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Introduction: Although mini-open carpal tunnel release (Mini-OCTR) proves to 
be a standard solution for carpal tunnel syndrome (CTS), precise prediction of 
recovery remains challenging. The aim of this study was to explore the potential 
of using intraoperative change in distal motor latency (DML) to predict clinical 
outcomes.

Methods: A retrospective cohort analysis was performed on 52 primary CTS 
patients, who completed the questionnaires before Mini-OCTR, 1 day (1 day 
Post-op) and 6 months after Mini-OCTR (6 months Post-op). Latency recovery 
percent (LRP) was calculated to represent intraoperative change of DML after 
Mini-OCTR. Multivariate and simple logistic regression analyses were used to 
quantify the predictive value of LRP on postoperative outcomes.

Results: The results of patient-reported outcome measures (PROMs) 
demonstrated that Mini-OCTR was an effective procedure in treating CTS 
generally with some of the patients experiencing significant improvement in 
sensory function at 1 day Post-op. Multivariate logistic regression analysis 
which involves demographic information, CTS-related medical history, 
electrodiagnostic test results, PROMs and LRP revealed that the prognostic 
model has high AUC and accuracy, and LRP is a significant predictor among all 
the involved variables. Simple logistic regression analysis identified an optimal 
LRP cut-off value of 0.11 for predicting sensory recovery at 1 day Post-op with 
high accuracy.

Conclusion: This study introduces LRP as a practical biomarker that enables 
surgeons to predict immediate postoperative sensory improvement in Mini-
OCTR patients, which can assist surgeons in setting short-term expectations 
and tailoring postoperative care for the patients.
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Introduction

Carpal Tunnel Syndrome (CTS) is the most common nerve 
entrapment disorder to be diagnosed and treated globally, which is 
characterized by structural abnormalities at the compression site and 
impaired nerve conduction across the carpal tunnel (1, 2). The 
symptoms of CTS include tingling, numbness or pain at the 
distribution area of the median nerve in the hand with weakness of 
the thumb (3). Several risk factors contribute to its development, 
including genetics, metabolic disorders (such as diabetes, obesity), 
rheumatoid arthritis, acromegaly, hypothyroidism and hormonal 
fluctuations during pregnancy (4–8). The pathology of CTS is 
complicated (9), making it more difficult to predict the outcome (10–
12). In detail, mild CTS is characterized by ischemia or a transient 
depolarization block which results in decreased conductivity of nerves 
(13, 14). Severe or prolonged compression will lead to focal complete 
demyelination in some nerve fibers and Wallerian degeneration with 
axonal loss in others, and a regenerative response in some neurons 
and related Schwann cells can also be observed at the same time (15, 
16). Furthermore, pathological accumulation of amyloid fibrils in the 
carpal tunnel, often causing bilateral CTS, serves as an early sentinel 
sign of systemic amyloidosis (17, 18), and may precede the onset of 
cardiac amyloidosis by 5–10 years (19).

The current clinical approach to diagnosing CTS relies on a 
detailed medical history, physical examination, imaging techniques 
and electrodiagnostic (EDX) test (20, 21). Among these, nerve 
conduction studies (NCS) and electromyography (EMG) are crucial 
for diagnosing and grading CTS severity (20). These studies provide 
objective assessments of nerve function, with prolonged distal motor 
latency (DML) serving as a key indicator of nerve conduction damage 
(21). Based on the unique pathology of CTS, median nerve can exhibit 
immediate and long-term functional or structural changes after mini-
open carpal tunnel release (Mini-OCTR), an effective and 
standardized procedure that can remove entrapment of median nerve 
achieve favorable outcomes in most cases (22–25). Although the time 
course of DML change has been reported (26–28), intraoperative 
(Intra-op) change in DML have been seldom researched, and their 

clinical value remains uncertain due to a lack of robust evidence 
linking these changes to postoperative (Post-op) outcomes (29, 30).

