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Background: There is a disease spectrum of ischemic stroke (IS) and obstructive 
sleep apnea (OSA), which are often comorbid in the same patient and 
consequently increases prognostic risk. Continuous positive airway pressure 
(CPAP) therapy is the primary treatment for stroke-related OSA; however, its 
positive effects on patient prognosis and the underlying mechanisms remain 
controversial.
Objective: This study aimed to investigate the impact of CPAP therapy on the 
recovery of IS patients with moderate-to-severe OSA and to identify biomarkers 
significantly associated with prognosis to assess their predictive value for short-
term neurological outcomes. The findings are expected to optimize treatment 
strategies and improve overall patient outcomes.
Methods: A total of 141 patients with IS combined with moderate-to-severe OSA 
admitted to the Affiliated Hospital of Yangzhou University from October 2022 
to August 2024 were enrolled. Patients were divided into a CPAP group (n = 68) 
and a control group (n = 73). Both groups received systematic treatment and 
were followed up until 1 month after the onset of stroke symptoms. The CPAP 
group initiated therapy within 48 h of stroke onset (ResMed AutoCPAP, pressure 
4–20 cmH2O) for 14 days (adherence criterion: ≥4 h/day). Baseline data, sleep 
and stroke-related questionnaires, polysomnography (PSG) parameters, and 
sleep spindle characteristics were collected. Neurological functional outcomes 
were reassessed at the end of the follow-up period, and differences between the 
two groups were analyzed. Prognostic factors were identified using Spearman 
correlation analysis and ordered logistic regression.
Results: Compared with those in the control group, patients in the CPAP group 
had lower modified Rankin scale (mRS) and National Institutes of Health Stroke 
Scale (NIHSS) scores after treatment (p < 0.05), while the Barthel index (BI) did 
not significantly differ. Spearman correlation analysis revealed that mRS scores 
were positively correlated with the apnea-hypopnea index (AHI), the AHI during 
the rapid eye movement stage (REM-AHI) and the AHI during the non-rapid 
eye movement stage (NREM-AHI) (all p < 0.05) and negatively correlated with 
the non-rapid eye movement stage 2 sleep spindle density (N2-SSD), the non-
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rapid eye movement stage 3 (N3) sleep percentage, and the mean pulse oxygen 
saturation (Mean SpO2) (all p < 0.05). Logistic regression revealed that N2-SSD, 
Mean SpO2, and REM-AHI were significant predictors of mRS scores (all p < 0.05).
Conclusion: CPAP therapy enhances sleep microstructure and oxygenation 
parameters, which improves sleep quality. N2-SSD, REM-AHI, and Mean SpO2 
are mechanistically linked to functional prognosis and CPAP exerts therapeutic 
effects through the modulation of these biomarkers. Early CPAP intervention 
targeting REM-AHI and N2-SSD demonstrates prognostic benefits, which 
suggests that sleep microstructure-specific metrics may serve as precision 
therapeutic targets.

KEYWORDS

continuous positive airway pressure, sleep spindles, ischemic stroke, REM-AHI, 
obstructive sleep apnea

1 Introduction

Ischemic stroke (IS) typically results from temporary or 
permanent blockage of cerebral blood vessels, which leads to brain 
tissue hypoxia, cell death, and a cascade of pathophysiological 
responses (1). Obstructive sleep apnea (OSA), a common sleep 
disorder, is characterized by frequent microarousals and recurrent 
oxyhemoglobin desaturation (2). These features are closely linked to 
both the incidence and prognosis of stroke. A bidirectional 
relationship exists between OSA and IS and is mediated by 
intermittent hypoxia and increased sympathetic activity (3). OSA 
contributes to cerebrovascular risk through mechanisms such as 
hemodynamic instability, vascular inflammation, intermittent 
hypoxia, and oxidative stress-induced free radicals (4). Moreover, 
OSA is frequently observed following IS. A meta-analysis on the 
incidence of OSA after stroke revealed that 72% of stroke patients had 
an apnea-hypopnea index (AHI) >5 events/h, and 29% had an AHI 
>30 events/h (5).

Patients with OSA complicated by IS (OSA-IS) face an elevated 
risk of developing additional complications, including recurrent 
stroke, extended hospitalization, diminished neurological function, 
and higher long-term all-cause mortality (4). Therefore, timely 
diagnosis and effective treatment are critical for patient management. 
Current guidelines recommend continuous positive airway pressure 
(CPAP) therapy as first-line treatment for moderate-to-severe cases 
when positional therapy is ineffective (6). However, there is 
substantial interindividual variability in CPAP efficacy, and its 
specific benefit for neurological recovery is not fully 
characterized (7).

