accuracy of 75.29% 
and 60.00%, sensitivity of 75.56% and 73.33%, and specificity 
of 75.00% and 45%. For the ReHo measures (Figure 4D), the 
accuracy, sensitivity, and specificity were 70.59%, 66.67%, and 
75.00%, respectively. In addition, the SVM results showed that all 
the combinations exhibited an accuracy of 68.53%, sensitivity of 
91.67%, and specificity of 42.50% (Figure 4E). 

Discussion 

In this study, four regional amplitude metrics, including ALFF, 
fALFF, PerAF, and ReHo, were used to examine the spontaneous 
brain functional activities of MHE patients and explore their 
potential diagnostic value with a machine learning approach. Our 
findings revealed a significant decrease in regional brain activity 
in MHE patients compared to HCs. Notably, the PerAF metric 
demonstrated the highest diagnostic accuracy among the four 
metrics, achieving an accuracy of 81.18%, sensitivity of 75.56%, 

and specificity of 87.50% when applied to the right supramarginal 
gyrus, right dorsolateral superior frontal gyrus, and right middle 
frontal gyrus. These results provide novel insights into the neural 
mechanisms underlying MHE and highlight the PerAF metrics as 
imaging biomarkers for distinguishing MHE patients from HCs. 
Our samples provide case data for the development of AI-assisted 
diagnostic systems, enabling the automatic labeling of abnormal 
PerAF brain regions in the future. 

Diagnostic value of local brain activity 
metrics 

Notably, fALFF reflects the ratio of low-frequency amplitude to 
the total amplitude across the full frequency band (24), selectively 
reducing interference from non-specific signals, such as those from 
ventricles, which enhances sensitivity and specificity in detecting 
spontaneous brain activity. However, the classification accuracy of 
fALFF in this study was generally lower than that of other localized 
measures, which could be attributed to the influence of full-
band power fluctuations on fALFF calculations and residual effects 
of cardiac and respiratory cycles, obscuring accurate amplitude 
characteristics for a given frequency band. The lack of significant 
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FIGURE 2 

The group differences in PerAF value between MHE patients and HCs. Cold colors indicate decreased PerAF in the right supramarginal gyrus, right 
dorsolateral superior frontal gyrus, and right middle frontal gyrus (voxel P < 0.01, cluster P < 0.01, GRF correction, cluster size > 100 voxels). 

differences in fALFF between MHE patients and HCs suggests that 
this metric may be less sensitive to the neural alterations associated 
with MHE. This finding highlights the importance of selecting 
appropriate amplitude metrics for studying specific neurological 
conditions. Moreover, PerAF represents the percentage of Blood 
Oxygen Level-Dependent (BOLD) signal fluctuation relative to 
the average BOLD signal strength over a specific time series and, 
based on ALFF, reflects the extent of temporal variation in BOLD 
signal in individual voxels. As a recently developed analytical 
method known for its effectiveness, stability, and reliability, our 
findings demonstrate that PerAF, a novel metric for measuring 
the periodicity of spontaneous brain activity, shows increased 
sensitivity in detecting subtle neural changes associated with MHE. 
The present results are consistent with the test-retest reliability 
findings reported by Jia et al., further confirming the robustness of 
this methodological approach (25) and indicating that the PerAF 
algorithm outperformed both fALFF and ALFF, demonstrating the 
greatest efficacy in tracking changes in local brain activity in MHE 
patients. Interestingly, the combination of ALFF, fALFF, PerAF, and 
ReHo metrics did not significantly improve diagnostic accuracy 
compared to PerAF alone. This may be due to the overlapping 
information captured by ALFF and fALFF, which both measure 
the amplitude of low-frequency fluctuations in the BOLD signal. In 
contrast, PerAF focuses on the periodicity of these fluctuations and 

directly quantifies the absolute percentage fluctuation of the BOLD 
signal amplitude. This approach can more sensitively capture the 
transient hemodynamic response triggered by neural activity and 
is particularly effective at detecting temporal signal variations 
related to neurovascular coupling. ALFF, fALFF, PerAF, and 
ReHo are frequently utilized algorithms in rs-fMRI analysis, each 
providing complementary insights into the spontaneous activity 
of specific brain regions (6). Given their analogous quantitative 
interpretations in brain physiology, using machine learning to 
identify indicators with high statistical classification efficiency, as 
well as combining them to explore intrinsic brain activities, offers 
significant promise. 

Altered brain regions and significance 

The observed alterations in brain activity in MHE patients 
align with the known cognitive and motor deficits associated with 
the condition. The left angular gyrus is involved in higher-order 
cognitive functions such as language processing, attention, and 
memory (26). Similarly, the right inferior temporal gyrus, which 
plays a role in visual processing and object recognition, showed 
reduced ALFF, potentially contributing to the visuospatial deficits 
often observed in MHE patients (27). Zafiris et al. (28) used 
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FIGURE 3 

The group differences in ReHo value between MHE patients and HCs. Cold colors indicate decreased ReHo in the right anterior cingulate and 
paracingulate gyrus (voxel P < 0.01, cluster P < 0.01, GRF correction, cluster size > 100 voxels). 

TABLE 3 SVM classification performance across the four different amplitude metrics, single and combined. 