To clarify the clinical value of Intra-op changes in DML, 
we calculated latency recovery percent (LRP) based on preoperative 
(Pre-op) and Intra-op DML, and explore the prognostic value of LRP 
for predicting outcomes after Mini-OCTR. We hypothesized that a 
greater LRP would be  associated with better outcomes and faster 
recovery after Mini-OCTR.

Materials and methods

Patient selection

This study included patients who received Mini-OCTR by our 
treatment group at the Hand Surgery Department of our hospital from 
February 2022 to May 2024. The diagnosis of CTS was made clinically 
and confirmed with nerve conduction studies. Patients met 
electrodiagnostic criteria for the diagnosis of CTS if DML across the 
carpal tunnel was over 4.5 msec. Exclusion criteria included a history 
of traumatic nerve injury, revision Mini-OCTR, coexisting 
neurological conditions (such as cubital tunnel syndrome or cervical 
spondylosis) and lack of Pre-op EMG and NCS reports from our 
hospital. CTS-related medical histories were documented for all 
participants. Histories of hypertension and diabetes were also 
recorded to investigate their potential impact on CTS prognosis.

All patients underwent Mini-OCTR surgery under local 
anesthesia performed by the same surgeon at our hospital (Figure 1a). 
A tourniquet will be applied on the upper arm during the surgery. The 
technicians from the EMG department in our hospital performed the 
Pre-op and Intra-op EDX tests with standard operating procedure. A 
needle electrode was used over the abductor pollicis brevis muscle for 
recording, and the location of the stimulating electrode is at the 
proximal end of the wrist crease (Figure  1b). Intra-op electrical 
stimulation and electrophysiological test were conducted 5 min after 
Mini-OCTR and tourniquet release. The measurements were repeated 
at least five times until stable results were obtained. After Mini-OCTR, 

FIGURE 1

Representative photographs of mini-open carpal tunnel release and intraoperative electrophysiology test. (a) Intraoperative photographs after mini-
Open carpal tunnel release. (b) Procedures of intraoperative electrophysiology test.
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all the patients received standard care, including a 14-day cast 
immobilization, routine dressing changes and standardized hand 
rehabilitation involving nerve and tendon gliding exercises. They were 
prescribed oral methylcobalamin, vitamin B1, and vitamin B6 as 
neurotrophic agents, but no analgesics. Follow-up visits occurred 
14 days postoperatively to monitor progress and remove sutures.

Study design and outcomes

All the patients were asked to complete questionnaires before, 
1 day after and 6 months after Mini-OCTR. The online questionnaires 
include Boston Carpal Tunnel Questionnaire (BCTQ) and Visual 
Analogue Scale (VAS). The BCTQ, consistent with previous studies, 
consists of two domains: Symptom Severity Scale (BCTQ-SSS) and 
Function Status Scale (BCTQ-FSS), comprising 11 and 8 items, 
respectively (31). Scores range from 1 to 5 (1 = no complaints, 
5 = maximum complaints possible). VAS was used to measure pain 
from the distribution area of the median nerve in the hand (VAS-Pain) 
and hand function (VAS-Function) on a scale of 0 to 100 (0 = extreme 
pain/disability, 100 = no pain/disability), as well as patient satisfaction 
(VAS-satisfaction). Patients were categorized as satisfied or unsatisfied 
group using different criteria: (1) VAS score ≥ 60 vs. < 60; (2) BCTQ 
scores meeting the minimal clinically important difference (MCID), 
defined as > 0.8 for BCTQ-SSS, > 0.5 for BCTQ-FSS, or > 0.74 for 
BCTQ-total (32), as reported in the previous studies.

Demographic information, including age, gender, BMI, 
durations of diabetes and hypertension was recorded as potential 
predictors. CTS-related medical history including duration of CTS, 
smoking, occupation, dominate side of hand and thenar atrophy 
were also recorded. Several Pre-op EDX results were involved as 
well, including (1) EMG studies results including fibrillation 
potential, positive sharp wave, and recruitment phase of abductor 
pollicis brevis muscle; (2) DML of the median nerve to the 
abductor pollicis brevis muscle.

