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Prosper Meniere made his immortal contribution to the field of otology in 1861. 
At that time, all manner of “fits” were lumped together under the diagnosis of 
“apoplectiform cerebral congestion”—too much blood in the brain. His genius 
was to identify a specific subset of this heterogeneous pool whose cardinal 
symptoms, tinnitus, fluctuating progressive deafness, and episodic vertigo, were 
due to dysfunction of the inner ear. Seventy-seven years later, in 1938, Hallpike and 
Cairns in England and Yamakawa in Japan identified cochleosaccular endolymphatic 
hydrops (EH) as the histopathologic correlate of Meniere’s disease (MD). Over the 
85 years since then, many theories to explain the symptoms of MD have come 
and gone. A consensus has slowly emerged that patients with this condition have 
a failure of inner ear homeostasis. The cause(s) of this homeostatic failure and the 
mechanism(s) by which this failure leads to fluctuating progressive sensorineural 
hearing loss and episodic vertigo has remained elusive. In the last few years, new 
techniques and findings in temporal bone histopathology and in vivo temporal 
bone imaging have yielded breakthroughs in this field. We are now recapitulating 
Meniere’s approach by taking the heterogeneous population of patients with MD 
and segregating them into specific subtypes based upon clinical phenotype. Salient 
clinical features include vestibular aqueduct and endolymphatic sac morphology, 
age at symptom onset, sex, and incidence of bilateral involvement. Furthermore, 
new imaging modalities enable unequivocal diagnosis of EH, transitioning MD 
from a “clinical” diagnosis to one based upon specific objective criteria. These 
breakthroughs have opened the door to genetic analyses, consideration of comorbid 
clinical disorders, especially migraine, and potential new treatments, and demand 
that we revisit all the various treatments that have been considered previously. 
They also demand new and more stringent criteria for any publication about this 
condition. In this paper we will review these new findings, discuss their immediate 
implications for clinical practice, and consider some of the most pressing research 
questions for near- and long-term address.

KEYWORDS

Meniere’s disease, endolymphatic hydrops, endolymphatic sac dysfunction, 
endotypes, inner ear homeostasis, radiologic biomarkers

OPEN ACCESS

EDITED BY

Sebastiaan Hammer,  
Haga Hospital, Netherlands

REVIEWED BY

Tsutomu Nakashima,  
Nagoya University, Japan
Tjasse Bruintjes,  
Gelre Hospitals, Netherlands

*CORRESPONDENCE

Divya A. Chari  
 divya_chari@meei.harvard.edu

RECEIVED 07 April 2025
ACCEPTED 01 May 2025
PUBLISHED 16 May 2025

CITATION

Chari DA, Bose A, Ramirez K,  Robles-Bolivar P, 
Lin K-Y, Juliano AF, Rauch SD and 
Eckhard AH (2025) A modern conceptual 
framework for study and treatment of 
Meniere’s disease.
Front. Neurol. 16:1607435.
doi: 10.3389/fneur.2025.1607435

COPYRIGHT

© 2025 Chari, Bose, Ramirez, Robles-Bolivar, 
Lin, Juliano, Rauch and Eckhard. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Review
PUBLISHED 16 May 2025
DOI 10.3389/fneur.2025.1607435

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2025.1607435&domain=pdf&date_stamp=2025-05-16
https://www.frontiersin.org/articles/10.3389/fneur.2025.1607435/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1607435/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1607435/full
mailto:divya_chari@meei.harvard.edu
https://doi.org/10.3389/fneur.2025.1607435
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2025.1607435


Chari et al. 10.3389/fneur.2025.1607435

Frontiers in Neurology 02 frontiersin.org

1 Meniere’s legacy: from stroke to 
inner ear pathology

Early references of vertigo are found in ancient Greek texts (1, 2). 
For centuries, vertigo was considered a cerebral symptom, akin to 
epileptic seizures and strokes, and fell under the broad and vague 
classification of “apoplectiform cerebral congestion.” This 
now-obsolete condition was managed with various bloodletting 
treatments, including leech therapy (3). In 1861, Prosper Meniere 
presented to the French Academy of Medicine, proposing that vertigo 
could originate from pathology in the inner ear rather than the brain 
(1). This radical idea, though initially met with skepticism, would 
become the cornerstone of Meniere’s legacy, laying the foundation for 
the idea that a group of patients can be segregated based on shared 
symptoms and a common underlying etiology.

