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Background: Ischemic stroke is a leading global cause of death and disability, 
presenting significant challenges in diagnosis, treatment, and prognosis. 
Radiomics, an emerging interdisciplinary methodology, employs machine 
learning to extract high-dimensional features from medical imaging and has 
demonstrated superior predictive performance in ischemic stroke research. 
However, the rapidly accumulating publications lack systematic bibliometric 
synthesis. We therefore conducted a visual bibliometric analysis to map research 
evolution and emerging trends.
Methods: This study conducted a bibliometric and visual analysis of ischemic 
stroke radiomics research from 2004 to 2024 using tools like CiteSpace and 
VOSviewer. The analysis explored publication trends, research hotspots, and 
technological advancements, identifying collaborations and key advancements 
in the field.
Results: Radiomics research in ischemic stroke has grown exponentially since 
its inception in 2014, with China and the United  States emerging as major 
contributors. The primary focus has been on AIS, utilizing advanced imaging 
techniques such as computed tomography (CT) and magnetic resonance 
imaging (MRI). Machine learning models, particularly deep learning architectures, 
are being widely applied for lesion segmentation, risk assessment, and 
functional prognosis prediction. Despite rapid advancements, challenges persist 
in standardizing imaging protocols, enhancing interdisciplinary collaborations, 
and ensuring clinical translation.
Conclusion: Radiomics is transforming ischemic stroke research by enabling 
detailed imaging analyses and facilitating data-driven clinical decision-making. 
Future endeavors should prioritize addressing standardization issues, expanding 
multicenter collaborations, and developing interpretable models that integrate 
radiomics with clinical and molecular biomarkers. Such efforts will accelerate 
the translation of radiomics into routine ischemic stroke care and improve 
patient outcomes.
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1 Introduction

Stroke, as the second leading global cause of death and third 
leading cause of disability, imposes a lifelong health risk affecting 
approximately one-quarter of the population (1). In 2021, the number 
of people suffering from stroke worldwide reached 57.3 million, with 
5.03 million deaths (2). Ischemic stroke is caused by blockage of the 
cerebral arteries and accounts for approximately 87% of all stroke 
cases (3). A 2024 study predicts that by 2050, global DALYs due to 
stroke will rise from the third position in 2022 to the second, 
surpassed only by ischemic heart disease (4). Furthermore, a US-based 
study forecasts that the stroke rate among Americans will increase 
from 3.9% in 2020 to 6.4% by 2050 (5). Currently, the diagnosis and 
treatment of stroke encounter various challenges, including 
constraints in the early diagnosis and treatment window for acute 
ischemic stroke (AIS) patients and difficulties in accurately evaluating 
long-term outcomes. Consequently, advancing technological methods 
to enhance ischemic stroke diagnosis, treatment, and prognosis 
management holds significant importance.

Radiomics, an emerging multidisciplinary technique, covers the 
extraction of high-throughput quantitative features from medical 
images combined with machine learning algorithms to deeply explore 
the underlying biological information within the imaging data (6, 7). 
In recent years, the application of radiomics in stroke research has 
garnered increasing attention, demonstrating significant potential in 
disease diagnosis, prognosis prediction, and personalized treatment. 
For instance, radiomics features based on magnetic resonance imaging 
(MRI) have been utilized to predict functional outcomes in patients 
with acute ischemic stroke, achieving an area under the ROC curve 
(AUC) of 0.92 for the prediction model (8). Additionally, radiomics 
can be employed to evaluate hematoma volume and growth risk in 
patients with cerebral hemorrhage (3).

With the rapid advancement of ischemic stroke and radiomics 
research, the literature in these fields has experienced exponential 
growth. Comprehensively and systematically organizing existing 
research outcomes, as well as identifying key research hotspots and 
technological trends, has become a crucial task for the academic 
community. Bibliometric analysis methods, such as co-citation 
analysis and keyword clustering, have proven to be effective tools in 
revealing the current state and cutting-edge trends of research (9). 
However, bibliometric studies specifically targeting the field of 
ischemic stroke radiomics are currently scarce, lacking systematic and 
visual analysis.

Therefore, this study focuses on ischemic stroke radiomics-related 
literature from 2004 to 2024, employing bibliometric and visual 
analysis methods with the use of CiteSpace and VOSviewer software. 
The aim is to comprehensively explore the research hotspots and 
development trends in this domain, providing guidance for future 
basic research and clinical applications, and offering significant 
reference value to relevant researchers.

2 Materials and methods

2.1 Searching strategy

The data analysis in this article is based on the Web of Science 
Core Collection (WoSCC), a database published by Clarivate 

Analytics. To cover as many relevant research papers as possible, 
we  constructed a search strategy using commonly used terms in 
scientific literature. The terms “ischemic stroke,” “radiomics,” and their 
synonyms were sourced from the PubMed Medical Subject Headings 
(MeSH) database. The search was completed on February 8, 2025, and 
the search queries and details are provided in Supplementary Table S1.

2.2 Inclusion and exclusion criteria

2.2.1 Inclusion criteria
(1) The study population must consist of patients diagnosed with 

any type of ischemic stroke. (2) The research should utilize radiomics-
related methodologies. (3) Only clinical studies conducted on humans, 
published in English, and presented in article format were eligible. (4) 
Studies must have been published between January 1, 2004, and 
December 31, 2024. (5) Eligible article types were limited to original 
research articles or review papers.

2.2.2 Exclusion criteria
(1) Articles not focusing on the application of radiomics in stroke 

were excluded. (2) Unpublished works or those with “early access” 
status were not considered. (3) Studies written in languages other than 
English were excluded. Further details on the study selection process 
can be found in Supplementary Figure S1.

2.3 Data collection

The process of data curation and screening for this study was 
conducted as follows: (1) Two independent researchers from the team 
assessed the articles to determine their relevance to the study’s focus, 
excluding those that did not satisfy the eligibility criteria. Any 
disagreements were resolved through discussion. (2) Affiliation details 
and country names were revised and standardized to minimize 
potential biases in the results. (3) Keywords were also standardized to 
resolve inconsistencies caused by differences in word forms, such as 
plurals and singulars, which might otherwise lead to redundant 
entries in the keyword co-occurrence analysis. For instance, “Peoples 
R China” and “Taiwan” were standardized as “China,” while “England,” 
“North Ireland,” “Wales,” and “Scotland” were merged into 
“United Kingdom.”

In total, 213 records were initially retrieved. Following an 
independent review conducted by two researchers, 204 records were 
finalized for inclusion in the study. The dataset was exported as a plain 
text file containing details such as publication year, title, abstract, 
author names, institutions, journal names, and keywords.

2.4 Data analysis

The bibliometric data retrieved from the database was stored in 
files for subsequent analysis. Temporal publication trends were 
analyzed using Microsoft Excel. For constructing visual network 
maps, VOSviewer (1.6.18) was employed, a tool that utilizes a 
probabilistic approach to data standardization. This enabled the 
creation of detailed visualizations showcasing publishing countries, 
contributing institutions, influential authors, publishing journals, 
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and key cited references. In these visualizations, the size of each node 
represented its connection degree, connection strength, and 
frequency of occurrence, while the thickness of connecting lines 
indicated the level of collaboration between nodes. Node colors 
distinguished different clusters within the network. This approach 
provided a multidimensional perspective on the research landscape 
in the field. Additionally, Microsoft Excel 2016 and Scimago 
Graphica were employed for data integration and other 
visualization tasks.