Electroencephalography (EEG) can record electrophysiological 
changes related to the cerebral cortex. These findings provide rich 
biological information for the study of sleep structure and sleep quality 
in OSA patients. However, the EEG signals routinely collected by 
polysomnography (PSG) have not been fully utilized. Traditional 
metrics such as the AHI inadequately predict clinical outcomes, whereas 
PSG parameters and electrophysiological signals derived from EEGs 
remain underexplored. Thus, developing more sensitive biomarkers is 
imperative. This study aimed to evaluate the impact of initiating CPAP 
treatment within 48 h after the onset of ischemic stroke compared with 
standard treatment on neurological outcomes. After efficacy was 
determined, the correlation between PSG parameters and neurological 
outcomes was further explored to identify predictive biomarkers.

2 Methods

2.1 Study participants

This trial enrolled 141 patients with moderate-to-severe 
OSA-IS at the Affiliated Hospital of Yangzhou University from 
December 1, 2022 to August 31, 2024. The participants were 
divided into CPAP and control groups based on treatment 
preference. The inclusion criteria for patients were as follows: (1) 
Chinese adults aged ≥18 years; (2) met the diagnostic criteria for 
ischemic stroke per the Chinese Guidelines for Diagnosis and 
Treatment of Acute Ischemic Stroke (2023) (8) and moderate-to-
severe OSA (AHI ≥15 events/h) per the Chinese Primary Care 
Guideline for Adult Obstructive Sleep Apnea (2018) (9). The 
diagnosis was confirmed by clinical history, neurological 
examination, and brain magnetic resonance imaging (MRI) with 
diffusion-weighted imaging (DWI) demonstrating acute ischemic 
lesions; (3) anatomically suitable for CPAP therapy (no 
craniofacial deformities). The exclusion criteria were as follows: 
(1) comorbid conditions affecting EEG signals (e.g., epilepsy, 
Parkinson’s disease, traumatic brain injury); (2) inadequate PSG 
data (total sleep time <5 h, <3 NREM-REM cycles, or unstable 
EEG signals); (3) contraindications to CPAP therapy; (4) use of 
neuroactive medications within 3 months; (5) delayed imaging 
confirmation of acute ischemic stroke (>24 h after symptom 
onset); (6) patients with aphasia or language comprehension 
deficits. The study protocol was approved by the Ethics 
Committee of Yangzhou University (Ethics 2023-YKL09) and 
conducted in accordance with the Declaration of Helsinki. 
Written informed consent was obtained from all participants and 
their families.

2.2 Information collection

2.2.1 General information
Demographic information (age, sex distribution), body mass 

index (BMI), smoking and alcohol consumption history, and chronic 
medical conditions (hypertension, diabetes mellitus, coronary artery 
disease, atrial fibrillation) were collected. Additionally, imaging 
indices, such as CT and MRI images of the head, were included in 
this research.
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2.2.2 Assessment of sleep and cognitive function
This study uses the Pittsburgh Sleep Quality Index (PSQI), which 

is considered the gold standard in sleep research (10), to assess patients’ 
subjective sleep experience. The Epworth Sleepiness Scale (ESS) 
measures the degree of daytime sleepiness by assessing the likelihood 
of unintended dozing in daily situations (11). A total score exceeding 
10 points indicates pathological excessive daytime sleepiness (EDS). 
The Rapid Eye Movement Sleep Behavior Disorder Screening 
Questionnaire (RBDSQ) includes 13 items designed to identify risk 
factors for Rapid Eye Movement Sleep Behavior Disorder (RBD) (12). 
The Hospital Anxiety and Depression Scale (HADS) is divided into two 
subscales: anxiety (HADS-A) and depression (HADS-D) (13). In this 
study, it is primarily used to assess participants’ emotional and 
cognitive symptoms, excluding somatic interference. The Subjective 
Cognitive Decline Questionnaire (SCD-Q9) is a self-assessment scale 
consisting of 9 items (14) and is used to detect early signs of subjective 
cognitive decline (SCD) in the memory and nonmemory domains. The 
Montreal Cognitive Assessment (MoCA) includes 12 tasks across seven 
cognitive domains to assess mild cognitive impairment (MCI) (15).

2.2.3 Stroke evaluation metrics
The National Institutes of Health Stroke Scale (NIHSS), recognized 

as the gold standard for evaluating stroke severity (16), is used to 
assess neurological deficits across multiple domains, including 
consciousness, motor function (upper/lower limbs), ataxia, sensation, 
language, dysarthria, gaze, visual fields, facial palsy, and neglect. Scores 
were standardized to quantify the degree of neurological impairment. 
The Barthel Index (BI), a widely adopted tool for measuring post-
stroke functional outcomes (17), evaluates activities of daily living 
through 10 items scored via a three-tier weighted system. The 
modified Rankin scale (mRS), the primary endpoint in acute stroke 
trials and quality improvement initiatives (18), categorizes functional 
recovery into seven grades (0–6), with higher scores indicating poorer 
recovery. This study uses this scale as the primary outcome measure. 
All assessments (NIHSS, BI, mRS) were assessed at admission and 
repeated at the end of the 1-month follow-up period.

