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This bibliometric review examines the evolving landscape of artificial intelligence 
(AI) in neurodegenerative diseases research from 2000 to March 16, 2025, utilizing 
data from 1,402 publications (1,159 articles, 243 reviews) indexed in the Web of 
Science Core Collection. Through advanced tools - VOSviewer, CiteSpace, and 
Bibliometrix R - the study maps collaboration networks, keyword trends, and 
knowledge trajectories. Results reveal exponential growth post-2017, driven by 
advancements in deep learning and multimodal data integration. The United States 
(25.96%) and China (24.11%) dominate publication volume, while the UK exhibits 
the highest collaboration centrality (0.24) and average citations per publication 
(31.68). Core journals like Scientific Reports and Frontiers in Aging Neuroscience 
published the most articles in this field. Highly cited publications and burst references 
highlight important milestones in the development history. High-frequency keywords 
include “alzheimer’s disease,” “parkinson’s disease,” “magnetic resonance imaging,” 
“convolutional neural network,” “biomarkers,” “dementia,” “classification,” “mild 
cognitive impairment,” “neuroimaging,” and “feature extraction.” Key hotspots 
include intelligent neuroimaging analysis, machine learning methodological 
iterations, molecular mechanisms and drug discovery, and clinical decision support 
systems for early diagnosis. Future priorities encompass advanced deep learning 
architectures, multi-omics integration, explainable AI systems, digital biomarker-
based early detection, and transformative technologies including transformers 
and telemedicine. This analysis delineates AI’s transformative role in optimizing 
diagnostics and accelerating therapeutic innovation, while advocating for enhanced 
interdisciplinary collaboration to bridge computational advances with clinical 
translation.
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1 Introduction

Neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s disease, represent 
a significant and growing global health challenge, particularly as populations age. These 
diseases are characterized by progressive neural dysfunction, leading to cognitive impairments 
and motor dysfunctions. The increasing prevalence of these conditions underscores the urgent 
need for innovative therapeutic strategies to combat their debilitating effects (1). Concurrently, 
artificial intelligence (AI) has demonstrated transformative potential in medical research 
through deep learning models for neuroimaging segmentation (2), predictive algorithms for 
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drug-target interactions (3), and multimodal frameworks integrating 
genetic and clinical data (4). However, the integration of AI in 
neurodegenerative diseases research faces inherent complexities from 
interdisciplinary convergence (5). This challenge requires synergistic 
expertise in neurobiology, computational modeling, and clinical 
validation (6). Medical researchers, computer scientists, and 
bioinformaticians often operate within siloed frameworks, leading to 
fragmented methodologies. Consequently, macro-level evaluations are 
required to delineate global collaboration patterns, knowledge 
architecture shifts, and emergent technological trajectories in this 
interdisciplinary landscape. A systematic analysis of these dimensions, 
however, remains conspicuously underexplored in 
existing scholarships.

Bibliometric analysis serves as a powerful tool to map research 
landscapes by revealing co-authorship networks among countries/
regions, institutions, and authors, keyword co-occurrence, and 
assessing journal influence (7, 8). It integrates multidimensional 
data - including authorship, citations, and keyword co-occurrence 
— with visualization techniques to generate scientific mapping that 
delineates the structure and dynamics of domain development (9). 
This approach helps identify emerging research frontiers and inform 
resource allocation strategies, while fostering interdisciplinary 
synergies and translational medical advancements. By systematically 
tracking knowledge trajectories and innovation patterns, it enables 
researchers to decode field dynamics, optimize scientific decision-
making, and bridge disciplinary divides. Importantly, this study 
represents the first bibliometric analysis of AI applications in 
neurodegenerative diseases research since 2000.

2 Materials and methods

2.1 Data source and search strategy

As shown in Figure 1, we conducted a comprehensive literature 
search in the Web of Science Core Collection (WoSCC) database. The 
search strategy employed the retrieval formula: 
(TS = (“Neurodegenerative Diseases” OR “Neurodegenerative Disease” 
OR “Degenerative Neurologic Disorders” OR “Degenerative 
Neurologic Disorder” OR “Neurologic Disorder, Degenerative” OR 
“Neurologic Disorders, Degenerative” OR “Nervous System 
Degenerative Diseases” OR “Neurodegenerative Disorders” OR 
“Neurodegenerative Disorder” OR “Degenerative Diseases, Nervous 
System” OR “Degenerative Diseases, Neurologic” OR “Neurologic 
Degenerative Disease” OR “Neurologic Degenerative Conditions” OR 
“Degenerative Condition, Neurologic” OR “Degenerative Conditions, 
Neurologic” OR “Neurologic Degenerative Condition” OR “Neurologic 
Degenerative Diseases” OR “Degenerative Neurologic Diseases” OR 
“Degenerative Neurologic Disease” OR “Neurologic Disease, 
Degenerative” OR “Neurologic Diseases, Degenerative” OR 

“Degenerative Diseases, Central Nervous System” OR “Degenerative 
Diseases, Spinal Cord”) AND TS = (“artificial intelligence” OR “AI” OR 
“artificial-intelligence” OR “deep learning” OR “machine learning” OR 
“Intelligence, Artificial” OR “Computer Reasoning” OR “Reasoning, 
Computer” OR “Machine Intelligence” OR “Intelligence, Machine” OR 
“Computational Intelligence” OR “Intelligence, Computational”)). 
From the initial results, we selected publications written in English 
since the year 2000, specifying “Article” or “Review” as the document 
type. After data retrieval, we performed preliminary data processing 
using CiteSpace. Ultimately, 1,402 publications were included in the 
study, comprising 1,159 articles and 243 reviews. The entire process of 
literature retrieval and data downloading was completed on March 
16, 2025.