To create knowledge mapping visualizations, CiteSpace (V6.3.R1) 
software was used. The analysis settings included time slicing set to 1, 
covering the years 2004 to 2024 with annual intervals. A time-based 
similarity algorithm was applied to generate two key visualizations: 
timeline plots and keyword burst analyses. Timeline plots, displayed 
as cluster diagrams, depicted the evolution of keyword-related clusters 
over time, shedding light on the chronological development of the 
research field. Keyword burst analysis played a crucial role in detecting 
emerging trends by identifying abrupt increases in the usage frequency 
of specific terms. Together, these analytical methods facilitated an 
in-depth examination of both historical changes in research focus and 
emerging directions, offering a detailed understanding of the field’s 
progression and future potential.

3 Results

3.1 Analysis of annual publications

According to Figure 1A, the application of radiomics in the field 
of ischemic stroke emerged with the first study in 2014. Since then, it 
has gradually garnered the attention of global researchers. Notably, 
after 2021, there was a significant increase in the number of 
publications. In 2024, 59 papers were published in just 1 year, with a 
total of 204 papers published by the end of 2024. The trend line 
formula is y = 1.4368x, with an R2 value of 0.5631, indicating a linear 
growth trend.

3.2 Analysis of countries

Based on the analysis conducted by VOSviewer, co-authorship 
was selected for the type of analysis and countries were selected for 
the unit of analysis, the threshold of the minimum number of 
publications in a country was selected as 1, a total of 34 countries 
have participated in publishing radiomics-related articles in the field 
of ischemic stroke. Table  1 presents the ranking of the top  10 
countries by the number of publications. In terms of publication 
volume, only China has exceeded 100 articles, reaching a total of 147 
articles, which is significantly ahead of other countries. This is 
followed by the United  States (37), the United  Kingdom (14), 
Germany (12), and Canada (10). Regarding total citations, the top 5 
countries are China (1,313), the United States (567), Germany (223), 
Australia (202), and the United Kingdom. Figure 1B illustrates the 
visual network of countries ranked by their total collaboration 
strength. In this figure, the countries are sorted by collaboration 
intensity, where colors closer to red indicate higher collaboration 
strength, and larger nodes represent a higher number of publications. 
In terms of collaboration intensity, the United States (77) has the 

closest cross-border collaboration in this field, followed by Canada 
(53), the United Kingdom (50), France (37), and Spain (35).

3.3 Analysis of organizations

We conducted an institutional collaboration network analysis using 
VOSviewer software on relevant literature in the field of radiomics in 
ischemic stroke. Co-authorship was selected for the type of analysis and 
organizations were selected for the unit of analysis, the threshold of the 
minimum number of publications in a country was selected as 1. The 
analysis revealed a total of 425 institutions that have published at least 
one article in this domain. Table 2 presents the ranking of the top 15 
organizations based on productivity. General Electric Healthcare leads 
the list with 13 publications, followed by Fudan University (12), Capital 
Medical University (11), Nanjing Medical University (9), and Shanghai 
Jiao Tong University (9). In terms of total citations, the top five 
organizations are Capital Medical University (212), General Electric 
Healthcare (172), Fudan University (154), Wenzhou Medical University 
(145) - despite Wenzhou Medical University having only 5 publications. 
Regarding collaboration intensity, the University of Toronto stands out 
with 46 collaborations, even though it has only 4 publications. This is 
followed by Tongji University (42), Northeastern University (41), and 
Shenzhen Technology University (41). It is noteworthy that among the 
top 15 organizations, all except the first one from the United States are 
from China.

Figure 1C illustrates the visual network of the largest subset of 218 
organizations with collaborative relationships (6 clusters). Each node 
corresponds to an organization, with its size reflecting the number of 
publications. The connecting lines indicate collaborative relationships 
between organizations, while their thickness denotes the strength of 
these collaborations. Distinct colors are used to represent different 
clusters. Prominent organizations such as General Electric Healthcare, 
Northeastern University, Fudan University, Capital Medical University, 
University of Toronto, and University of Cambridge are visible with 
larger nodes and numerous connections, indicating their high 
publication output and extensive collaborative efforts.

3.4 Analysis of authors and co-cited 
authors

Using VOSviewer software, we  conducted an analysis of 
publishing authors and co-cited authors to identify their key 
contributions to the field. Table 3 presents the top 10 authors who have 
published the most radiomics-related papers in the ischemic stroke 
field, as well as the top 15 authors who have been co-cited the most in 
this field (co-citation refers to when articles by two authors are cited 
by the same paper, counting as one co-citation). In terms of publication 
volume, all top 10 authors are from China. Kang, Yan (8) and Guo, 
Yingwei (8) are tied for the first place in publication volume, followed 
closely by Luo, Yu (7) and Zeng, Xueqiang (7). Regarding co-citations, 
the top 15 authors mainly come from Belgium, Italy, United States, 
Netherlands, China, and Australia. Lambin, P. (73) ranks first in the 
number of citations, followed by Saba, L. (61), Gillies, R. J. (59), and 
van Griethuysen, J. J. M. (58).

Figure 1D displays a network of 911 authors who have published 
at least one article and been cited at least five times. Each node 
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represents an author, and its size reflects the number of publications. 
The lines connecting the nodes signify collaborative relationships 
between authors, with their thickness indicating the intensity of 
collaboration. Different colors distinguish various clusters. Although 
large-scale collaborative clusters have not yet formed, small-scale 
clusters of author collaboration can be observed in the figure.

Figure  1E shows a network of 289 authors with at least five 
co-citations (six clusters). In the blue cluster, Lambin, P. and Gillies, 
R. J. are the core, indicating their significant influence in the 
collaboration network. The purple cluster, centered around Saba, L., 
forms an independent collaborative group with relatively few 
connections to other clusters.

FIGURE 1

(A) The trend in the number of radiomics studies published in the field of stroke from 2004 to 2024. (B) Countries cooperation analysis. 
(C) Organizations cooperation analysis. (D) Authors cooperation analysis. (E) Co-cited author analysis. (F) Journal analysis.
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3.5 Analysis of journals

An analysis of publishing journals was conducted using VOSviewer 
software to identify journals interested in this field. Citation was selected 
for the type of analysis and sources were selected for the unit of analysis, 
the threshold of the minimum number of publications in a journal was 
selected as 2. Table  4 presents the top  10 journals with the highest 
publication volume in this domain. Among them, Frontiers in Neurology 
stands out as the journal with the most publications, totaling 26 articles, 
followed by Frontiers in Neuroscience with 14 articles. In terms of total 
citations, European Radiology ranks first with a total of 256 citations for 
its articles in this field, closely followed by Diagnostics with 153 citations. 
Regarding impact factors, the range spans from a minimum of 2.4 to a 
maximum of 4.8. From the perspective of JCR partitions, the majority 
are concentrated in Q1 and Q2. Figure 1F illustrates a visual network of 
35 journals (forming 7 clusters) among the 36 journals that have 
published more than 2 articles and share citation relationships.