2.3 Therapeutic protocol

Both groups received guideline-directed standard care for IS (19). 
The CPAP group additionally underwent CPAP therapy (ResMed 
AutoCPAP, pressure range: 4–20 cmH₂O) for ≥4 h nightly over 14 days. 
Initial manual pressure titration was performed by a certified respiratory 
therapist, who monitored patients overnight to optimize pressure settings 
based on tolerance. Data from the CPAP SD card, including residual 
AHI, total and daily usage time and air leakage, was recorded using the 
ResScan software post-treatment. After 14 days of CPAP treatment, 
participants in the CPAP group underwent repeat PSG under CPAP.

2.4 Polysomnography and sleep spindles 
analysis

All participants underwent overnight PSG (>7 h) in a light-
attenuated, sound-controlled sleep laboratory using a SOMNOmedics 
GmbH system. Alcohol, caffeine, and stimulant/sedative medications 
were prohibited on the day of monitoring. Electroencephalogram (EEG), 
mandibular electromyography (EMG), electrooculography (EOG), nasal 

airflow, oro-nasal thermistor transducer, thoracic and abdominal 
movements, electrocardiogram, body position, oxygen saturation, 
snoring index, video, and other signals were recorded continuously 
throughout the night. The division of each sleep stage and sleep-related 
respiratory events was manually interpreted by a specialized sleep 
physician based on the standards of the American Academy of Sleep 
Medicine (AASM) (20). Nocturnal sleep-related parameters, including 
total sleep time (TST), sleep efficiency, wake-time after sleep onset 
(WASO), sleep onset latency, non-rapid eye movement stage 1 (N1)/
non-rapid eye movement stage 2 (N2)/ non-rapid eye movement stage 3 
(N3)/rapid eye movement stage (REM) percentage, the respiratory effort-
related arousal index (RERAI), AHI, oxygen desaturation index (ODI), 
mean pulse oxygen saturation (Mean SpO2), and minimum pulse oxygen 
saturation (Min-SpO2), were continuously collected from the subjects.

The sleep spindle-related parameters were derived mainly from 
the central EEG (C4:M1), and the sleep spindle features were extracted 
as independent signals according to the algorithm established by 
Molle et al. (21), which used the Fourier transform to convert the EEG 
data into the frequency domain; then, 11–16 Hz bandpass filtering 
was performed. After that, signal smoothing was performed using a 
moving average method in 200 ms units, and finally, feature selection 
was performed on the basis of duration and amplitude (peak-to-
trough amplitude). We  collected the sleep spindle density (SSD), 
number of spindles, average spindle duration (in seconds), and 
maximum spindle amplitude (in μV) at the N2 and N3 stages. The 
SSD was calculated by determining the ratio of the number of spindle 
waves to the total duration of each N2 and N3 sleep stage.

2.5 Data analysis

All data were analyzed using SPSS Statistics (version 27.0; IBM 
Corp., Armonk, NY, USA). Continuous variables were assessed for 
normality using the Shapiro–Wilk test. Normally distributed data were 
presented as mean ± standard deviation (SD), while non-normally 
distributed data were expressed as median [interquartile range (IQR); 
Q1–Q3]. Between-group comparisons were analyzed using the 
independent t-test (for normally distributed data with homogeneity of 
variances) and the Mann–Whitney U test (for non-normally distributed 
data or unequal variances). Within-group comparisons were evaluated 
using the Wilcoxon signed-rank test for paired analyses. Categorical 
variables were expressed as frequencies or proportions, with group 
differences evaluated using the Chi-squared test. Correlation analyses 
were conducted using Spearman correlation analysis. Predictors of 
functional outcomes were identified through ordered logistic regression 
modeling with the mRS as the dependent variable. All statistical tests 
were two-sided, showing odds ratios (OR) with 95% confidence 
intervals (CI), and p < 0.05 was considered statistically significant.

3 Results

3.1 Comparison of baseline demographics, 
sleep-related questionnaires, and 
neurological function scores

During the course of this study, a total of 187 subjects who met the 
inclusion and exclusion criteria were enrolled, of which 74 patients 
refused the CPAP treatment plan but agreed to participate in the 
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experiment, and 1 patients declined to undergo neurological function 
assessment during follow-up. Ultimately, 73 individuals were included 
in the control group. A total of 113 patients received the CPAP treatment 
plan and voluntarily joined the study, among which 12 patients could 
not tolerate the pressure titration on the first night. Adherence criteria 
were defined per current clinical practice guidelines as ≥12 nights of 
CPAP therapy with ≥4 h/night usage within a 14-day period (9). 32 
subjects were excluded due to insufficient therapeutic adherence, one 
patients were excluded from data analysis because of missing or 
incomplete data on CPAP use, and 68 patients who met the criteria were 
ultimately included in the CPAP group. The overall CPAP adherence 
rate reached 67.3% (68/101) with a mean nightly usage duration of 
5.82 ± 1.87 h. The detailed research flowchart is shown in Figure 1. 
Cross-group analysis of baseline characteristics revealed no statistically 
significant differences in demographic profiles, sleep-related 
questionnaire scores, and neurological assessments of stroke severity (all 
p ≥ 0.05; see Table 1), indicating comparability between the two groups.