2.2 Bibliometric and visualization analysis

This study employed three advanced bibliometric tools  - 
VOSviewer v1.6.20, CiteSpace v6.4.R1, and Bibliometrix R package 
v4.3.2 - to conduct multidimensional analysis of research patterns in 
artificial intelligence in neurodegenerative diseases.

VOSviewer is a specialized bibliometric analysis tool designed 
to construct and visualize interactive network maps for identifying 
research patterns, collaborative relationships, and thematic clusters 
through co-occurrence, co-citation, or co-authorship analysis of 
entities such as keywords, authors, and publications (10, 11). 
Bibliometric network analyses were performed using VOSviewer, 
encompassing country/regional collaborative networks, 
institutional partnerships, journal publication patterns, co-citation 
relationships among periodicals, author cooperation clusters, and 
high-frequency keyword mapping, all of which were subsequently 
visualized through comprehensive graphical representations.

CiteSpace excels in temporal analysis of scientific frontiers, 
identifying paradigm shifts and emerging trends through burst 
detection, time-slicing, and key pathway algorithms inspired by 
Kuhn’s theory of scientific revolutions (12–14). To investigate annual 
publication trends and identify critical research frontiers, CiteSpace 
was employed for multiple analytical dimensions: temporal 
distribution patterns of scholarly output, centrality metrics of 
national/regional contributions, burst detection of emerging 
terminology, and dual-map overlays of journal citation pathways - 
analyses which revealed both temporal patterns and spatial 
distributions in knowledge dissemination.

Bibliometrix offers comprehensive statistical and computational 
workflows in R, integrating metadata processing, citation analysis, 
and multi-dimensional visualization via its interactive Biblioshiny 
interface for reproducible bibliometric research (15–17). Through 
the Bibliometrix R package, core journals shaping this 
interdisciplinary domain were systematically identified, with their 
academic influence being quantitatively assessed through H-index 
and G-index (18, 19).

When analyzing countries and regions, we consolidated data by 
merging administrative divisions from the same nation (e.g., England, 
Scotland, Northern Ireland, and Wales into the United Kingdom) to 
ensure national-level consistency. For keyword analysis, we standardized 
synonyms to ensure conceptual consistency - for instance, unifying 
“Alzheimer disease, “and “AD” as “Alzheimer’s disease.” Two researchers 
independently verified the assessments. Any discrepancies were 

Abbreviations: AI, artificial intelligence; ANN, artificial neural network; ACP, average 

citations per publication; APY, average publication year; CDSS, clinical decision 

support systems; CNN, convolutional neural network; DNN, deep neural network; 

MRI, magnetic resonance imaging; NP, number of publications; SCI-EXPANDED, 

Science Citation Index Expanded; SVM, support vector machine; TC, total citations; 

ViT, vision transformer; WoSCC, Web of Science Core Collection.
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re-evaluated by a third-party researcher, and final consensus was 
reached through collaborative discussion among all three investigators.

3 Results

3.1 Basic quantitative information

A total of 1,402 relevant publications were retrieved from the 
SCI-EXPANDED database in WoSCC between January 1, 2000 and 
March 16, 2025. These records comprised 1,159 research articles and 
243 review articles. Researchers from 86 countries/regions contributed 
to this field, involving 8,048 scholars affiliated with 2,637 institutions. 
The publications appeared in 509 academic journals and contained 
3,315 author’s keywords. These works collectively cited 71,363 
references from 12,374 distinct journal sources.

3.2 Annual publication trends

The annual publication trend provides a visual representation of 
the research field’s development (Figure  2). Since 2000, AI-related 
studies in neurodegenerative diseases have demonstrated a phased 
growth pattern. Annual publications remained consistently below 10 
articles before 2014, with minor fluctuations but overall stagnation. A 
period of sustained growth began in 2014, transitioning to exponential 
growth after 2017. Publications reached 379 articles in 2024, with 
studies published since 2023 accounting for over half of the total output.

3.3 Analysis of countries and regions

As shown in Table 1 and Figure 3, the USA and China dominate 
in publication volume, contributing 25.96% (364 articles) and 24.11% 

FIGURE 1

Flow chart of literature search and bibliometric analysis.
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(338 articles) of total outputs, respectively. The USA also leads in total 
citations (10,223), while the UK exhibits the highest citations per 
publication (31.68) and centrality (0.24), indicating strong 
international collaboration. India ranks fourth in publications (9.84%) 
but has the lowest citations per publication (13.62). Figure  3B 
highlights collaboration patterns among the top 30 countries, with the 
USA, China, and the UK forming central nodes in the network.