3.6 Analysis of highly cited and bursting 
references

A co-citation analysis was conducted using VOSviewer to clarify the 
theoretical foundation and mainstream viewpoints in the field. 
Co-citation was selected for the type of analysis and cited references were 
selected for the unit of analysis, the threshold of the minimum number 
of citations in a cited reference was selected as 10. Among the 6,394 
co-cited references, 51 papers had a co-citation count of 10 or more. 
Table 5 provides detailed information on the top 10 most co-cited papers. 
The papers “Radiomics: images are more than pictures, they are data” 
(2016) and “Computational radiomics system to decode the radiographic 
phenotype” (2017) were tied for the highest number of co-citations, both 
with 58. This was followed by “Radiomics: the bridge between medical 
imaging and personalized medicine” (2017) with 37 co-citations and 
“Radiomics: extracting more information from medical images using 
advanced feature analysis” (2012) with 35 co-citations. Figure  2A 
illustrates the visualization network of the 51 papers with 10 or more 
co-citations (4 clusters). Additionally, a burst analysis of co-cited 
literature was performed using CiteSpace, with a threshold parameter γ 
set to 0.5 while keeping other parameters at their default settings. The 
software identified 20 co-cited papers with burst characteristics, and 
these are presented in Figure 2B, ranked by the intensity of their bursts.

3.7 Analysis of keyword co-occurrence

A comprehensive analysis of keyword co-occurrences was 
conducted using VOSviewer and CiteSpace to identify research 
hotspots in the field. Table  6 presents the top  26 high-frequency 
keywords from VOSviewer and the top  28 high-betweenness 
centrality keywords from CiteSpace. The VOSviewer data is sorted by 
keyword co-occurrence frequency, with the 10 most frequent 
keywords being “radiomics” (127), “stroke” (86), “machine learning” 
(53), “acute ischemic stroke” (48), “computed tomography” (45), 
“risk” (35), “ischemic stroke” (34), “magnetic resonance imaging” 
(26), “deep learning” (22), and “thrombectomy” (21). The CiteSpace 
data is sorted by betweenness centrality, and the 10 keywords with 
the highest centrality are “angiography” (0.59), “score” (0.51), 
“alteplase” (0.45), “lesions” (0.44), “early management” (0.37), “acute 
ischemic stroke” (0.35), “health care professionals” (0.35), “guidelines” 
(0.34), “classification” (0.29), and “prognosis” (0.27). Figure  2C 
illustrates the visualization of keyword co-occurrences in VOSviewer. 
A total of 817 keywords were retrieved, with 65 keywords having a 
co-occurrence frequency of at least 5 times. There are 940 total 
connections and a total co-occurrence strength of 2,532, resulting in 
4 clusters. The closer the node color is to red, the higher the 
co-occurrence frequency. Additionally, keywords within the same 
vertical cluster have stronger associations. Figure 2D demonstrates 
the visualization of keyword centrality in CiteSpace, with a time slice 
selection of 1 and a top N selection of 50. A total of 317 keyword 
nodes are included, with 1,143 total connections. Due to the initial 
overwhelming size of the visualization network, a pruning process 
was applied. Nodes with a betweenness centrality exceeding 0.1 are 
outlined in purple in the figure, and larger node labels indicate higher 
betweenness centrality.

3.8 Analysis of keyword burst

Using CiteSpace for keyword burst analysis, select top 50 levels of 
most cited or occurred items from each slice, the threshold parameter 
γ was set to 0.3 while keeping other parameters at their default values. 
The software identified 20 keywords with burst characteristics, arranged 
by the starting year of the burst and illustrated in Figure  2E. The 
popular keywords before 2021, as indicated by the software, were 
“texture analysis,” “classification,” “selection,” “carotid artery,” and 

TABLE 1  Top 10 countries in number of papers published in the field of radiomics for stroke.

Countries/Regions Documents Citations Total cooperation strength

1 China 147 1,313 19

2 United States 37 567 77

3 United Kingdom 14 192 50

4 Germany 12 223 34

5 Canada 10 188 53

6 Spain 9 121 35

7 Italy 9 49 28

8 Australia 8 202 34

9 France 8 126 37

10 Hungary 5 36 23
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“natural history.” Their burst strengths were 2.85, 1.99, 1.58, 1.51, and 
1.51, respectively. The popular keywords after 2022 were “identification,” 
“therapy,” “computed tomography angiography,” and “atherosclerosis.” 
Their corresponding burst strengths were 1.49, 1.35, 0.99, and 0.99.

3.9 Analysis of keyword clustering

We conducted a keyword clustering analysis using the CiteSpace 
software, select top 50 levels of most cited or occurred items from each 
slice. Specifically, we  employed the timeline visualization feature in 
CiteSpace to cluster the keywords. Utilizing the log-likelihood ratio 
(LLR) algorithm, we categorized the keywords into distinct thematic 

groups. The software generated 15 clusters, with each cluster having a 
silhouette value of at least 0.88, indicating high credibility of the clustering 
modules. Table 7 provides detailed information on the top 10 clusters, 
while the visual timeline is presented in Figure 2F. The modularity (Q) of 
0.8671 and the weighted average silhouette (S) of 0.9581 demonstrate that 
the keyword clusters derived from the data possess significant statistical 
meaning and high reliability. Within the primary cluster “#0 intracranial 
atherosclerosis,” the betweenness centrality of “angiography,” “outcome 
prediction,” “endarterectomy,” and “carotid plaques” all exceed 0.1. The 
top 10 most recently emerging keywords across all clusters are “prediction 
model,” “systematic review,” “veins,” “futile recanalization,” “carotid 
ultrasound,” “hemorrhage,” “carotid plaques,” “atrial fibrillation,” “health,” 
and “mechanical thrombectomy.

TABLE 2  Top 15 organizations in number of papers published in the field of radiomics for stroke.

Organization Documents Citations Total cooperation strength Country

1 General Electric Healthcare 13 172 32 United States

2 Fudan University 12 154 15 China

3 Capital Medical University 11 212 22 China

4 Nanjing Medical University 9 111 15 China

5 Shanghai Jiao Tong University 9 91 27 China

6 Northeastern University 8 50 41 China

7 Shenzhen Technology University 8 50 41 China

8 Tongji University 8 33 42 China

9 Southern Medical University 7 95 16 China

10 Nanjing University 6 61 18 China

11 Zhejiang University 6 53 11 China

12 Ministry of Education 6 33 32 China

13 Nantong University 6 30 13 China

14 Chongqing Medical University 6 29 22 China

15 Shenzhen University 6 29 33 China

TABLE 3  Top 10 authors in number of papers published and top 15 co-citied authors in the field of radiomics for stroke.