3.2 Analysis of neuroimaging 
characteristics

Comparisons of IS-related clinical features between groups are 
presented in Table 2, with no significant differences observed (all 
p ≥ 0.05).

3.3 Baseline PSG and sleep spindle 
parameters and CPAP intervention effects

As shown in Table 3, no baseline differences in PSG or sleep spindle 
parameters were detected between the groups. Post-CPAP treatment, 
sleep efficiency significantly improved (p = 0.002), accompanied by sleep 

architecture remodeling: a reduction in N1/N2 stage proportions and an 
increase in N3/REM stage proportions (all p < 0.05). Concomitant 
optimization occurred across respiratory metrics, including the arousal 
index, AHI, REM-AHI, NREM-AHI, ODI, mean SpO2, minimum 
oxygen saturation, and RERAI (all p < 0.05). Furthermore, CPAP 
increased N2-SSD, prolonged N2 sleep spindle duration, and increased 
both sleep spindle count and duration in N3 sleep.

3.4 30-day neurological outcome 
comparisons

At the 30-day follow-up after stroke onset, the CPAP group 
demonstrated significantly lower mRS (p < 0.001) and NIHSS 
(p = 0.031) scores than did the control group, although BI scores were 
not significantly different between the groups (p = 0.086) (Table 4, 
Figure 2).

3.5 Correlation analysis

Spearman correlation analysis (Table  5) revealed positive 
associations between the 30-day mRS score and the AHI (r = 0.242, 
p < 0.05), REM-AHI (r = 0.497, p < 0.05), and NREM-AHI (r = 0.275, 
p < 0.05). Negative correlations were observed with N3 sleep 
percentage (r = −0.363, p < 0.05), N2-SSD (r = −0.372, p < 0.05), and 
mean oxygen saturation (r = −0.336, p < 0.05).

3.6 Ordered logistic regression analysis

Variables showing significant differences post-CPAP were 
included in an ordered logistic regression model with the 30-day mRS 

FIGURE 1

Research flowchart.
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score as the dependent variable. REM-AHI, N2-SSD, and mean 
oxygen saturation emerged as significant independent predictors of 
mRS scores (all p < 0.05; Table 6; Figure 3). For more intuitive clinical 
interpretation, we analyzed REM-AHI in 5-unit increments (REM-
AHI/5). For every 1% increase in mean oxygen saturation, patients’ 
risk of neurologic deterioration was reduced by approximately 50% 
(OR = 0.504, 95% CI: 0.312–0.831). Similarly, for every 1-unit increase 

in N2-SSD, the risk was reduced by approximately 57% (OR = 0.426, 
95% CI: 0.249–0.727). In contrast, for every 1-unit increase in 
REM-AHI, patients’ risk of neurologic deterioration increased by 
approximately 8.7% (OR = 1.087, 95% CI: 1.024–1.156); when 
REM-AHI increased by 5 units, the risk increased by 52% (OR = 1.52, 
95% CI: 1.125–2.052). In contrast, NREM-AHI, AHI, and N3% were 
not significantly correlated with neurologic prognosis (all p > 0.05).

4 Discussion

Guided by the Expert Consensus on Obstructive Sleep Apnea and 
Stroke Management (22), this study initiated 14-day CPAP treatment 
within 48 h of stroke onset in 68 patients with IS complicated by 
moderate-to-severe OSA. By comparing our findings with those of 
untreated controls, we validated the clinical value of early therapeutic 
intervention. Among the clinical parameters demonstrating positive 
responses to CPAP, REM-AHI, N2-SSD, and mean SpO2 may 
be  critical predictors of neurological outcomes, which provides a 
mechanistic basis for CPAP efficacy in prognosis optimization.

The association between mean SpO2 and neurological outcomes 
is biologically plausible, given prior evidence elucidating the negative 
association between sleep-related hypoxia and neurological recovery, 
along with its underlying pathophysiological mechanisms (23, 24). 
Notably, REM-AHI and N2-SSD were correlated with neurological 
prognosis. Previous studies have established that apnea-hypopnea 
events that occur during REM sleep stage are associated with more 
severe clinical consequences for patients (25, 26). The results of a 
previous study by our group also revealed that patients with 
predominantly REM-OSA (rapid eye movement-related obstructive 
sleep apnea) have a worse prognosis than do ischemic stroke patients 
with NREM-OSA (nonrapid eye movement-related obstructive sleep 
apnea). OSA-induced cerebral hypoxia and hemodynamic fluctuations 
may exacerbate injury in peri-ischemic penumbral regions (4). The 
duration of apnea events, modulated by chemoreflex drive and arousal 
thresholds (27), is prolonged during REM sleep because of diminished 
respiratory effort and delayed cortical arousal. Furthermore, reduced 
noradrenergic activity in the locus coeruleus during REM stage 
suppresses both upper airway dilator muscles and respiratory drive 
(26). Therefore, OSA may further deteriorate in REM and exacerbate 
the harm caused to stroke patients. This study also revealed that the 
REM-AHI affects the prognosis of patients. That is, the higher the 

TABLE 1  Demographic data and questionnaires between two groups.