Statistical analysis

Demographic information and CTS-related variables were 
described using frequencies (%) or means ± standard deviation. The 
results from PROMs were first tested for normal distribution with 
Kolmogorov–Smirnov test. Since the scores did not distribute 
normally, we  subsequently conducted Friedman test followed by 
multiple comparisons (VAS-Pain, VAS-Function) or Wilcoxon 
matched-pairs signed rank test (BCTQ-SSS, BCTQ-FSS, BCTQ-Total).

Afterwards, we defined LRP to quantitatively the change between 
Pre-op and Intra-op DML. LRP was calculated as follows:

 LRP = 
− −

−

−DML DML
DML

Pre op Intra op

Pre op

To explore the correlation between LRP and patient short-term 
(VAS-Pain-Post-op  1d and VAS-Function-Post-op  1d), long-term 
outcomes (VAS-Pain-6 months, VAS-Function-6 months, BCTQ-
SSS-6 months, BCTQ-FSS-6 months, BCTQ-Total-6 months) and 
satisfaction (VAS-Satisfaction), we divided the patients into satisfied 
and unsatisfied groups according to these 8 scores and compared LRP 

between these two groups. The distribution of LRP in each group will 
first be tested for normality. Then either unpaired t-test or Mann–
Whitney U test will be  conducted based on the results of the 
normality test.

Categorical variables were converted into numerical variables in the 
logistic regression model (details shown in Supplementary Table S1). 
Firstly, multivariable logistic regression and Pearson correlation analysis 
were used to find the independent predictors of the outcomes after Mini-
OCTR. Then, simple logistic regression was performed to determine the 
best cut-off value of LRP for prediction, which is identified by locating 
the point on the ROC curve where the trade-off between the true positive 
rate and the false positive rate is most favorable.

Sankey diagrams were generated using Origin 2022. Unpaired 
t-tests and plots were created using GraphPad Prism 9, while 
multivariable logistic regression, simple logistic regression, Pearson 
correlation analysis and ROC curves were conducted and plotted 
using Python scripts.

Results

Study cohort

A total of 136 patients underwent Mini-OCTR by our group. 
Among these, 29 cases were excluded due to a history of wrist trauma 
resulting in nerve damage, coexisting conditions affecting hand 
function (such as cubital tunnel syndrome or cervical spondylosis) or 
undergoing a revision Mini-OCTR at our hospital. Twenty three 
patients were excluded for lack of Pre-op EDX reports within 2 weeks 
before Mini-OCTR from the EMG department in our hospital. After 
applying eligibility criteria, 84 cases were included in the study. 
Among these cases, 52 patients had filled in all the questionnaires at 
Pre-op, 1 day Post-op and 6 months Post-op (Figure 2). And all the 
baseline characteristics of these 52 patients are presented in Table 1.

FIGURE 2

Study flowchart showing excluded patients. CTS, carpal tunnel 
syndrome. Mini-OCTR, mini-open carpal tunnel release. LRP, latency 
recovery percent.
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TABLE 2 Patient-reported outcome measurements.

Variable Patients (n = 52)

VAS score

VAS-pain (Pre-op) 20(50)

VAS-pain (1 day Post-op) 60(40)

VAS-pain (6 months Post-op) 90(30)

VAS-function (Pre-op) 50(60)

VAS-function (1 day Post-op) 60(31.25)

VAS-function (6 months Post-op) 90(20)

VAS-satisfaction (6 months Post-op) 100(20)

BCTQ-SSS

BCTQ-SSS (Pre-op) 2.91(1.5)

BCTQ-SSS (6 months Post-op) 1.18(0.48)

BCTQ-FSS

BCTQ-FSS (Pre-op) 1.94(1.5)

BCTQ-FSS (6 months Post-op) 1.13(0.25)

BCTQ-total

BCTQ-Total (Pre-op) 2.54(1.37)

BCTQ-Total (6 months Post-op) 1.21(0.36)

Data are given as the median (IQR). IQR, Inter Quartile Range.