Metrics AUC Accuracy Sensitivity Specificity Precision 

ALFF 0.75 75.29% 75.56% 75.00% 77.27% 

fALFF 0.58 60.00% 73.33% 45.00% 60.00% 

PerAF 0.83 81.18% 75.56% 87.50% 87.18% 

ReHo 0.72 70.59% 66.67% 75.00% 75.00% 

Total 0.69 68.53% 91.67% 42.50% 64.20% 

Total represents ALFF+fALFF+PerAF+ReHo. 

task-state functional magnetic resonance imaging and identified 
disrupted interactions involving the right inferior parietal cortex 
with the parietal-occipital cortex, medial parietal sulcus, anterior 
cingulate cortex, right prefrontal cortex, medial temporal lobe, and 
V5 of the extrastriate cortex in cirrhotic patients without OHE, 
providing a theoretical basis for the early visual deficits found 
in these patients. The decreased ALFF observed in this region 
in MHE patients may reflect impaired cognitive integration and 
information processing. 

The left postcentral gyrus and left precentral gyrus, which 
are primary somatosensory and motor cortices, respectively, 
also exhibited decreased ALFF. Both are crucial for sensory-
motor integration, helping us in perceiving the environment and 

executing appropriate motor responses. These findings suggest 
that MHE may disrupt sensory and motor processing, consistent 
with previous reports of motor coordination deficits in MHE 
patients (29). Additionally, the right supplementary motor area 
(SMA), which is involved in motor planning and execution, 
showed decreased PerAF. This abnormality may underlie the 
motor dysfunction and psychomotor slowing frequently observed 
in MHE (30). 

The right dorsolateral superior frontal gyrus and right middle 
frontal gyrus, both parts of the prefrontal cortex, are critical 
for executive functions such as working memory, decision-
making, and cognitive control (31). Similarly, the reduced PerAF 
in the prefrontal cortex and right supplementary motor area 
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FIGURE 4 

The ROC curve was used to evaluate the performance of the four indicators by SVM. Note: (A) ALFF; (B) fALFF; (C) PerAF; (D) ReHo; (E) Combination 
of ALFF, fALFF, PerAF, ReHo. ROC, Receiver operating characteristic; SVM, Support vector machine. 

may indicate impaired top-down control and motor planning, 
contributing to the executive and motor deficits in MHE. The 
decreased PerAF in these regions may explain the executive 
dysfunction commonly seen in MHE patients. Furthermore, as an 
important node in the executive network, the anterior cingulate 
cortex (ACC) is involved in the core area of attention, related 
to attention control, response inhibition, error detection, and 
emotional processing (32). Moreover, psychomotor speed and 
attention deficits are a major manifestation of patients with mild 
HE (33). The right anterior cingulate and paracingulate gyrus 
showed reduced ReHo, potentially contributing to the emotional 
and behavioral disturbances in MHE. Multiple investigators 
using positron emission computed tomography (PET), fMRI, and 
magnetic resonance spectroscopy (MRS) have found that ACC 
dysfunction in cirrhotic patients with or without HE may be one 
of the causes of neurocognitive dysfunction and may be associated 
with metabolic disorders (32–35). Interestingly, we found that there 
seemed to be some brain network connectivity patterns in these 
abnormal brain regions. Chen et al. (36, 37) reported that MHE 
patients had a significant decrease in functional connectivity of 
the default mode network (DMN), and this decrease became more 
severe with the development of the disease. At the same time, 
MHE patients not only show reduced functional connectivity of the 
DMN, but also participate in the disorder of the cognitive control 
network, sensory motor network (SMN), and subcortical network 
(38, 39). Combined with the results of previous research, our study 
may suggest that the functional connectivity of the brain network 
in MHE patients is abnormal compared with healthy people. In 

particular, functional decline in the left angular gyrus, right inferior 
temporal gyrus, right precentral gyrus, right supplementary motor 
area, right superior sellar gyrus, and right middle frontal gyrus 
may reflect disruption of large-scale brain networks critical for 
the maintenance of cognitive function, such as the SMN, DMN, 
dorsal attention network (DAN), and visual attention network 
(VAN). These abnormalities may be closely related to the cognitive 
dysfunction of patients, and further research is necessary to 
confirm this. 

Limitations of the study 

This study has certain limitations. First, the sample size was 
relatively limited; we only used internal validation data to make 
the test set when applying an SVM method, and external validation 
data might be more reliable and robust. Second, the patients 
included in this study were end-stage cirrhosis patients, and the 
etiology was not classified, which may lead to a bias in the 
classification results, because the brain damage caused by liver 
cirrhosis with different etiologies can also be slightly different. 
Third, we only used regional brain activity metrics to identify MHE 
patients; the applicability of the proposed approach to different 
subtypes of hepatic encephalopathy remained elusive. Changes of 
brain intrinsic networks and the multimodal imaging technique 
with structural and functional coupling neuroimaging datasets may 
further improve classification. Future studies can be conducted 
based on the above limitations. 
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Conclusions 

This study used machine learning techniques to investigate 
the diagnostic classification of spontaneous regional brain activity 
alterations in patients with MHE. The observed reduction in the 
PerAF within the right supramarginal gyrus, right dorsolateral 
superior frontal gyrus, and right middle frontal gyrus demonstrated 
superior diagnostic accuracy, underscoring its potential utility 
as a reliable biomarker for MHE. These findings enhance our 
understanding of the neural mechanisms underlying MHE. Future 
research will focus on multimodal brain function monitoring 
(DTI+rs-fMRI) combined with machine learning methods. 
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