Meniere’s legacy illustrates the power of reclassifying complex, 
heterogenous conditions into specific subgroups. We  are now at 
another inflection point in the understanding of Meniere’s disease 
(MD), tasked with redefining patient classification in light of new 
insights into the underlying etiology(ies) of this condition. For the 
past 164 years, MD has been defined as a clinical syndrome, 
characterized by fluctuating and progressive sensorineural hearing 
loss, episodic vertigo, and aural fullness. The purpose of this 
manuscript is to revisit our evolving understanding of MD and chart 
the transition from a purely clinical diagnosis to one grounded in 
objective diagnostic criteria. This paper is not intended to be  an 
exhaustive review of the MD literature, as has previously been 
published (4–6). Rather, it presents a concise synthesis of the authors’ 
recent findings placed within the context of the most relevant and 
influential prior work. We  explore recent breakthroughs in 
histopathology, imaging, and genetic research that allow us to further 
stratify this heterogenous patient population into distinct subtypes. 
These developments mark a paradigm shift – rather than grouping all 
MD patients under one diagnostic umbrella, we now have the tools to 
segregate patients, an approach reminiscent of Meniere’s original 
pioneering work. This paper will examine these advances, their 
implications for clinical management, and the opportunities they 
present for improving diagnostic accuracy and therapeutic outcomes 
in this complex disorder.

2 The paradox: chasing a single cause 
in a multifaceted syndrome

MD has long been recognized as a clinically heterogenous 
disorder, with highly variable patterns of symptom onset, severity, 
duration, and progression (7). Some patients initially present with 
predominantly auditory symptoms, such as hearing loss or tinnitus, 
while others exhibit vestibular symptoms, including vertigo or 
imbalance. In many cases, one symptom domain may precede the 
other by years (8–10). For these reasons, establishing a clinical 
diagnosis remains challenging and is often made by exclusion, guided 
by international consensus criteria (11). In 1938, a parallel discovery 
of endolymphatic hydrops—distention of the endolymphatic space 
within the scala media—was made by Hallpike and Cairns in the 
United Kingdom and Yamakawa in Japan (12, 13). This observation 
quickly became the histopathologic hallmark of MD and was long 
regarded as the central pathophysiologic mechanism of definitive MD 

(14, 15). However, over time, doubts have emerged as to whether 
endolymphatic hydrops represents the primary driver of the disease 
or a secondary, epiphenomenal, process (16–18).

Efforts to categorize MD patients into distinct subtypes based on 
shared symptoms and/or etiology are not new. Early attempts focused 
on clinical presentations, such as “cochlear MD,” characterized by 
predominantly auditory symptoms of hearing loss and tinnitus, and 
“vestibular MD,” marked by episodic vertigo and imbalance, and 
disease laterality (19, 20). Others explored classification frameworks 
based on associated comorbidities, e.g., migraine (5, 21–23), allergy 
(24–26), vascular disorders (27, 28), autoimmune disease (29–32), and 
autonomic dysfunction (33, 34). Despite these efforts, therapeutic 
strategies often adhered to a so-called “60% rule,” in which 
approximately 60% of patients experienced symptomatic improvement 
(35). In retrospect, this incomplete treatment response likely reflects 
the inherent heterogeneity of the MD population. Without more 
precise stratification of MD patients, large scale efficacy in treatments 
may never be reached.

3 Reframing the paradigm: from 
endolymphatic Hydrops to 
endolymphatic sac deficiency

According to dogma, endolymphatic hydrops is the pathological 
hallmark of MD, and the direct cause of the episodic hearing and 
balance symptoms that characterize it (12, 13). Figure 1 illustrates the 
classic model of the pathogenesis of MD (17), where multiple 
etiological factors converge to produce endolymphatic hydrops, which 
in turn generates the clinical symptoms of MD. This framework has 
dominated MD research and clinical decision making for decades, 
with endolymphatic hydrops thought to be both the final common 
pathway of MD and the cause for MD symptoms. The longstanding 
hypothesis is that a disturbed balance between endolymph fluid 
secretion and resorption caused a pathological increase in endolymph 
fluid volume and hydrostatic pressure, evoking mechanical stress on 
the endolymph-lining neuroepithelia by stretching, distorting and 
rupturing them, and thereby promoting progressive inner ear organ 
degeneration (8). This disease model was adopted, more than a 
century ago, from “fluid retention disorders,” (e.g., glaucoma and 
hydrocephalus), whose underlying pathophysiology was at the time 
well-established: a disturbed balance between organ fluid (vitreous 