Author Documents Citations Country Co-cited author Co-cited Country

1 Kang, Yan 8 50 China 1 Lambin, P. 73 Belgium

2 Guo, Yingwei 8 33 China 2 Saba, L. 61 Italy

3 Luo, Yu 7 33 China 3 Gillies, R. J. 59 United States

4 Zeng, Xueqiang 7 33 China 4 van Griethuysen, J. J. M. 58 Netherlands

5 Zhang, Xin 6 77 China 5 Li, Q. 44 China

6 Yang, Yingjian 6 30 China 6 Powers, W. J. 42 United States

7 Zaman, Asim 6 29 China 7 Morotti, A. 38 Italy

8 Cao, Fengqiu 5 30 China 8 Wang, H. 36 China

9 Lu, Jun 5 30 China 9 Chen, Q. 35 China

10 Lu, Jiaxi 5 19 China 10 Campbell, B. C. V. 33 Australia

11 Qiu, W. 31 China

12 Shi, Z. 30 China

13 Jiang, L. 29 China

14 Zwanenburg, A. 26 Netherlands

15 Zhang, R. Y. 25 China
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4 Discussion

To the best of our knowledge, this study represents the first 
bibliometric analysis examining research trends in radiomics within 
the field of ischemic stroke. The search period was set from January 1, 
2004, to December 31, 2024, resulting in the initial retrieval of 211 
studies from the WoSCC database. Two researchers independently 
reviewed all articles by examining their titles, abstracts, and full texts. 
Any disagreements were fully discussed until a consensus was reached. 
Ultimately, a total of 203 papers were included in the study. We utilized 
VOSviewer 1.6.18 and CiteSpace 6.3.R1 to conduct a bibliometric 
analysis on the selected articles. The analysis encompassed various 
aspects, including the countries of origin, publishing institutions, 
authors/co-cited authors, and co-citations, aiming to summarize the 
current research landscape in this domain. Additionally, we performed 
keyword co-occurrence analysis, cluster analysis, and keyword 
emergence analysis to identify trends and potential hotspots in 
radiomics research related to ischemic stroke.

4.1 General description

The analysis of publication trends presented in Figure 1A untangles 
the development of radiomics in the field of ischemic stroke. Based on 
the trend line formula in the graph, it is evident that the number of 
publications in this domain exhibits a linear growth pattern. The first 
piece of literature within the search scope was published in 2014 by 
Coquery et al. (10) in the Journal of Cerebral Blood Flow & Metabolism, 
titled “Microvascular MRI and unsupervised clustering yields histology-
resembling images in two rat models of glioma”. This groundbreaking 
glioma study proposes a multiparametric MRI integration model 
(incorporating ADC, vascular permeability, blood volume, blood flow, 
and oxygenation/metabolic indices), which overcomes the limitations 
of single-parameter analysis through an unsupervised clustering 
framework. Although primarily applied to tumor microenvironment 
heterogeneity analysis, it establishes a quantitative analytical paradigm 
for microcirculatory dysfunction in ischemic stroke radiomics. The 
computational architecture provides a methodological foundation for 
subsequent lesion heterogeneity quantification studies, establishes a 
validation template for MRI-histopathological feature mapping, and 
implements a systematic pipeline for biomarker discovery in 
cerebrovascular pathological mechanisms. This methodological transfer 

significantly advances ischemic stroke radiomics from a phenotype-
observation to a mechanism-driven paradigm. Since then, radiomics 
research in the field of ischemic stroke has gradually garnered attention 
from scholars, becoming a popular research direction in recent years. 
Notably, relevant papers published in just 2023 and 2024 account for 
more than 50% of the total publications.

Figure 1B and Table 1 present a visual map and specific data on 
global publications and collaborations among countries. In terms of 
the number of publications, China leads with 147 published studies, 
accounting for 72% of the total research output, followed by the 
United States with 37 publications in second place. However, from the 
perspective of international cooperation, the United States ranks first 
with a total cooperation strength of 77, followed by Canada and the 
UK. The lines connecting nodes in the figure represent the strength of 
cooperation, and it can be observed that the thickest line connects 
China and the United  States, indicating the strongest connection 
between the two countries in this field. It’s worth noting that despite 
China’s leading position in publication quantity, its cooperation 
strength ranks only 17th, suggesting that Chinese research is primarily 
focused on domestic collaborations rather than international ones.

Figure  1C and Table  2 present the visualization network and 
detailed data of the publication quantity and collaboration among 
global research institutions. Among the top 10 research institutions, 
General Electric Healthcare from the United States ranks first with 13 
studies, while the remaining institutions are all located in China, 
aligning with China’s leading position in terms of publication volume. 
In Figure 1C, we observe the formation of six clusters of different sizes 
among various research institutions. The nodes with a higher number 
of publications belong to different clusters, indicating that the research 
in this field has established numerous and complex inter-institutional 
collaborations. These collaborations encompass both small-scale 
research groups and cross-cluster cooperative connections.

Table 3 presents the specific details of publication volume and 
collaboration relationships among global authors. The top 10 authors 
in terms of publication volume are all from China, which correlates 
with China’s position as the global leader in overall publications. Two 
professors from Northeastern University, Guo, Yingwei, with an 
H-index of 8, and Kang, Yan, with an H-index of 6, share the first 
position with 8 research papers each. Guo, Yingwei, and Kang, Yan, 
have closely collaborated on research primarily focused on enhancing 
the accuracy of ischemic stroke diagnosis and prognosis prediction 
using radiomics and artificial intelligence techniques (11–13). 

TABLE 4  Top 10 journals in number of papers published in the field of radiomics for stroke.

Source Documents Citations Total link strength IF (2023)

1 Frontiers in Neurology 26 110 96 2.7/Q2

2 Frontiers in Neuroscience 14 145 56 3.2/Q2

3 European Radiology 12 256 61 4.7/Q1

4 European Journal of Radiology 9 78 76 3.2/Q1

5 Diagnostics 8 153 36 3.0/Q1

6 Scientific Reports 6 55 21 3.8/Q1

7 Academic Radiology 6 50 19 3.8/Q1

8 Journal of Neurology 5 112 31 4.8/Q1

9 Neuroradiology 5 45 23 2.4/Q2

10 Journal of Neurointerventional Surgery 4 125 18 4.5/Q1
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Figure  1D visualizes the collaboration between authors, revealing 
dense cooperation within clusters and less pronounced collaboration 
between clusters. This indicates that research in this field is primarily 
explored independently by various research groups, and large-scale 
cross-cluster collaboration patterns have not yet emerged.