Surgical outcome

Table 2 shows the median (interquartile range) of all primary and 
secondary outcomes for the 52 patients who completed all the 
follow-up questionnaires. The distribution of each score were 
illustrated in the Sankey diagrams (Figure  3), which showed the 
dynamic changes in these outcomes from Pre-op through 1 day 
Post-op to 6 months Post-op.

As for the BCTQ questionnaire scores, 49 out of 52 patients 
showed improvement in the total BCTQ score, with a median 
improvement of 2.22 points. Forty seven patients showed improvement 
in the BCTQ-SSS, with a median improvement of 1.73 points, and 33 
patients showed improvement in the BCTQ-FSS, with a median 
improvement of 0.38 points. Improvements in the BCTQ-SSS 

(p < 0.0001), BCTQ-FSS (p < 0.0001), and BCTQ-Total (p < 0.0001) 
were statistically significant.

As for VAS-Pain and VAS-Function scores, 41 patients reported 
significant Pre-op tingling and pain (VAS-Pain-Pre-op<60), with 
61.0% of these patients (25/41) experiencing noticeable improvement 
by 1 day Post-op (VAS-Pain-Post-op 1d ≥ 60). Overall, the median 
improvement in VAS-Pain-Post-op 1d was 30 points with statistical 
significance (adjusted p = 0.0012). 82.7% (43/52) patients reported 
improvement in hand tingling and pain 6 months Post-op, with a 
median improvement of 50 points with statistical significance 
(adjusted p < 0.0001). Regarding hand function, 9 patients reported 
decreased hand function at 1 day Post-op, but 2 of these reported 
improved function 6 months Post-op. Overall, 86.5% (45/52) patients 
reported improved hand function 6 months Post-op, with a median 
improvement of 45 points with statistical significance (adjusted 
p < 0.0001).

Multivariable and simple logistic regression 
of LRP predicting surgery outcomes

As shown in Table  3, LRP differed significantly between the 
satisfied and unsatisfied groups only when classified by VAS-Pain-
Post-op 1d (p = 0.0028). These results suggest that LRP is significantly 
associated with hand sensory recovery at 1 day Post-op, consistent 
with our clinical experience that greater LRP indicates better sensory 
recovery (Figure 4a).

Afterwards, we included demographic information, Pre-op BCTQ 
and VAS scores, CTS-related variables, Pre-op EDX results and LRP 
in a multivariate logistic regression analysis. Figure 4b showed the 
values of Pearson Correlation Coefficient (PCC) between each 

TABLE 1 Patient characteristics.

Variable Patients (n = 52)

Age (year) 56.42(12.21)

Gender (%)

 Male 13(25%)

 Female 39(75%)

Hand dominance (%)

 Left 3(6%)

 Right 49(94%)

Affected side (%)

 Left 14 (29%)

 Right 37(71%)

Hypertension (%)

 No 40(77%)

 Yes 12(23%)

Diabetes mellitus (%)

 No 47(90%)

 Yes 5(10%)

Smoking (%)

 Non-smoker 48(92%)

 Former smoker 2(4%)

 Current smoker 2(4%)

 Duration of symptoms (mo) 14(23)

 Body mass index 25.35(4.93)

Occupational intensity (%)

 Not employed 34(65%)

 Light 6(12%)

 Moderate 8(15%)

 Severe 4(8%)

Thenar muscle atrophy (%)

 Yes 23(44%)

 No 29(56%)