Characteristics CPAP 
(n = 68)

Control 
(n = 73)

χ2/t/Z 
value

P 
value

Male, n (%) 55 (80.9%) 49 (72.1%) 1.471 0.312

Age, years 58.37 ± 15.32 60.51 ± 10.98 −0.939 0.349

BMI, kg/m2 26.38 ± 3.62 26.38 ± 3.3 0.003 0.997

Smoking, n (%) 26 (38.2%) 31 (45.6%) 0.755 0.487

Drinking, n (%) 21 (30.9%) 27 (39.7%) 2.037 0.370

Hypertension status (%) 44 (64.7%) 51 (75%) 1.711 0.262

Diabetes status (%) 18 (26.5) 20 (29.4%) 0.146 0.849

CAD status (%) 6 (8.8%) 8 (11.8%) 0.119 0.730

AF 4 (5.9%) 5 (7.4%) 0.319 0.779

ESS 6 (3,12) 7 (3.25,12) −0.268 0.788

PSQI 8 (4.25,11) 8 (5.25,11.75) −0.587 0.557

HADS(A) 1.5 (0,3) 1 (0,2) −1.071 0.284

HADS(D) 2 (1,3.75) 1.5 (0,4) −1.045 0.296

SCD-Q9 2 (2,3) 2 (2,2) −1.538 0.124

MoCA 20.28 ± 4.67 20.53 ± 5.94 0.273 0.786

RBD 3 (1,4) 2 (1,3) −1.349 0.177

NIHSS 2 (0,3) 2 (1,3) −0.821 0.412

mRS 2 (2,3) 2 (2,2) −0.860 0.390

BI 78.38 ± 12.65 78.75 ± 14.54 −1.57 0.875

Data presented as mean ± SD (Independent t-test), median (IQR) (Mann–Whitney U test), 
or n (%) (Chi-squared test). BMI, body mass index; CAD, Coronary Artery Disease; AF, 
Atrial Fibrillation; ESS, Epworth Sleepiness Scale; PSOI, Pittsburgh Sleep Quality Index; 
SCD-Q9, Subjective Cognitive Decline Questionnaire-9; HADS, Hospital Anxiety and 
Depression Scale; MoCA, Montreal Cognitive Assessment Scale; RBD, REM Sleep Behavior 
Disorder Screening Questionnaire; NIHSS, National Institutes of Health Stroke Scale; mRS, 
Modified Rankin Scale; BI, Barthel Index. The measured data is expressed as the median 
(interquartile range) due to its skew distribution.

TABLE 2  Comparison of imaging characteristics of lesions between the two groups.

Characteristics CPAP (n = 68) Control (n = 73) χ2/t/Z value P value

Laterality [number (%)]
Unilateral 19 (27.9%) 12 (17.6%)

2.047 0.220
Bilateral 49 (72.1%) 56 (82.4%)

Multiplicity [number (%)]
Isolated 25 (38.6%) 18 (26.5%)

1.666 0.268
Multiple 43 (63.2%) 50 (73.5%)

Number of stroke [number 

(%)]

≤4 47 (69.1%) 49 (72.1%)
0.142 0.851

>4 21 (30.9%) 19 (27.9%)

Site of IS [number (%)]

Pre-cycle 32 (47.1%) 35 (51.5%)

2.485 0.307post-cycle 16 (23.5%) 9 (13.2%)

Pre + post cycle 20 (29.4%) 24 (35.3%)

IS, Ischemic Stroke.
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REM-AHI is, the worse the short-term prognostic outcomes for 
patients may be.

The study protocol excluded patients with suboptimal CPAP 
adherence. These patients initiated therapy within 48 h poststroke 
onset, which yielded favorable short-term respiratory compliance. 
While optimal CPAP adherence is clinically critical for targeting 
REM-related respiratory event suppression (28), longitudinal data 
reveal persistent challenges in sustaining therapeutic engagement. A 
retrospective study revealed that the CPAP usage rates in stroke 
patients after treatment were 58, 53, 48, 45, and 39% at 3, 6, 12, 24, 

and 60 months, respectively (29). Moreover, the predominance of 
circadian-driven REM sleep during early morning hours necessitates 
extended nocturnal usage protocols to achieve optimal therapeutic 
coverage. Encouragingly, a growing number of clinical studies are 
actively seeking means to optimize adherence with good results, and 
beliefs about behavioral change and telemonitoring follow-up may 
be possible answers (30–32), with future research directed toward 
combining theory-driven behavioral approaches with telemedicine 
technology to improve real-world CPAP adherence rates. Patients 
with more severe OSA generally have poorer cerebral responsiveness 
to hypoxia because of the moderate-strength relationship between 
the cerebral blood flow response to hypoxia and the AHI and 
nocturnal oxyhemoglobin saturation. One study reported the 
greatest change in cerebral blood flow response to hypoxia after 
CPAP treatment in patients with the highest AHI (33), which 
suggests that patients with severe OSA may benefit the most from 
CPAP treatment. In our study, we did not assess the prognosis by 
subdividing the severity of the patients, and we further investigated 
this point at a later stage. At the same time, to ensure the 

TABLE 3  Comparison of sleep parameters: between groups and within CPAP group.