Additionally, Table 3 showcases the top 15 co-cited authors, with 
Lambin, P. (73), Saba, L. (61), Gillies, R. J. (59), and van Griethuysen, 
J. J. M. (58) leading the list. Figure 1E illustrates the visualization of 
co-cited authors, highlighting Lambin, P., Gillies, R. J., van 
Griethuysen, J. J. M., and others as larger and centrally located nodes. 
This suggests their pivotal role in the co-citation network, with broad 
co-citation relationships spanning multiple clusters, indicating that 
their research likely forms the theoretical foundation or key 
perspectives in the field. Lambin, P., a professor of radiation oncology 
at Maastricht University in the Netherlands, has an H-index of 128. 
He has received ERC advanced and twice ERC PoC grants in 2016, 
2017, and 2020, and is a pioneer in translational research focusing in 
tumor hypoxia, genetically modified bacteria for cancer treatment, and 
decision support systems. His core research areas include the 

development of radiomics methodologies (7, 14, 15), AI-driven 
prognostic models for tumors (16), and the discovery of biomarkers 
for radiotherapy response (17). Gillies, R. J., who passed away on June 
7, 2022, served as the chair of the Department of Cancer Physiology 
at the Moffitt Cancer Center and was a member of the AACR. He is 
remembered for his outstanding contributions to cancer research, with 
an H-index of 129. His work focused on cancer metabolism (18) and 
radiomics (6), and he  made groundbreaking contributions to 
interdisciplinary cancer research, particularly in integrating physiology 
and imaging. van Griethuysen, J. J. M., a scholar from Maastricht 
University in the Netherlands with an H-index of 13, specializes in the 
automated processing of medical images and the application of deep 
learning models (19). Notably, Lambin, P., Gillies, R. J., and van 
Griethuysen, J. J. M., have collectively contributed to the Image 
Biomarker Standardization Initiative (20). The relatively independent 
purple cluster centered around Saba, L. suggests that his research field 
may be more concentrated on a single theme, with co-citations focused 
within a narrower scope. Saba, L. is a professor of radiology at the 
University of Cagliari in Italy and the director of the radiology 

TABLE 5  Top 10 co-references in number of papers published in the field of radiomics for stroke.

Title Year Frequency Source/IF (2023) First author Article type References

1
Radiomics: images are more than pictures, 

they are data
2016 58 Radiology/12.1/Q1 Gillies, R. J. Special Report (6)

2
Computational radiomics system to 

decode the radiographic phenotype
2017 58 Cancer Research/12.5/Q1

van Griethuysen, 

J. J. M.

Methodology 

Paper
(19)

3
Radiomics: the bridge between medical 

imaging and personalized medicine
2017 37

Nature Reviews Clinical 

Oncology/81.1/Q1
Lambin, P. Review (7)

4

Radiomics: extracting more information 

from medical images using advanced 

feature analysis

2012 35
European Journal of 

Cancer/7.6/Q1
Lambin, P. Review (15)

5

Radiomics-Based intracranial thrombus 

features on ct and cta predict 

recanalization with intravenous alteplase 

in patients with acute ischemic stroke

2019 28
American Journal of 

Neuroradiology/3.1/Q2
Qiu, W.

Original 

Research
(38)

6
Radiomics in stroke neuroimaging: 

techniques, applications, and challenges
2021 23 Aging and Disease/7/Q1 Chen, Q. Review (3)

7

Clot-based radiomics predict a 

mechanical thrombectomy strategy for 

successful recanalization in acute ischemic 

stroke

2020 23 Stroke/7.8/Q1 Hofmeister, J.
Original 

Research
(45)

8

Identification of high-risk carotid plaque 

with MRI-based radiomics and machine 

learning

2021 23
European Radiology/4.7/

Q1
Zhang, R. Y.

Original 

Research
(46)

9

Guidelines for the early management of 

patients with acute ischemic stroke: 2019 

update to the 2018 guidelines for the early 

management of acute ischemic stroke: a 

guideline for healthcare professionals 

from the American Heart Association/

American Stroke Association

2019 22 Stroke/7.8/Q1 Powers, W. J.
Clinical Practice 

Guideline
(60)

10

Penumbra-based radiomics signature as 

prognostic biomarkers for thrombolysis of 

acute ischemic stroke patients: a 

multicenter cohort study

2020 20
Journal of Neurology/4.8/

Q1
Tang, T. Y.

Original 

Research
(41)
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department at the university hospital. He serves as an editorial board 
member for over 10 SCI journals, including the American Journal of 
Neuroradiology, and has an H-index of 78. His primary research areas 
include carotid plaque radiomics (21, 22), novel neurovascular 
imaging techniques (23), and AI-assisted diagnosis (24).

Table 4 describes the specific details of the journals that published 
the articles. In terms of the number of publications, Frontiers in Neurology 
(26) is the journal with the highest number of published studies, followed 
by Frontiers in Neuroscience (14) and European Radiology (12). Regarding 
the journal’s level, the JCR partitions of the top 10 journals publishing 

FIGURE 2

(A) Co-cited references analysis. (B) Sorted by strengths of burst. (C) Keyword co-occurrence analysis. (D) Keyword centrality analysis. (E) Sorted by 
beginning year of burst. (F) Timeline of keyword clustering analysis.
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TABLE 6  Top 26 high-frequency keywords and top 28 betweenness centrality keywords in the field of radiomics for stroke.

VOSviewer CiteSpace

Keyword Frequency Total co-
occurrence 

strength

Keyword Frequency Centrality Year

1 radiomics 127 568 1 angiography 6 0.59 2018

2 stroke 86 382 2 score 12 0.51 2020

3 machine learning 53 247 3 alteplase 2 0.45 2020

4 acute ischemic stroke 48 222 4 lesions 9 0.44 2021

5 computed tomography 45 235 5 early management 6 0.37 2020

6 risk 35 180 6 acute ischemic stroke 49 0.35 2018

7 ischemic stroke 34 150 7 health care professionals 10 0.35 2020

8 magnetic resonance imaging 26 124 8 guidelines 11 0.34 2020

9 deep learning 22 79 9 classification 16 0.29 2014

10 thrombectomy 21 95 10 prognosis 4 0.27 2019

11 nomogram 20 105 11 perfusion 4 0.24 2018

12 images 20 104 12 prediction 10 0.23 2019

13 prognosis 20 102 13
cardiovascular magnetic 

resonance
3 0.21 2017

14 outcomes 19 116 14 risk factors 2 0.21 2017

15 texture analysis 17 87 15 system 3 0.19 2019

16 association 17 86 16 diffusion 6 0.18 2022

17 classification 17 74 17 risk 34 0.17 2017

18 prediction 15 84 18 outcome prediction 18 0.17 2020

19 management 15 80 19 onset 2 0.16 2019

20 intracerebral hemorrhage 14 86 20 endarterectomy 8 0.12 2021

21 hematoma expansion 13 83 21 stenosis 6 0.12 2018

22 guideline 13 69 22 carotid plaques 4 0.12 2023

23 thrombolysis 12 67 23 recovery 4 0.12 2022

24 score 12 66 24
dual-energy computed 

tomography
3 0.12 2020

25 disease 12 61 25 thrombolysis 10 0.1 2019

26 atherosclerosis 12 59 26 attenuated inversion recovery 3 0.1 2021

27 small vessel disease 3 0.1 2019

28 hemorrhage 2 0.1 2024

research in this field are all no lower than Q2, indicating that the research 
in this area is sufficiently recognized by high-level journals. Figure 1F 
illustrates the visualization of the publishing journals. There are 36 
journals that have published 2 or more articles, and the figure shows the 
largest subset (7 clusters) of 35 journals with citation relationships. 
Although several journals with a higher number of publications are 
located in different clusters, they have close citation connections, 
indicating both mutual confirmation of viewpoints and differences in 
research foci among the studies published by various journals.