FIGURE 1

Central hypothesis for Meniere’s disease. Many possible etiologic 
factors can lead to endolymphatic hydrops, which in turn generates 
the clinical symptoms of MD.

https://doi.org/10.3389/fneur.2025.1607435
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Chari et al. 10.3389/fneur.2025.1607435

Frontiers in Neurology 03 frontiersin.org

humor, cerebrospinal fluid) production and drainage causes 
pathological fluid volume and pressure fluctuations within the eye and 
brain, respectively, eliciting visual and neurological symptoms during 
episodically recurring peak-pressure intervals (36, 37). The rationale 
for proposing an analogous pathophysiology for MD was initially 
based on the disease’s similar clinical presentations with recurring 
symptom episodes, and was further supported by the histopathological 
finding of enlarged endolymph fluid spaces in the inner ears from 
MD, which was interpreted as “endolymph hypertension.”

Although fluid hypertension has never been corroborated as the 
mechanism underlying the development of MD (17) various “fluid-
draining” therapies, effective in resolving ocular/intracranial fluid 
hypertension and associated visual/neurological symptoms in 
glaucoma and hydrocephalus, were adopted for the treatment of 
MD. However, such therapies, medical and surgical, showed no 
demonstrable effects on episodic MD symptoms, or the overall disease 
progression (38–40). Paradoxically, despite their lack of proven 
efficacy, they remain the backbone of the first- and second-line 
standard of care in MD—mainly due to the general lack of effective 
(non-organ destructive) therapies. Taken together, the prevailing 
pathophysiological concept for MD was historically conceived based 
on a priori analogies that were in critical parts either never supported 
or were refuted by empirical data, and overall failed to spur the 
development of effective clinical therapies. From this, it is apparent 
that the basic requirements for launching successful drug discovery 
efforts, i.e., understanding the natural disease history, having 
knowledge about a potential molecular target, and its role in either the 
generation or amelioration of the disease state, are yet to 
be accomplished for MD.

Much of the data and perspective presented in the following 
sections originate from the authors’ own investigations in 
histopathology, radiology, and clinical phenotyping. Building on these 

findings, we propose a novel conceptual framework to explain MD 
pathophysiology—Figure 2. This model places failure of inner ear 
homeostasis—particularly involving the endolymphatic sac (ES)—at 
the center of disease development, rather than endolymphatic 
hydrops. This failure may arise from two principal mechanisms: (1) 
primary deficiency of the ES, including developmental hypoplasia, or 
(2) secondary failure of the ES. Reactive endolymphatic hydrops due 
to proliferation-driven expansion of cochlear (Reissner’s membrane) 
and vestibular (primarily the saccular membrane) epithelia attempts 
to compensate primary ES homeostatic failure, whereas additional 
stressors (allergy, cardiovascular, toxins, barometric pressure, etc.) 
may contribute to ES homeostatic failure, ultimately giving rise to MD 
symptoms (41, 42). In this view, endolymphatic hydrops becomes not 
the cause, but an active cell-driven response to and a biomarker of 
disordered homeostasis within the membranous labyrinth. Recasting 
MD in this light opens the door to more precise subtyping and 
improved diagnostic criteria as well as targeted treatments that extend 
beyond hydrops management alone. Herein, we  will describe the 
emerging evidence supporting this evolving model of 
MD pathophysiology.

3.1 Pathologies of the “distal” 
endolymphatic sac are universal among 
MD patients—etiologically diverse through 
convergent pathogenesis

Recent systematic temporal bone histopathological studies have 
consistently revealed distinct pathologies of the distal portion of the 
ES among MD patients (43, 44). In nearly every case, the distal ES 
exhibited abnormalities such as developmental hypoplasia, 
degeneration, or other disease-associated alterations. Radiological 

FIGURE 2

Novel framework for pathogenesis of Meniere’s disease. Endolymphatic sac (ES) deficiency may arise from ES developmental hypoplasia or ES 
degeneration. Reactive endolymphatic hydrops (EH), which stems from atypical proliferation of Reissner’s and the saccular membrane, along with 
stressors contribute to the development of inner ear homeostatic failure, which ultimately lead to the development of MD symptoms.
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investigations have since established that these specific ES pathologies 
correlate with distinct clinical symptom profiles (phenotypes), offering 
a new perspective on the variable clinical presentation of MD (44–46). 
Longitudinal studies further demonstrated that inner ears with 
preexisting ES endotypes are predisposed to developing hydrops and 
subsequent MD symptoms, highlighting the critical role of the ES in 
disease pathogenesis (47, 48). Complementary molecular research in 
both human and animal models identified a mineralocorticoid-
regulated transepithelial ion transport system within the distal ES 
(43, 49).