Polysomnography Control Pre-CPAP Post-CPAP Pa value Pb value

TST (min) 390.76 ± 119.34 412.67 ± 106.02 420.99 ± 114.55 0.260 0.071

S-efficiency (%) 79.76 ± 12.60 78.34 ± 15.79 83.7 ± 12.88 0.561 0.002

SOL (min) 7.00 (3.15,12.38) 7.05 (3.15, 14.9) 5.8 (3.25, 13.7) 0.886 0.623

REM sleep latency (min) 98.25 (43.13, 144.63) 87.5 (42, 151.5) 81 (50.5, 129.5) 0.702 0.387

WASO (min) 73.95 (35.37, 111.3) 68.4 (37.33, 140.93) 50.05 (24.52, 89.92) 0.478 0.05

N1% 8.6 (4.73, 19.58) 6.95 (3.23, 14.83) 5 (2.13, 9.95) 0.112 0.023

N2% 60.05 (52.9, 66.53) 61.55 (52.18, 70.68) 54.95 (46.1, 66.28) 0.244 0.006

N3% 10.4 (7.1, 19.03) 9.9 (5.43, 16.68) 13.95 (7.8, 22.85) 0.191 <0.001

REM% 12.3 (7.83, 18) 14 (9.18, 20.5) 21.65 (14.9, 27.88) 0.251 <0.001

AHI 30.55 (22.5, 43.43) 34.45 (22.95, 52.55) 4.8 (2.72, 8.05) 0.448 <0.001

REM-AHI 31.2 (16.53, 49.86) 32.95 (18.78, 47.33) 4.35 (1.4, 8.23) 0.934 <0.001

NREM-AHI 30.1 (20.43, 43) 28.9 (20.55, 52.03) 3.85 (2.23, 8.3) 0.433 <0.001

ODI 34.75 (19.35, 53.05) 31.25 (19.3, 49.85) 6.45 (2.82, 11.85) 0.807 <0.001

Arousal Index 32.75 (21.35, 49.23) 31.7 (21.83, 46.63) 20.35 (11.45, 32.45) 0.606 <0.001

Mean SpO2 (%) 94.65 ± 2.01 93.83 ± 2.98 95.79 ± 1.29 0.081 <0.001

Min-SpO2 (%) 79.31 ± 9.52 80.88 ± 8.60 88.82 ± 4.76 0.314 <0.001

RERAI 5.8 (2.3, 12.38) 6.1 (3.4, 12.83) 0.4 (0.1, 1) 0.679 <0.001

N2-SS count 419 (242.5, 806) 513.5 (235.25, 722) 492.5 (242.25, 843) 0.951 0.375

N2-SSD 1.91 (1.14, 3.63) 1.95 (1.09, 2.84) 2.50 (1.41, 3.33) 0.411 0.036

N2-SS duration (s) 0.7 (0.6, 0.8) 0.7 (0.6, 0.8) 0.6 (0.6, 0.7) 0.674 <0.001

N2-SS max-amplitude (μV) 56 (51, 63.74) 53.5 (44, 64) 45 (40, 59) 0.126 0.052

N3-SS count 55 (25.5, 170.5) 42.5 (12, 173.5) 93.5 (24.75, 195.75) 0.321 0.048

N3-SSD 2.04 (0.94, 3.96) 1.61 (0.54,2.80) 1.54,(0.81, 2.61) 0.132 0.640

N3-SS duration (s) 0.65 (0.6, 0.8) 0.6 (0.6, 0.8) 0.6 (0.675, 0.875) 0.124 0.04

N3-SS max-amplitude (μV) 58 (49, 64) 53 (42, 66.75) 46.5 (41, 59.75) 0.466 0.089

TST, total sleep time; S-efficiency, sleep efficiency; SOL, sleep onset latency; WASO, wake time after sleep onset; N = NREM, non-rapid eye movement; REM, rapid eye movement sleep; AHI, 
apnoea-hypopnea index; ODl, oxygen desaturation index; Min-SpO2, minimum pulse oxygen saturation; RERAI, respiratory effort-related arousal index; N2-SS, N2 sleep spindle; N3-SS, N3 
sleep spindle; SSD, sleep spindle density.
Pa, The comparison of clinical data between the CPAP group and the Control group, if the data is normally distributed, two-sample t-test is used; if the data is not normally distributed, Mann–
Whitney U test is used; Pb, The comparison of parameters before and after treatment in the CPAP group, for data that is normally distributed, a paired t-test is used; for data that is not 
normally distributed, Wilcoxon rank-sum test is used.

TABLE 4  Neurological function scores after CPAP treatment.