4.2 Hot spots and frontiers

This study employed VOSviewer and CiteSpace to analyze the 
co-citation of references and the co-occurrence of keywords, 

aiming to identify research trends and changes in hotspots within 
the field. Table 5 presents detailed information on the top 10 most 
co-cited references in this domain (co-citation of references refers 
to a situation where one reference is cited by two studies 
simultaneously, counted as one co-citation, indicating that the two 
studies share similar viewpoints or theoretical foundations). The 
most frequently co-cited reference is a special report published by 
Gillies et  al. (6) in Radiology in 2016. This study innovatively 
proposed a radiomics analysis framework based on the fusion of 
quantitative features from multimodal medical imaging and 
genomic data. It systematically validated the unique value of 
radiomics in characterizing tumor heterogeneity, predicting 
prognosis, and evaluating treatment response. This approach of 
transforming images into high-dimensional data provides 
clinicians with a novel research paradigm for pursuing precision 
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medicine. Notably, it offers valuable research recommendations 
for subsequent studies, including “curation of high-quality 
datasets,” “health informatics,” and “data sharing,” which are 
anticipated to emerge as potential research hotspots in future 
investigations. Due to its methodological significance, this study 
has become the most co-cited radiomics literature in the field of 
ischemic stroke research. Another notable reference is a 
methodology paper published by van Griethuysen et al. (19) in 
Cancer Research in 2017. This study has innovatively developed 
the open-source PyRadiomics platform, which standardizes the 
radiomic feature extraction workflow through image loading and 
preprocessing, multi-step feature screening, and comprehensive 
feature computation (including statistical and texture feature 
extraction, shape descriptor quantification, as well as 2D slice-
based and 3D volume-based feature calculations). The platform 
incorporates a multimodal imaging compatibility design, 
systematically addressing critical industry challenges such as 
algorithmic inconsistency and non-comparable results in 
radiomics analysis. It provides essential infrastructure for 
reproducible quantitative research in radiomics. Lambin’s et al. (7) 
review published in Nature Reviews Clinical Oncology in 2017 is 
also worth mentioning. Building upon previous studies by Gillies 
et al. (6) and van Griethuysen et al. (19) and others, this work 
systematically examines the limitations, challenges, and 
opportunities of radiomics in enhancing clinical decision support 
systems for personalized precision medicine, with particular 
emphasis on the methodological rigor in developing and 
validating radiomics predictive models (including standardized 
nomenclature, algorithmic variations, software implementation 
differences, and other methodological considerations). The 
authors innovatively propose a radiomics technical framework 
comprising 16 core components, termed the Radiomics Quality 
Score (RQS). Through systematic construction of a comprehensive 
technical pathway encompassing: (1) “Image feature extraction” 
(requiring clinicians to explicitly define data requirements; 
addressing data heterogeneity challenges via phantom studies, 
multi-timepoint imaging/test-retest reliability data, and multiple 

segmentation approaches). (2) “Model validation” [discriminative 
performance characterized by receiver operating characteristic 
(ROC) curves or area under the curve (AUC); calibration assessed 
through calibration plots and integrated calibration measures 
(calibration-in-the-large/slope); with emphasis on both internal 
and external validation]. (3) “Clinical translation” (establishing 
certified radiogenomics centers and conducting cost-comparative 
analyses of quality-adjusted life years with/without radiomics 
integration), this study achieves, for the first time, 
multidimensional correlation analysis between quantitative 
imaging features and tumor heterogeneity, treatment response, 
and genomic characteristics. It establishes a reproducible 
methodological paradigm for image-driven precision diagnostics 
and treatment. Notably, the authors demonstrate that radiomics 
analysis is not confined to radiotherapy applications but can 
be extended to any medical imaging data generated in clinical 
practice. Figure  2A illustrates the visualization of co-cited 
references in this field. Among the 6,394 co-cited references, 51 
(forming 4 clusters) have been co-cited at least 10 times. The 
proximity of multiple larger nodes belonging to different clusters 
indicates both distinct research foci and academic crossover 
among these co-cited references. Figure 2B shows the visualization 
of the emergence of co-cited references. A higher emergence 
intensity signifies a higher citation frequency of the reference 
within a specific time frame, and the year represents the period of 
surge in citation frequency. According to the figure, recent 
research hotspots have shifted from previous methodological 
studies to clinical application studies. This includes a multicenter 
cohort study published by Alaka et  al. (25) in Frontiers in 
Neurology in 2020, which, for the first time, confirmed the 
equivalent efficacy of machine learning models based on 
multimodal imaging parameters (such as multiphase CT 
angiography) and logistic regression in predicting functional 
prognosis after acute ischemic stroke. This provided crucial 
methodological evidence for constructing a precise prognosis 
evaluation system driven by radiomics in stroke. A study by 
Hilbert et  al. (26), published in Computers in Biology and 

TABLE 7  Top 10 keyword clusters.

Clusters Size Silhouette Keywords

#0 38 0.893 intracranial atherosclerosis; high-risk carotid plaque; radiomic approach; initial experience; high-risk plaque feature

#1 26 0.996
intracerebral hemorrhage; hematoma expansion; spontaneous intracerebral hemorrhage; hypertensive intraparenchymal 

hematoma; predicting hematoma expansion

#2 26 0.983
rat model; microvascular MRI; unsupervised clustering yield; 3D high-resolution magnetic resonance; high-risk intracranial 

plaque

#3 25 0.977 acute ischemic stroke; stroke management; clinical application; hyperacute stroke; relative radiomic pattern

#4 25 0.944 radiomics feature; penumbra-based radiomics signature; prognostic biomarker; multicenter cohort study; new chance

#5 22 0.887 ischemic stroke outcome prediction; whole brain; infarct lesion; ischaemic stroke lesion; texture analysis

#6 20 1 decoding plaque biology; noninvasive phenotyping; virtual transcriptomics; UK Biobank; fish consumption

#7 18 0.956
pyradiomics-derived morphological feature; aneurysm stability; machine learning model; techniques application; radiomics 

difference

#8 18 0.964
carotid in-stent restenosis; computed tomography angiography carotid; plaque-based radiomics; diagnostic tool; CT 

radiomics feature

#9 16 0.962
computerized lung cancer diagnosis; using multichannel ROI; automatic feature learning; deep structured algorithm; 

artificial intelligence integration
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Medicine in 2019, developed a data-efficient deep learning model 
based on CT angiography images that can directly predict 
functional recovery after endovascular treatment in patients with 
acute ischemic stroke. This offered a new paradigm for radiomics 
in stroke prognosis evaluation that does not rely on traditional 
biomarkers. Lastly, a review by Campbell and Khatri (1), published 
in Lancet in 2020, established an innovative application paradigm 
for CT/MRI radiomics in acute stroke treatment by defining the 
rescue time window of the penumbra and a treatment pathway 
based on the ASPECTS score (Alberta Stroke Program Early 
CT Score).