3.2 Reconceptualizing endolymphatic 
hydrops: a proactive stress response to 
counteract cellular loss and maintain inner 
ear homeostasis

Challenging the classical fluid-pressure hypothesis, advanced 
analyses of human temporal bone specimens have demonstrated that 
the previously reported epithelial ruptures are more accurately 
interpreted as histological artifacts. Instead, a consistent finding is the 
significant epithelial hyperplasia—up to seven-fold increases in cell 
numbers—in tissues affected by endolymphatic hydrops. These 
hyperplastic changes are observed across various disease stages and in 
both diffuse and focal forms of endolymphatic hydrops, suggesting 
that they are not the result of passive mechanical stretching but 
represent an active compensatory cellular response (41). Specifically, 
epithelial hyperplasia appears to compensate for cell loss in the distal 
ES, with newly formed cells expressing functional proteins crucial for 
maintaining fluid and ionic homeostasis. In other words, as the 
functional surface area of the ES epithelium decreases, the surface area 
of epithelia of the saccule and Reissner’s membrane increases (i.e., 
onset of epithelial hyperplasia). Initially adaptive in nature, this 
compensatory mechanism may eventually become maladaptive, 
contributing to progressive sensory deficits. Recognizing 
endolymphatic hydrops as an active response rather than merely a 
pressure-induced phenomenon shifts therapeutic strategies toward 
promoting beneficial epithelial growth and preventing maladaptive 
remodeling, opening new avenues for preserving hearing and balance 
in MD patients.

The recognition that MD is not a uniform entity, but rather 
comprises distinct pathological subtypes, has led to the introduction 
of the concept of clinical and pathophysiological “endotypes.” Recent 
radiologic and histopathological studies have provided compelling 
evidence that MD can be subdivided into at least two major endotypes 
based on the nature of distal ES pathology: a hypoplastic endotype 
(MD-hp) and a degenerative endotype (MD-dg, Figure  3). These 
endotypes not only differ in their underlying anatomical and 
histological alterations  – developmental hypoplasia versus 
degeneration of the ES – but also show marked differences in clinical 
phenotype (44, 45, 47). Patients with the MD-hp endotype tend to 
present earlier in life, have a higher likelihood of bilateral disease, are 
more often male, and frequently report a positive family history of 
hearing loss and vertigo, suggesting a stronger genetic predisposition. 
In contrast, MD-dg patients typically exhibit later disease onset, more 
severe vestibular dysfunction, predominantly unilateral involvement, 
and are more likely to suffer from concurrent migraine. This endotype 
framework provides a unifying concept that links the previously 

discussed compensatory epithelial hyperplasia to distinct patterns of 
ES dysfunction (Figure  2). In both endotypes, compromised ES 
function appears to initiate a shared compensatory response—
hyperplastic expansion of other endolymph-lining epithelia—aimed 
at stabilizing inner ear fluid homeostasis. However, the nature of the 
initiating ES pathology likely influences the dynamics, severity, and 
spatial distribution of this compensatory process, thereby contributing 
to the heterogeneous clinical manifestations of MD. Recognizing these 
endotypes holds immediate translational value: it offers an explanation 
for the variable clinical course, predicts different risks for bilateral 
progression, and may guide future therapeutic strategies. Tailoring 
interventions to endotype-specific mechanisms, rather than applying 
generalized pressure-reducing treatments, could improve outcomes 
and move MD management toward a precision medicine approach.

3.3 Clinical utility of endotyping: towards 
prognostic and therapeutic precision in MD

The emerging endotype concept has profound implications for the 
clinical management of MD. One of its most promising utilities lies in 
predicting disease laterality and progression. Radiological 
identification of vestibular aqueduct (VA) hypoplasia, a hallmark of 
the MD-hp endotype, can be  readily achieved through computed 
tomography (CT) and magnetic resonance imaging (MRI), allowing 
clinicians to prospectively identify ears at risk. Studies have shown 
that VA hypoplasia is highly predictive of subsequent development of 
endolymphatic hydrops and symptomatic MD, even in initially 
asymptomatic ears, and is associated with a substantially increased 
risk for bilateral disease progression (44, 47). In contrast, patients with 
normal or degenerative ES and VA structures (MD-dg) tend to exhibit 
predominantly unilateral disease with a lower likelihood of 
bilateral conversion.