Characteristic CPAP Control χ2/t/Z 
value

p 
value

BI 92.72 ± 8.39 89.71 ± 11.68 1.728 0.086

mRS 1 (0,1) 1 (1,1) −4.214 <0.001

NIHSS 0 (0,1) 0 (1,1) −2.157 0.031
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generalizability and clinical translational value of the findings, future 
multicenter validation studies in different populations are 
still needed.

According to the AASM normal ranges for sleep stage percentages, 
the sleep architecture of patients with OSA was disturbed, exhibiting 
a higher percentage of N1 and N2 stage and a decrease in N3 and REM 
stage. Following short-term CPAP intervention, the sleep structure of 
the patients was improved, with an increase in the percentage of deep 
sleep, a rebound in REM sleep, and a decrease in the RERAI observed. 
These changes directly ameliorated hypoxemia and sleep 
fragmentation. RERAI plays a bidirectional regulatory identity in 
neuromodulation, on the one hand, it can terminate life-threatening 
apnea, on the other hand, excessive arousals lead to sleep structure 
disruption, impaired neuronal repair, interference with sleep spindles 
formation, and ultimately cause deterioration of neurological function.

Sleep spindles are burst signals in the EEG of the mammalian 
brain during sleep and are electrophysiological surface correlates of 
thalamic neuronal oscillations with an amplitude of 11–16 Hz (34). 
Spindles are generated by coordinated activity between the thalamus, 
the thalamic reticular nucleus, and the neocortex (thalamocortical 
loops). Spindle activity prevents arousing stimuli from reaching the 
cortex and thereby prevents awakenings during NREM sleep. Sleep 
spindle activity is involved in several processes, such as sleep 
architecture, sensory processing, synaptic plasticity, memory 
formation and cognitive ability. Sleep spindle density is closely related 

to cognitive functions such as resistance to external disturbances 
during sleep, individual intelligence and memory consolidation (35). 
Previous studies have shown that the intensity and consistency of 
spindle wave activity are significantly reduced in stroke patients (36, 
37), and that brain damage affects the generation of sleep spindle wave 
activity. A number of rodent experiments and clinical studies have 
preliminarily demonstrated that cognitive impairments such as 
memory and other cognitive functions induced by stroke are 
associated with sleep spindles (38, 39).

In the present study, we found that CPAP treatment increased 
N2-SSD, a result similar to previous studies (40, 41), which may be a 
biomarker of treatment effectiveness. However, the increase in SSD 
was not manifested in N3 stage. The occurrence of spindle waves is 
dependent on the level of hyperpolarization in the thalamocortical 
network, and their frequency is influenced by the duration of the 
hyperpolarized rebound sequence of thalamocortical cells (42). If the 
rebound sequence is long, the spindle wave slows down. In general, 
spindle waves are abundant and fast in light sleep and few and slow in 
deep sleep (43, 44). However, the percentage of N3 sleep is significantly 
reduced in OSA patients, which implies that the hyperpolarization of 
the thalamocortex in these patients is maintained at a moderate level. 
After treatment with CPAP, patients achieve slow-wave sleep with an 
increase in the negative membrane potential of the thalamocortical 
network along with the optimization of the sleep structure, which may 
explain why the N3-SSD did not significantly change. The basic 
principle of CPAP treatment is to generate gas of a certain pressure by 
means of a ventilator, which creates airborne scaffolding in the 
patients’ upper airway to form a gaseous scaffolding to support the 
collapsed area and keep the upper airway open during sleep, which 
allows for the correction of hypoxia in the cells within the CNS and 
thalamus without apnea hypo-potentials; therefore, these cells are 
more capable of generating sleep spindle waves, which in turn allows 
the patient to show greater potential for a good prognosis. Increased 
sleep spindle wave activity and coherence from the acute to the 
chronic phase of stroke suggest a reversible mechanism allowing for 
the possibility of spindle wave recovery (45).

However, this study did not identify N3-SSD as a predictor of 
short term neurological prognosis. Currently, there are fewer 

FIGURE 2

Comparison of mRS/NIHSS between the two groups after 1 month.

TABLE 5  Correlation analysis of mRS scores with PSG parameters and 
spindles indicators.

Characteristics r p

N3% −0.363* 0.03

REM-AHI 0.497** <0.001

NREM-AHI 0.275* 0.023

AHI 0.242* 0.047

N2-SSD −0.372** 0.002

Mean SpO2 (%) −0.336** 0.005

*p < 0.05, **p < 0.01.
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studies on the N3-SSD because sleep spindles are a characteristic 
electrophysiological manifestation of N2 stage and appear less 
frequently in N3 stage. Moreover, the sleep structure of patients 
with OSA combined with ischemic stroke is disrupted, and there 
is a significant reduction in N3 stage sleep, which is dominated by 
slow-wave activity, and its neural oscillatory pattern, 
neurochemical environment, and potential functions are 
significantly different from those of N2 sleep. The incidence of 
sleep spindle in N3 stage, their morphological characteristics and 
their coupling with slow-wave activity may also be different from 
N2 stage. Therefore, impairment of N3-SSD after stroke might 
reflect a different mechanism of neurologic injury or recovery 
pathway than N2-SSD impairment, or its predictive value for 
functional recovery might be  less sensitive than that of 
N2-SSD. Future studies should conduct in-depth investigations 
into how stroke specifically affects spindle activity across different 
sleep stages. Additionally, incorporating neuroimaging and 
molecular marker studies would help elucidate the unique or 
synergistic mechanisms of N2-SSD and N3-SSD in post-stroke 
neural repair and recovery.