A 2022 retrospective study developed and validated a 
predictive model for hemorrhagic transformation (HT) risk based 
on radiomic features derived from non-contrast-enhanced CT 
scans of acute ischemic stroke patients (27). Through analysis of 
infarction zone characteristics in 118 AIS cases, five key radiomic 
features were selected to construct a Rad-score system. The model 
demonstrated AUC values of 0.845 and 0.750 in the training and 
validation cohorts, respectively, effectively evaluating HT risk 
across different treatment modalities (including intravenous 
thrombolysis and mechanical thrombectomy) and infarct 
volumes. These findings provide crucial reference for clinical 
decision-making. A 2024 retrospective study proposed a novel 
approach utilizing perfusion radiomic features to assess 
neurological impairment in AIS (28). Among the original 
perfusion parameters, significant differences were observed 
between patients with favorable versus poor neurological 
outcomes regarding cerebral blood flow and mean transit time in 
ischemic regions. Comparative experiments demonstrated that 
radiomic features from ischemic regions (achieving an AUC of 
0.923 with Random Forest modeling) significantly outperformed 
conventional perfusion parameters (AUC 0.868). Radiomic 
features from hypoxic zones showed inferior performance 
(AUC = 0.769), underperforming even their original parameters 
(AUC = 0.876). The combination of features or parameters from 
multiple regions failed to surpass the predictive value of single 
ischemic region features, showing only marginal improvement for 
infarct/hypoxic zones. These findings confirm that ischemic 
regions alone provide the most clinically relevant information, 
offering a more objective tool for neurological impairment 
assessment. A 2024 cohort study employed machine learning 
models to evaluate the predictive value of radiomic features from 
admission head CT scans—specifically intracerebral hemorrhage 
(ICH) and perihematomal edema (PHE)—for 3-month poor 
functional outcomes (modified Rankin Scale scores 4–6) (29). The 
results demonstrated that incorporating PHE features into ICH 
radiomics significantly improved individual-level risk assessment 
[with integrated discrimination improvement (IDI) and net 
reclassification improvement (NRI) showing p < 0.001], though 
the overall prognostic accuracy [area under the curve (AUC)] did 
not show significant enhancement (0.74 vs. 0.71, p = 0.157). The 
combined model integrating clinical variables with radiomic 
features (AUC = 0.85) significantly outperformed traditional ICH 
scoring systems, providing immediate and quantitative risk 
stratification evidence to guide interventions such as hematoma 
evacuation. A 2024 review summarized studies on post-stroke 
cognitive impairment (encompassing both ischemic and 
hemorrhagic stroke) utilizing lesion-symptom mapping 

techniques (30). This research localized key brain regions (e.g., 
angular gyrus and basal ganglia) associated with executive 
dysfunction and language deficits, supporting early intervention 
strategies. The review concurrently identified methodological 
challenges, including data heterogeneity (e.g., inconsistent 
definitions of post-stroke cognitive impairment) and limited 
generalizability of computational models due to small sample 
sizes. These issues necessitate multicenter data sharing and 
standardized feature extraction protocols for resolution.

In a retrospective study analyzing futile recanalization in 
patients with anterior circulation AIS subjected to endovascular 
thrombectomy (EVT), 2016 radiomic features were extracted 
from non-contrast computed tomography (NCCT) images. Nine 
optimal features were ultimately selected to construct a radiomic 
model (31). Admission National Institutes of Health Stroke Scale 
(NIHSS) score, hemorrhagic transformation, neutrophil-to-
lymphocyte ratio (NLR), and admission blood glucose were 
identified as independent predictive factors. The radiomic-clinical 
nomogram model demonstrated AUC values of 0.860 and 0.775 in 
the training and validation cohorts, respectively. This integrated 
model, combining radiomic and clinical features, outperformed 
standalone radiomic or clinical models, demonstrating its 
potential for early prediction of AIS patient outcomes and 
assisting clinicians in formulating personalized treatment 
strategies. Additionally, inflammatory markers and blood glucose 
levels were found to play significant roles in predicting futile 
recanalization. The study validated the feasibility of NCCT in 
prognostic assessment for stroke patients. Despite limitations such 
as its single-center design, the model exhibits promising clinical 
applicability. A multicenter study developed a clinical-radiomics 
model based on NCCT to predict HT risk following intravenous 
thrombolysis (IVT) in AIS patients using machine learning (32). 
The study enrolled 517 patients from seven hospitals. Through 
recursive feature elimination and extreme gradient boosting, 12 
profound radiomic features were selected for model construction, 
leading to the development of a clinical model, a radiomics model, 
and a combined clinical-radiomics model. The model 
demonstrated stable performance in multicenter validation, 
exhibiting strong generalizability and completing HT risk 
assessment for new patients within 1 min, highlighting its clinical 
utility. Results showed that the combined model achieved optimal 
performance in both internal and external validation cohorts, 
with AUC values of 0.950 and 0.942, respectively. These findings 
confirm that the model provides a reliable tool for assessing HT 
risk in stroke patients after IVT.

In a systematic review evaluating the utility of machine learning 
for predicting the time of symptom onset in ischemic stroke 
patients (33), 13 studies comprising a total of 55 models were 
included. The most frequently employed models were logistic 
regression, support vector machine (SVM), boosting, and random 
forest. Subgroup analysis demonstrated the highest predictive 
accuracy for symptom onset within 4.5 h, with logistic regression 
exhibiting optimal performance among the models. In a systematic 
review aimed at predicting HT following thrombolytic therapy in 
posterior circulation ischemic stroke (34), researchers analyzed 12 
global clinical studies encompassing 18,007 AIS patients subjected 
to thrombolysis, with a mean age range of 64–69 years. The extreme 
gradient boosting (XGBoost) and artificial neural network (ANN) 
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models demonstrated optimal performance, achieving area under 
the curve (AUC) values of 0.953 and 0.942 in internal validation, 
respectively, while the pooled AUC for external validation reached 
0.80. Core predictors of HT included age, blood glucose levels, 
NIHSS scores, systolic/diastolic blood pressure, and radiomic 
imaging features (e.g., vascular health indicators). Models 
integrating clinical data with radiomic characteristics significantly 
enhanced predictive accuracy, attaining peak sensitivity of 0.90 and 
specificity of 0.99. Study limitations primarily stemmed from 
methodological heterogeneity, particularly evident in inconsistent 
HT definitions, limited external validation (conducted in only 50% 
of studies), and divergent missing-data handling strategies (e.g., 
multiple imputation vs. case exclusion). Funnel plot analysis 
suggested potential publication bias, underscoring the need for 
improved model transparency and multicenter validation to ensure 
result reliability.