Data are given as the median (IQR) for continuous variables and as the frequency 
(percentage) for categorical variables. IQR, Inter Quartile Range.
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predictor. Due to significant collinearity between BCTQ-SSS, BCTQ-
FSS, BCTQ-Total and ipsi-F, ipsi-PS, we removed BCTQ-Total and 
ipsi-PS from subsequent analyses, where most absolute PCC values 
did not exceed 0.5, indicating no collinearity issues. ROC curve 
illustrated that this prognostic model has good discriminative ability 
with AUC = 0.94 (Figure  4c), Accuracy = 0.86, Precision = 0.87, 
Recall = 0.90, and F1 Score = 0.89. Among all the potential predictors 
involved in the multivariable logistic regression, LRP is the most 
significant independent predictor for sensory improvement at 1 day 
Post-op (p = 0.012, Odds Ratio = 37.922, β = 3.636 ± 1.453). (More 
details shown in Table  4) Subsequently, simple logistic regression 
analysis indicated that the optimal cut-off value of LRP for the 
prediction of sensory improvement at 1 day Post-op is 0.11, with an 
AUC = 0.74 (Figure  4d), Accuracy = 0.75, Precision = 0.76, 
Recall = 0.84, and F1 Score = 0.80. These results indicated that LRP 
can serve as a significant predictor for sensory improvement at 1 day 
Post-op with good predictive accuracy.

Discussion

Current clinical evidence suggests that sensory function typically 
improves earlier than motor function, with some severe CTS cases 
requiring up to 6 months for motor recovery postoperatively (33). In 
our clinical practice, we  observed that some patients experienced 
obvious relief from numbness or pain 1 day after Mini-OCTR, 
whereas others did not show immediate improvement. This variability 
in recovery may confuse patients and affect their satisfaction with the 
surgery. We noted that this immediate improvement might correlate 

with LRP. Despite the fact that Intra-op electrophysiology technique 
during CTR has been reported for decades (29, 30). LRP is still a 
parameter seldom mentioned in the literature with its clinical value 
remaining to be explained. Thus, we conducted a follow-up study of 
CTS cases for 6 months and found a correlation between LRP and 
sensory improvement at 1 day Post-op. We emphasized the importance 
of the immediate improvement in sensory function after surgery, 
because it can notably improve the patient’s life quality, which has been 
confirmed in previous studies (34, 35). In our clinical practice, most 
patients are satisfied with the surgical outcome because of good sleep 
quality at night without hand discomfort at 1 day Post-op. Conversely, 
if the surgery does not resolve their sleep issues, which can be their 
primary concern, they may perceive the procedure as ineffective, 
leading to their dissatisfaction with the Post-op outcomes.

Our study demonstrated that LRP is an independent predictor 
of sensory improvement at 1 day Post-op, which shed light on the 
real-time, Intra-op utility of EDX tests for outcome prediction after 
Mini-OCTR. Critically, an LR p value below 0.11 serves as an 
objective Intra-op warning sign of a high likelihood of suboptimal 
sensory recovery within the first 24 h after surgery. This immediate 
predictive capability offers substantial clinical utility 
beyond prognostication.

Firstly, the availability of LRP offers a potential opportunity for 
Intra-op reassessment. A low LRP value (< 0.11), particularly 
encountered in cases of severe or chronic CTS, might prompt the 
surgeon to re-evaluate the completeness of the median nerve 
decompression under the mini-open incision. This could involve 
meticulous inspection for any residual constriction at the distal edge 
of the transected transverse carpal ligament, ensuring maximal 

FIGURE 3

Changes in VAS and BCTQ scores after Mini-OCTR depicted by Sankey diagrams (n = 52). (a,b) The changes of VAS-Pain and VAS-function scores 
before (Pre-op, left), 1 day (middle) and 6 months (right) after Mini-OCTR. (c–e) The changes of BCTQ-SSS, BCTQ-FSS, BCTQ-Total scores before (Pre-
op, left) and 6 months (right) after Mini-OCTR. VAS, visual analogue scale. BCTQ, boston carpal tunnel questionnaire.
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FIGURE 4