An increasingly compelling implication of the MD endotype 
framework is that MD-hp and MD-dg may not only differ in 
morphology and clinical course, but also in etiologic origin. The 
MD-hp endotype, characterized by ES developmental hypoplasia and 

FIGURE 3

Schematic of endolymphatic sac pathologies. “Degenerative” 
pathology with a normal vestibular aqueduct and degenerated 
endolymphatic sac. “Hypoplastic” pathology with altered trajectory 
of the vestibular aqueduct and hypoplastic endolymphatic sac.
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a prematurely formed VA, may reflect a congenital malformation 
occurring during temporal bone development, raising the possibility 
of a genetic contribution to ES deficiency. By contrast, the MD-dg 
endotype, marked by degenerative changes in an otherwise normally 
developed ES and VA, appears to reflect an acquired pathology. Its 
strong association with migraine raises the possibility that migraine 
acts as a primary driver of ES degeneration and/or as a secondary 
stressor that exacerbates underlying instability in inner ear 
homeostasis once the ES is damaged or deficient.

This stratification has immediate practical benefits. For example, 
the detection of VA hypoplasia in one ear of a patient with unilateral 
MD may warrant more vigilant monitoring of the contralateral ear 
and early counseling regarding the risk of bilateral involvement. 
Furthermore, endotyping refines medical and surgical decision-
making. Patients with the MD-hp endotype often present with smaller 
and more challenging anatomical landmarks during surgery (e.g., a 
hypoplastic VA and ES operculum), and display higher susceptibility 
to bilateral progression, making certain invasive procedures less 
favorable. Conversely, MD-dg patients, with more surgically accessible 
anatomy and lower risk for bilateral involvement, may be  better 
candidates for traditional ablative or decompressing interventions. 
Indeed, this hypothesis may explain why endolymphatic sac surgery 
has been reported to achieve vertigo control in approximately 
two-thirds to three-quarters of MD patients (50, 51). In addition, 
MD-dg patients, with a higher concurrence of comorbid migraine, 
may benefit from an initial therapy trial of migraine 
preventative medications.

Beyond anatomy, endotyping opens the door to tailored 
therapeutic strategies aimed at modulating the specific pathological 
cascade involved—whether it be  supporting residual ES function, 
enhancing compensatory epithelial plasticity, or preventing 
maladaptive remodeling. As diagnostic imaging becomes increasingly 
integrated into routine otological practice, endotyping may become a 
cornerstone in personalizing prognosis, follow-up intensity, and 
treatment selection for MD patients, ultimately contributing to more 
effective and patient-centered care.

4 The evolution of imaging in 
Meniere’s disease

4.1 Visualizing endolymphatic hydrops on 
imaging

For decades, the central question in imaging for MD was whether 
it would be possible to directly visualize endolymphatic hydrops—that 
is, to distinguish the endolymphatic space from the perilymphatic 
space in vivo. Major advances in MRI technology have now made that 
goal a reality. In 2005, Zou et  al. demonstrated on MRI that a 
gadolinium-based contrast agent, delivered through the middle ear, 
could permeate the round window membrane and selectively enter 
the perilymphatic space after a time delay, without diffusing into the 
endolymphatic space. Importantly, they observed that intravenous 
administration of the same contrast agent also produced enhancement 
in the scala vestibuli and scala tympani of the cochlea (52). Naganawa 
et al. (53) showed that the 3D-FLAIR (Fluid Attenuated Inversion 
Recovery) MRI sequence could differentiate enhancing perilymph 
from non-enhancing endolymph in the cochlea following intravenous 

administration of gadolinium-based contrast, with an optimal 
imaging delay of 4 h. Then, in 2007, Nakashima, Naganawa et al. (54) 
achieved a landmark milestone by successfully visualizing 
endolymphatic hydrops in MD patients. Using intratympanic injection 
of contrast followed by a 3D-FLAIR MRI sequence after a one-day 
delay, they delineated the perilymphatic space via contrast 
enhancement, while showing that the endolymphatic space remained 
unenhanced, thereby enabling, for the first time, direct in  vivo 
visualization of endolymphatic hydrops in the affected ears of 
MD patients.