Keywords as a high-level summary of research content can 
help us identify current research foci and potential hotspots. 
Table 6 presents the keyword recognition of the retrieved literature 
by two software programs. In VOSviewer besides the search 
keywords “radiomics” and “stroke” used in this study other high-
frequency keywords include “machine learning” “acute ischemic 
stroke” “computed tomography” “risk” and “ischemic stroke.” 
Figure 2C illustrates the visualization of keyword co-occurrence 
in VOSviewer. Among 817 keywords there are 65 keywords (in 4 
clusters) with a co-occurrence frequency of at least 5 times 
resulting in a total of 940 connections and a total co-occurrence 
strength of 2,532. The total co-occurrence strength refers to the 
sum of the connection strengths between a keyword and all other 
keywords in the keyword co-occurrence network. Keywords with 
higher total connection strength typically indicate stronger 
co-occurrence relationships with more keywords suggesting they 
may occupy a central position in a research field. By 
comprehensively analyzing the VOSviewer keywords in Table 6 
and the clustering in Figure  2C we  found a close research 
relationship between “radiomics” and “acute ischemic stroke” 
“computed tomography.” Radiomics utilizes the clinical advantages 
of computed tomography (CT) such as fast imaging and safety 
profile along with its high-throughput feature extraction capability 
to address key challenges in ischemic stroke including early lesion 
detection and treatment outcome prediction (3, 27). There is also 
a strong research connection between “machine learning” and 
“ischemic stroke” “magnetic resonance imaging.” Machine 
learning significantly improves diagnostic and therapeutic 
accuracy in ischemic stroke MRI analysis through automatic 
lesion segmentation (using the U-Net architecture) and prognostic 
prediction models (utilizing the XGBoost algorithm) (35–37). 
Figure 2D displays the visualization of keyword nodes in CiteSpace 
showing 317 keyword nodes with 1,143 total connections. Nodes 
with labels have a betweenness centrality of no less than 0.1. 
Betweenness centrality is a metric in bibliometrics that measures 
a node’s bridging role in a citation network. Nodes with a 
betweenness centrality exceeding 0.1 are often considered key 
nodes connecting different research fields serving as bridges for 
interdisciplinary knowledge flow. Table 6 highlights nodes with 
high betweenness centrality such as “angiography” (0.59) (38, 39) 
“score” (0.51) (40) “alteplase” (0.45) (41) “lesions” (0.44) (42) and 
“early management” (0.37) (8, 43). These keywords may represent 

current or future interests in cross-disciplinary research. Figure 2E 
shows the visualization of keyword emergence in CiteSpace. 
Popular keywords before 2021 include “texture analysis” (3) 
“classification” (44) “selection” (45) “carotid artery” (46) and 
“natural history” (47). After 2022 popular keywords are 
“identification” (43) “therapy” (48) “computed tomography 
angiography” (49) and “atherosclerosis” (50). Table 7 details the 
top 10 keyword clusters all with Silhouette values of at least 0.88 
indicating high clustering accuracy. Figure 2F presents a timeline 
of keyword clusters revealing emerging keywords such as 
“prediction model” (51) “systematic review” (8) “veins” (52) “futile 
recanalization” (53) “carotid ultrasound” (54) “hemorrhage” (55) 
“carotid plaques” (56) “atrial fibrillation” (57) and “mechanical 
thrombectomy” (58).

4.3 Strategies to overcome translational 
barriers in clinical practice

Our study proposes potential solutions to address existing 
translational challenges in clinical applications. Regarding 
methodological heterogeneity, the following should be provided 
as Supplementary material: imaging acquisition protocols, scan 
data for analysis, volume of interest (VOI) segmentation results, 
detailed feature extraction procedures (including calculation 
formulas), and modeling methods (with open-source code 
recommended). Only through such meticulous disclosure can 
reproducibility and replicability be effectively validated. In terms 
of data preservation, we recommend exploring an interdisciplinary 
precision medicine consensus framework bridging research and 
clinical practice to establish a shared database applicable to real-
world health studies. Leveraging the “4V” characteristics of 
databases—“Volume” (data scale), “Variety” (data diversity), 
“Velocity” (data timeliness), and “Veracity” (data authenticity)—
new research approaches can be developed to mitigate current 
data-sharing barriers (7). Notably, the “CancerLinQ” initiative 
(59), proposed by the American Society of Clinical Oncology 
(ASCO), has advanced this objective through data centralization 
strategies. To address cultural and linguistic heterogeneity, 
semantically interoperable datasets should be  established as 
unified reference standards across institutional sites. This 
approach facilitates standardized data management while ensuring 
cross-institutional compatibility.

4.4 Future prospects

Future research must focus on addressing the following three 
critical directions: (1) Multicenter dynamic data integration: A 
decentralized validation platform based on federated learning 
(FL) should be  established, with dynamic image acquisition 
protocols developed in accordance with the American College of 
Radiology (ACR) Imaging Biomarker Certification Standards. By 
modeling the evolutionary patterns of dynamic features during 
treatment, the accuracy of image-guided interventional therapy 
can be significantly improved. (2) Clinically applicable explainable 
artificial intelligence: Attention heatmap tools incorporating 
gradient-weighted class activation mapping (Grad-CAM++) 
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should be  developed, integrating automated region-of-interest 
(ROI) segmentation and historical image comparison functions. 
Additionally, a multimodal decision tree combining the National 
Institutes of Health Stroke Scale (NIHSS) scores with coagulation 
parameters should be constructed to translate high-performance 
models [e.g., modified Alberta Stroke Program Early CT Score 
(ASPECTS), with an area under the curve (AUC) of 0.89] into 
reliable clinical tools for prognostic assessment and treatment 
planning. (3) Translational validation of dynamic systems: key 
efforts should include: (i) Acute phase (<6 h): prospective 
validation of thrombolysis/thrombectomy decision support 
systems in clinical trials (e.g., MR CLEAN study). (ii) Chronic 
phase (90 days): establishment of a dynamic monitoring system 
linking the modified Rankin Scale (mRS) with radiomics to 
enable 24-h risk-level updates. Ultimately, individualized 
treatment response assessment will advance the development of 
precision medicine.

5 Conclusion

Radiomics is transforming ischemic stroke research paradigms. 
This study maps the field’s evolution: from early feature extraction 
standardization, to mid-phase machine learning prognostic models, 
culminating in multimodal imaging-treatment system integration. 
While Chinese scholars lead in publication volume, limited 
international collaboration and clinical translation remain 
bottlenecks. CTA-based radiomics show clinical value in acute 
ischemic stroke vascular assessment but require validation for 
hemorrhagic stroke and long-term prognosis. Future priorities must 
focus on: (1) Multicenter integration: FL-based validation platforms 
with ACR-compliant dynamic protocols to enhance image-guided 
therapy accuracy. (2) Explainable AI: Grad-CAM++ tools with 
automated ROI segmentation combined with NIHSS/coagulation 
decision trees to operationalize models like modified ASPECTS 
(AUC = 0.89). (3) Translational validation: (i) prospective 
thrombolysis/thrombectomy validation (<6 h; e.g., MR CLEAN). (ii) 
mRS-radiomics linked chronic monitoring systems enabling 24-h 
risk updates. Only through integrated technological innovation can 
radiomics advance from scientific exploration to routine 
clinical implementation.

6 Limitations

The limitations of this study are as follows: (1) Regarding data 
sources, although the Web of Science (WoS) database is 
authoritative, its insufficient coverage of Asian regional journals 
may result in the underestimation of research contributions from 
non-English speaking countries outside China. (2) 
Methodologically, bibliometric tools such as VOSviewer have 
limited capabilities in disambiguating author/institution names, 
which may affect some collaboration network analyses due to data 
cleaning errors. (3) In terms of timeliness, key technological 
advancements published after December 2024, such as Transformer-
based image segmentation algorithms, were not included, 
potentially impacting the assessment of cutting-edge trends.
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