Results of multivariate and simple logistic regression. (a) Unpaired t test of LRP in unsatisfied and satisfied group divided by VAS-Pain 1 day Post-op. (b) 
Pearson correlation analysis of all potential predictors used in the multivariate logistic regression. (c) ROC curve of multivariate logistic regression of all 
the potential predictors for VAS-Pain 1 day Post-op. (d) ROC curve of simple logistic regression and optimal cut-off value of LRP for the prediction of 
VAS-Pain 1 day Post-op. ROC curve, receiver operating characteristic curve. *p < 0.05, unpaired t test. Data are presented as mean ± s.e.m.

nerve decompression. Furthermore, this finding raises important 
questions for surgical technique refinement. In response to low LRP 
values, we have modified our technique to attempt a more thorough 
decompression, sometimes utilizing a longer incision than the 

standard mini-open approach. Most importantly, LRP enables 
surgeons to set precise expectations: patients with LR P < 0.11 can 
be  proactively counseled that while decompression is complete, 
significant sensory relief may evolve gradually over days or weeks, 

TABLE 3 Comparison and statistical significance of LRP grouped by different standard.

Classification criteria Unsatisfied group Satisfied group P-value

VAS-Pain (Pre-op)* 0.13(0.18), n = 41 0.19(0.17), n = 11 0.3895

VAS-Pain (1 day Post-op)# 0.10(0.13), n = 20 0.18(0.16), n = 32 0.0306*

VAS-Pain (6 months Post-op)* 0.18(0.14), n = 10 0.13(0.18), n = 42 0.5465

VAS-Function (Pre-op)* 0.13(0.19), n = 34 0.13(0.14), n = 18 0.6437

VAS-Function (1 day Post-op)* 0.12(0.19), n = 20 0.14(0.16), n = 32 0.5473

VAS-Function (6 months Post-op)* 0.19(0.08), n = 7 0.13(0.19), n = 45 0.6914

VAS-Satisfaction (6 months Post-op)* 0.08(0.10), n = 4 0.14(0.17), n = 48 0.3577

BCTQ-SSS (6 months Post-op)* 0.18(0.17), n = 12 0.13(0.18), n = 40 0.7529

BCTQ-FSS (6 months Post-op)* 0.13(0.21), n = 28 0.13(0.18), n = 24 0.9022

BCTQ-Total (6 months Post-op)# 0.12(0.21), n = 18 0.14(0.17), n = 34 0.7284

*Data are given as the median (IQR) and compared by Mann–Whitney U test. #Data are given as the mean (SD) and compared by unpaired t-test.
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mitigating anxiety and preventing dissatisfaction from unmet 
immediate hopes. Furthermore, identifying these patients allows for 
optimized Post-op care, such as scheduling early proactive follow-up 
to reinforce recovery timelines and manage concerns, ensuring 
targeted support reaches those at higher risk for early disappointment.

Thus, LRP transforms an Intra-op measurement into a tool for 
enhancing patient-centered care. By enabling real-time identification 
of patients prone to delayed sensory recovery, LRP facilitates critical 
actions: potential Intra-op checks, personalized expectation 
management, and tailored early support. This directly addresses a 
key driver of early Post-op concern—immediate symptom relief—
significantly improving the initial patient experience and satisfaction.

Several machine learning or deep learning models on ultrasound 
images or EDX test have been developed for CTS diagnosis and severity 
classification so far (36–40). And prognosis models for CTS outcomes 
have also been previously reported, focusing primarily on BCTQ-SSS 
scores or VAS scores, which have achieved predictions comparable to 
those made by professional hand surgeons (10–12, 41–43). Furthermore, 
increasing studies have created models combined clinical data with 
histological and imaging results (44–47). These multi-classifier systems 
integrated by clinico-histology-genomic analysis makes clinical 
predictions more accurate and effective. Although such models often 
focus on the diagnosis and prognosis of diseases like cancer, this is also 
a direction for the development of CTS prognosis models. Given the 
current tendency that the importance of EDX tests is gradually being 
complemented by imaging studies (48), such model can become a 
comprehensive tool for clinical diagnosis and prognosis prediction.