Studies published as early as 1960s that reported sleep spindle as 
a favorable prognostic indicator for patients surviving coma, stroke, 
encephalopathy, and traumatic brain injury (46) seem to have been 
ignored. In recent years, it has also been increasingly suggested that 
N2 stage biomarkers can be used as predictors of prognosis in critical 
illness patients (47, 48). The results of this study revealed that the 

N2-SSD is an independent risk factor affecting the prognosis of 
patients with OSA-IS. Intervention with spindles during sleep is 
expected to promote neuromodulation and perhaps improve 
subsequent prognosis and stroke rehabilitation, and sleep spindle may 
become a new therapeutic target.

The primary endpoint of this study was neurologic recovery at 
30 days after stroke, an early time window of clinical importance that 
effectively reflects the response to acute-phase interventions and the 
potential for early recovery (49). However, we recognize that a 30-day 
assessment is insufficient to fully depict the long-term neuroplasticity 
process after stroke, the eventual plateau period of functional recovery, 
or the risk of stroke recurrence. Although long-term outcomes were 
not tracked in this study, on the basis of the potential mechanisms of 
sleep spindles (especially N2-SSD) in neuroprotection, synaptic 
plasticity, and brain network reorganization (35), acutely impaired 
N2-SSD may not only correlate with short-term recovery but also 
be predictive of long-term neurological prognosis. Similarly, whether 
the persistence of REM-AHI is associated with an increased risk of 
long-term cardiovascular events or stroke recurrence also deserves to 
be explored in depth. Therefore, future studies should aim to extend 
the follow-up period and systematically assess the value of N2-SSD 
and REM-AHI in predicting long-term neurologic outcomes, 
cognitive function, quality of life, and risk of stroke recurrence in 
stroke patients.

REM-AHI and N2-SSD modulate neuroplasticity via independent 
mechanisms. CPAP treatment selectively improves the abnormal 
activity of these two biomarkers, thereby mediating their positive 
impact on patients’ neurological prognosis. The identification of novel 
electrophysiological markers, such as REM-AHI and N2-SSD, is 
expected to overcome the limitations of traditional AHI metrics in 
predicting CPAP efficacy.

The limitations of this study are the relatively small sample size, 
which may limit the generalizability of the results. The lack of long-
term follow-up data is also a notable limitation, which prevents us 
from drawing comprehensive conclusions about the lasting effects 
of CPAP treatment. Although we  observed significant 
improvements in the short term, further studies are needed to 
verify whether these results carry over into the long term. This 
study was conducted in patients with moderate to severe OSA who 
were able to voluntarily accept and cooperate with CPAP treatment. 
Although the sample size was sufficient to detect significant effects 
for primary outcomes, it remained limited for multivariate 
modeling and subgroup analyses. This selective inclusion may 
introduce bias into the research findings, and the conclusions may 
only be generalizable to patient populations with good adherence. 

TABLE 6  Ordered logistic regression of variables related to mRS.

Variables β Coefficient SE p-Value OR 95%CI

REM-AHI 0.084 0.031 0.006 1.087 (1.024, 1.156)

NREM-AHI −0.095 0.116 0.412 0.909 (0.724, 1.124)

AHI 0.176 0.137 0.198 1.192 (0.912, 1.560)

MEAN-SPO2 −0.685 0.244 0.005 0.504 (0.312, 0.813)

N2-SSD −0.854 0.273 0.002 0.426 (0.249, 0.727)

N3% −0.030 0.027 0.272 0.970 (0.920, 1.023)

REM-AHI/5 0.419 0.153 0.006 1.520 (1.125, 2.052)

FIGURE 3

Forest plot of predictors for neurological deterioration risk.
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In addition, this study was a single-center design, and population 
characteristics may affect the extrapolation of the results. Therefore, 
larger-scale multicenter prospective cohort studies in diverse 
populations remain needed to validate the clinical applicability of 
these findings.

5 Conclusion

Our study demonstrated that initiating CPAP therapy within 48 h 
after stroke significantly improved short-term neuro-prognostic 
function in patients with IS combined with moderate-to-severe 
OSA. Clinical strategies should be optimized by controlling the timing 
of CPAP initiation and maximizing respiratory therapy compliance. 
REM-AHI, N2-SSD and mean SpO2 are closely related to prognosis. 
The application of these prognostic indicators in clinical practice will 
be an important focus of our future research. Given the substantial 
burden of vascular morbidity and mortality in stroke patients with 
OSA, exploring novel therapeutic approaches to improve patient 
prognosis is imperative.
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