In subsequent years, numerous studies investigated intratympanic 
and especially intravenous contrast administration routes, imaging 
sequences such as 3D-inversion recovery with real reconstruction 
(3D-REAL IR) in addition to 3D-FLAIR, variation in imaging 
parameters, and post-processing methods, all with the goal of 
optimizing visualization of the inner ear endolymph and perilymph 
spaces (55–62). At the same time, it was found that the degree of 
perilymph enhancement is increased in the setting of sensorineural 
hearing loss compared with normal-hearing individuals, and greater 
in MD-affected ears than in individuals with idiopathic sensorineural 
hearing loss, attributed to increased blood-perilymph barrier 
permeability (63). The combination of increased perilymph 
enhancement and endolymphatic hydrops was found to optimize 
sensitivity and specificity for MD (64, 65).

4.2 Beyond hydrops: imaging biomarkers 
for distal endolymphatic sac Endotypes

While the ability to visualize endolymphatic hydrops in vivo has 
been a landmark achievement, its utility remains largely 
confirmatory—to improve confidence in the clinical diagnosis of 
MD. The presence (or absence) of endolymphatic hydrops is unlikely 
to be specific enough to alter clinical management or predict disease 
course. As described earlier, imaging offers the potential to 
differentiate between distal ES endotypes. Combined histological and 
radiological studies have shown that the angular trajectory of the bony 
vestibular aqueduct (ATVA) can be used as a surrogate marker for the 
distal ES endotype, i.e., a more obtuse ATVA is highly predictive an 
MD-hp endotype, while a more acute ATVA correlates with the 
MD-dg endotype. (44) Interestingly, a wider ATVA is also linked to a 
thinner retrolabyrinthine bone, which carries clinical importance, 
since retrolabyrinthine bone thickness is more readily assessed on 
both CT and MRI compared to ATVA measurements. (46)

5 Revisiting the allergy hypothesis: 
chronic inflammation in MD

The connection between allergy and MD was first noted in 
1923 when W.W. Duke reported resolution of MD-like symptoms 
in two patients after receiving epinephrine and avoiding allergic 
triggers (25). Cross-sectional studies have shown a higher 
prevalence of allergies in individuals with MD compared to the 
general population (24, 26, 66). Moreover, patients with MD 
exhibit elevated levels of IgE, immune complexes, interleukins, 
and autoantibodies when compared to control groups (26, 67). 
Dagli et  al. (68) conducted a study in rabbits, revealing the 
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presence of histamine receptor immunoreactivity within the 
endolymphatic sac. Since histamine plays a pivotal role in 
regulating allergic responses, some scientists argue that the 
existence of histamine receptors in this sac provides additional 
evidence supporting the connection between allergy and MD (69). 
While not approved for use in the United States, betahistine, a 
structural analog of histamine, is widely used in Europe and Asia 
as a treatment for MD (70, 71). The exact mechanism of action for 
betahistine remains unknown, but is believed to reduce the release 
of histamine and other neurotransmitters while improving 
microcirculation in the inner ear.

Derebery and Berlinger have proposed several hypotheses to 
connect allergy to MD: (1) the endolymphatic sac’s fenestrated 
blood supply may allow antigens to enter, leading to mast cell 
degranulation and inflammation, (2) circulating immune 
complexes could enter endolymphatic sac circulation and the stria 
vascularis, disrupting the normal fluid balance in the inner ear, 
(3) viral infections might exacerbate allergic symptoms by 
enhancing histamine release and damaging epithelial surfaces of 
the endolymphatic sac, triggering T-cell migration (24).

A recent study by Frejo et  al. (72) provided evidence that 
allergy and autoinflammation contribute to persistent systemic 
inflammation in MD patients. Using cytokine profiling, the 
authors identified a distinct immunophenotype in approximately 
25% of MD patients characterized by elevated IgE levels and 
specific Th2 cytokines, including IL-4, IL-5, IL-6, IL-10, and 
IL-13. This allergy-associated group showed sustained 
macrophage polarization, suggesting an ongoing type 2 immune 
response even in the absence of clinical allergy symptoms. 
Importantly, these immunologic patterns persisted over time, 
suggesting that subclinical inflammation may drive 
disease progression.

6 Genetic insights: a new frontier in 
Meniere’s disease subtyping

As we  move toward a more refined classification of MD, 
genetic analysis offers a promising, but still developing, tool for 
subtyping patients. Much like histolopathologic and radiologic 
approaches have helped distinguish endotypes, genetics may offer 
a path to uncover shared mechanisms among a clinically 
heterogeneous group. Identifying genetic causes of MD has proven 
challenging due to its complex, multifactorial nature. Multiple 
research strategies have emerged, ranging from analysis of familial 
cases to stratifying patients based on shared phenotypes and 
endotypes. Below, we  describe the key approaches, relevant 
findings, and ongoing challenges in this area of research.