While our analysis focused on demographic and electrodiagnostic 
predictors, it is important to acknowledge other perioperative 
variables that may contribute to early sensory outcomes. For instance, 

Post-op analgesic regimens such as gabapentinoids have been shown 
to significantly improve nocturnal symptom severity and sleep 
quality in patients with residual symptoms after CTR, though they 
do not affect functional status or daytime numbness (49). Similarly, 
adherence to Post-op immobilization (50) and specialized physical 
therapy (51) are other factors that may affect early axonal 
microenvironment recovery. Regarding surgical techniques, recent 
research has confirmed that the wide awake local anesthesia no 
tourniquet (WALANT) technique and local anesthetic with a 
tourniquet (LA-T) yield similar results in Post-op pain, suggesting 
that tourniquet time may not be a key determinant of pain (52). 
However, in the context of nerve function itself, tourniquet time can 
have a very significant impact due to ischemia, despite the similarity 
in Post-op pain outcomes. As these factors were standardized as part 
of our protocol, they were not specifically analyzed. We propose that 
future studies can systematically document surgical technical details, 
analgesic use patterns, and rehabilitation compliance. This would 
better contextualize LRP’s predictive role.

The most important limitation in our study was the small sample 
size. Next, our follow-up only captured the sensory improvement at 
1 day and 6 months Post-op, limiting our exploration of the relationship 
between LRP and the time course of hand sensory and function 
recovery. Our results indicated no obvious correlation between LRP and 
recovery at the final follow-up point (6 months). Nevertheless, based on 
our 52-case cohort, sensory recovery at 1 day Post-op did not regress 
over the subsequent 6 months, suggesting that patients with high LRP 
might experience faster sensory recovery, but the difference of function 
recovery may diminish when the final follow-up time points is 
6 months. Despite that short-term change in DML after CTR have been 
confirmed unconcerned with the long term outcomes in some studies 

TABLE 4 Predicting sensory recovery at 1 day Post-op.

Predictors β SD Odds ratio Z-value P-value

Age (yr) 0.815 0.876 2.258 0.929 0.353

Smoking (package/d) 2.851 1.309 17.306 2.178 0.029

Duration of hypertension (yr) −0.661 0.863 0.517 −0.765 0.444

Duration of diabetes (yr) 0.090 0.763 1.094 0.117 0.907

Hand dominance 1.290 0.853 3.634 1.513 0.130

Occupational intensity −1.343 0.837 0.261 −1.605 0.108

Thenar muscle atrophy 0.868 0.922 2.381 0.941 0.347

VAS-pain (Pre-op) −0.698 0.682 0.498 −1.024 0.306

VAS-function (Pre-op) 0.046 0.785 1.047 0.059 0.953

BCTQ-SSS (Pre-op) −3.275 1.617 0.038 −2.026 0.043

BCTQ-FSS (Pre-op) 0.455 1.189 1.576 0.382 0.702

Gender 3.034 1.462 20.786 2.076 0.038

Affected Side 0.835 0.687 2.304 1.215 0.224

Duration of symptoms (mo) 0.260 0.428 1.297 0.607 0.544

BMI 2.484 1.267 11.988 1.960 0.050

LRP 3.636 1.453 37.922 2.502 0.012*

DML (ms) −0.423 0.905 0.655 −0.468 0.640

Fibrillation potential −2.109 1.332 0.121 −1.583 0.113

Recruitment phase 2.007 1.092 7.438 1.838 0.066

The p value of LRP was marked with * to emphasize that it is an independent predictor.

https://doi.org/10.3389/fneur.2025.1607199
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Zhou et al. 10.3389/fneur.2025.1607199

Frontiers in Neurology 08 frontiersin.org

(26), we believe the predictive value of LRP for long-term milestones 
such as earlier return to work or daily functional independence can 
be discovered with more follow-up time points and a larger cohort.
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