6.1 Familial Meniere’s disease

Studying familial cases of MD has been an effective strategy 
for initial gene discovery (73–76). Several genes have been 
implicated in this manner, particularly those involved in inner ear 
development, tectorial membrane structure, and hair cell 
mechanotransduction. Mutations in genes such as TECTA, OTOG, 
and STRC suggest disruption in the mechanical coupling of the 

inner ear (75, 77, 78). MYO7A, CDH23, PCDH15, and ADGRV1, 
genes known for their role in mechanotransduction, have also 
been linked to familial MD (79). HMX2, LSAMP, SEMA3D, DPT, 
PRKCB, and COCH, have also emerged as potential candidates 
and are thought to play critical roles in the development and 
intracellular signaling pathways of the inner ear (80–84). These 
mutations exhibit a mix of dominant and recessive inheritance 
patterns, often with variable penetrance. The sheer number of 
implicated genes reflects both the complexity of the disorder and 
the likelihood that multiple genetic pathways may converge to 
produce a similar clinical syndrome. However, it remains unclear 
whether these mutations act early in development—predisposing 
the inner ear to structural vulnerabilities such as endolymphatic 
sac hypoplasia—or whether they exert their effects more directly 
at the level of sensory cell function, ultimately converging on the 
same symptomatic outcome through distinct pathogenic pathways.

6.2 Sporadic Meniere’s disease

While familial MD offers a foothold for genetic analysis, the 
majority of MD cases are sporadic, and therefore genetically far 
more difficult to interrogate. Traditional genome-wide association 
studies (GWAS) lack the statistical power to detect gene mutations 
due to the low disease prevalence of MD (~0.2%) (85) as causal 
variants would be expected to fall within the low to rare frequency 
range with a moderate to high impact (86). Instead, researchers 
have turned to variant burden analysis, a strategy that involves 
aggregating potential candidate variants based on the genes, 
pathways, or biological processes in which they are involved. By 
considering variant frequencies relevant to the disease, this 
approach increases the likelihood of identifying associations 
despite small sample sizes (86). Using this approach, several 
potential gene candidates have emerged. This approximation 
identified associations of sporadic MD with genes previously 
linked to SNHL (GJB2, ESRRB), ionic regulation of the endolymph 
(SLC26A4, CLDN14), and vestibular hypofunction in Usher 
syndrome (USH1G) (87). Variant burden associations have also 
been found in axonal guidance genes (NTN4, NOX3) (88). Of 
note, rare variants in familial MD genes (FAM136A, DTNA, DPT) 
were also detected in sporadic MD cases in South Korea (89). 
Nonetheless, similar to findings in familial MD, these gene 
associations in sporadic cases remain largely correlative, 
underscoring the need for functional validation in 
experimental models.

6.3 Genetic stratification of MD patients 
based on shared clinical phenotypes or 
endotypes

One promising strategy for elucidating the genetic architecture 
of MD involves stratifying patients by shared clinical features 
(phenotypes) or histological/radiologic characteristics 
(endotypes). This approach aims to reduce the heterogeneity of a 
broad population of MD patients and therefore increase the 
likelihood of identifying meaningful genetic associations. By 
narrowing patient cohorts based on disease expression, such as 
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symptom severity, associated comorbidities, or histologic/
radiologic endotypes, rare variants may be uncovered that may 
have been diluted or undetectable in a larger population. For 
example, Escalera-Balsera et  al. (74) reported a subset of MD 
patients with severe tinnitus had rare mutations in the ERBB3 and 
AP4M1 genes, involved in Schwann cell maintenance and 
temporal bone development, respectively. Another avenue of 
research has explored immune-mediated subtypes. Some MD 
patients exhibit elevated autoantibodies, pro-inflammatory 
cytokines or IgE levels, suggesting a possible autoimmune or 
allergic component to MD in these individuals (90–95). Notably, 
genetic variants in immune-related genes have also been linked to 
MD susceptibility (73, 96–98). Finally, gene variants related to ion 
transportation, particularly sodium and potassium channels 
critical to inner ear homeostasis, have also been implicated in MD 
(73, 99, 100).

Cluster analyses have been used to identify clinical subgroups 
of Meniere’s disease based on disease parameters and associated 
comorbidities, i.e., migraine or autoimmune disorders. In a series 
of 153 patients with unilateral definite Meniere’s disease, Montes-
Jovellar et al. (101) identified four distinct profiles of patients by 
considering age, auditory and vestibular assessments, and 
disability. Patients were characterized as “mildly active elderly,” 
“mildly active young,” “active compensated,” and “active 
uncompensated.” Frejo et al. (102) performed a two-step cluster 
analysis in 398 patients with bilateral Meniere’s disease and 
identified five distinct groups of patients. The largest group 
(Group 1), comprising 46% of patients, demonstrated sequential 
and progressive sensorineural hearing loss without a history of 
migraine or autoimmune comorbidities. Group 2, representing 
17% of patients, included patients with concurrent bilateral onset 
of sensorineural hearing loss without migraine or autoimmune 
comorbidities. Group 3, with 13% of patients, consisted of patients 
with familial Meniere’s disease. Groups 4 and 5, each representing 
slightly over 10% of patients, encompassed those with a strong 
migraine history and patients with concurrent autoimmune 
disorders, respectively. In a subsequent study of 1,073 patients 
with unilateral Meniere’s disease from the same investigative 
group, the largest cohort, comprising over half of the patients, 
included individuals with sporadic Meniere’s disease without 
migraine or concurrent autoimmune disorders. The remaining 
groups consisted of patients with familial Meniere’s disease or 
comorbid conditions of migraine or autoimmune disease.

Recent work from our research group demonstrates 
compelling evidence of an epidemiological link between MD-hp 
and X-linked hypophosphatemia (XLH), a rare phosphate 
metabolism disorder caused by loss-of-function mutations in the 
PHEX gene located on the X chromosome that lead to hereditary 
rickets with skeletal and renal abnormalities (103). Given the 
independent prevalence rates of MD (104) and XLH (105), the 
expected probability of random co-occurrence would be in the 
millions. The observed co-occurrence in our cohort is several 
thousand times higher, suggesting a strong etiologic link between 
the disorders rather than chance occurrence. Notably, MD 
symptoms and VA hypoplasia were absent in all female XLH 
patients, but present in nearly all the male XLH patients. These 
findings highlight a male-specific pattern of MD in XLH patients, 
suggesting that complete loss of functional PHEX in XLH 

hemizygous male patients precipitates MD onset, whereas XLH 
heterozygous female patients retain partial PHEX function, which 
appears to confer protection for the inner ear.

7 Implications for future research

The story of Meniere’s disease began in 1861 with Prosper 
Meniere’s seminal insight—that the symptom triad of vertigo, 
hearing loss, and ear fullness could arise not from the cerebral 
pathology, but from inner ear dysfunction. Over the ensuing 
century and a half, this idea has evolved into a working model 
centered on endolymphatic hydrops—a concept that, while 
influential, ultimately proved insufficient to fully explain the 
variable disease progression and treatment response of 
MD patients.

Advances in histopathology, high-resolution imaging, and 
genomic analysis have converged to reshape our pathophysiologic 
understanding of MD—that MD is not a single disease, but a 
spectrum of disorders unified by a final common pathway resulting 
in failure of inner ear homeostasis driven by ES dysfunction. This 
paradigm shift holds profound implications. We can now identify 
biomarkers to differentiate subgroups of MD patients, allowing us to 
stratify risk and develop tailored therapies. Historically, MD 
management has followed a “top-down approach” in that patients 
were grouped under a broad diagnostic umbrella and therapeutic 
strategies were applied universally. The emerging “bottom-up 
approach,” grounded in shared clinical phenotypes and endotypes, 
offers a path toward precision medicine.

In this article, we  propose a new framework for the 
understanding of the MD pathophysiology. One in which ES 
dysfunction (either primary or secondary via mechanisms such as 
migraine, allergy, toxins, stressors, genetic predisposition, etc.) 
gives rise to epithelial hyperplasia of the saccule and Reissner’s 
membrane, which in turn leads to homeostatic failure of the inner 
ear (Figure  2). While endolymphatic hydrops remains a key 
biomarker of MD, we argue that it is not the causative force, but 
rather a response to disrupted ES function.

Future research endeavors must aim to validate and integrate 
these evolving tools—histologic and radiologic biomarkers and 
genetic factors—into robust clinical frameworks. Large, 
multicenter studies with prospective designs will be essential to 
confirm the prognostic and therapeutic value of MD subtyping. 
Equally important will be the development of novel therapeutic 
agents tailored to specific MD endotypes—shifting the focus from 
symptom control to disease modification. In the spirit of Prosper 
Meniere’s original contribution, our challenge now is not simply 
to observe, but to classify with precision, and in doing so, 
transform how we understand and treat this complex disorder.
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