3.4 Analysis of institutions

As shown in Table  2, the top  10 productive institutions were 
dominated by the USA, China, and the UK, with UCL leading in 
publications and the Chinese Academy of Sciences ranking first in 
total citations. Notably, institutions from China, such as Sichuan 
University, exhibited the latest average publication year (2023.2), while 
the University of California San Francisco had the highest average 

citations per publication (42.4). Figure 4 illustrates the collaborative 
network and thematic clusters of institutions via a VOSviewer-
generated map. Figure  4A highlights distinct clusters, with major 
institutions like UCL and University of California San Francisco 
forming central nodes, while Figure 4B reveals a temporal gradient in 
research output: institutions with earlier average publication years 
(pre-2021) appear in cooler blue tones, while those with more recent 
contributions (post-2022) trend toward warmer red hues, reflecting a 
“blue-gray-red” spectrum aligned with publication recency.

3.5 Analysis of journals and co-cited 
journals

A total of 509 journals contributed to research in this field. 
Following Bradford’s Law of Scattering (20), 21 core journals were 
identified (Table 3). All these journals were classified as Q1/Q2 in the 

FIGURE 2

Annual publication trends over time.

TABLE 1 Top 10 most productive countries and regions.

Rank Country/Region NP (%) Citations ACP Centrality

1 USA 364 (25.96%) 10,223 28.09 0.17

2 China 338 (24.11%) 6,713 19.86 0.09

3 UK 152 (10.84%) 4,816 31.68 0.24

4 India 138 (9.84%) 1880 13.62 0.11

5 Italy 118 (8.42%) 2,664 22.58 0.1

6 Germany 106 (7.56%) 2,557 24.12 0.08

7 Spain 82 (5.85%) 1,467 17.89 0.06

8 Canada 69 (4.92%) 1939 28.10 0.15

9 Australia 67 (4.78%) 1776 26.51 0.17

10 South Korea 66 (4.71%) 1,675 25.38 0.03

NP, number of publications; ACP, average citations per publication.
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2024 JCR rankings. As shown in Table 3 and Figure 5A, Scientific 
Reports ranked first with 47 publications, followed by Frontiers in 
Aging Neuroscience (46 publications) and IEEE Access (37 
publications). Notably, NeuroImage achieved an exceptionally high 
citation rate (1,335 citations) despite its lower publication count (19 
publications). As shown in Table 4 and visualized in Figure 5B, the 
journal co-citation analysis identified 12,374 journals, with 
NeuroImage (2,159 co-citations, IF = 4.7, Q1), PLoS One (1,299 
co-citations, IF = 2.9, Q1), and Neurology (1,228 co-citations, 

IF = 8.4, Q1) as the top three most co-cited journals. High-impact 
journals such as Nature (940 co-citations, IF = 50.5, Q1) and Science 
(574 co-citations, IF = 50.5, Q1) were also prominent.

3.5.1 Dual-map overlay analysis of journals
Developed by Chen and Leydesdorff, the dual-overlay analysis 

method for journals elucidates how citing and cited publications are 
spatially distributed across scientific domains (21). As illustrated in 
Figure 6, four thick lines and numerous thin lines depict citation 

FIGURE 3

Analysis of countries/regions. (A) Academic collaboration networks between countries/regions. (B) Chord diagram illustrating country/region 
collaboration patterns.
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relationships between journals. From top to bottom: The first thick 
red line extends from “MATHEMATICS, SYSTEMS, 
MATHEMATICAL” to “MOLECULAR, BIOLOGY, GENETICS” 
(z = 2.7162597, f = 1826). The second thick yellow line connects 
“MOLECULAR, BIOLOGY, IMMUNOLOGY” to “MOLECULAR, 
BIOLOGY, GENETICS” (z = 8.2197485, f = 5,072). The third thick 
yellow line links “MOLECULAR, BIOLOGY, IMMUNOLOGY” to 
“PSYCHOLOGY, EDUCATION, SOCIAL” (z = 1.8278345, f = 1,302). 
The fourth thick gray line spans from “NEUROLOGY, SPORTS, 
OPHTHALMOLOGY” to “MOLECULAR, BIOLOGY, GENETICS” 
(z = 3.514825, f = 2,297). These patterns collectively demonstrate the 
multidisciplinary nature of this research field.

3.6 Analysis of authors

A total of 8,048 authors contributed to this field. The most prolific 
authors, including Ayala, Matias-Guiu, Kovalenko, Somov and 
Dickson, each published 6 articles (Table  5). Notably, Dr. Shen 
achieved the highest total citations. As illustrated in Figure  7, 
prominent academic groups contributing to the field include: Ayala, 
Matias-Guiu et  al. (green cluster); Kovalenko, Somov et  al. (blue 
cluster); Dickson et al. (red cluster); and Shen et al. (yellow cluster). 
These distinct clusters, emphasize strong intra-group collaborations 
but limited inter-cluster connectivity, possibly reflecting thematic or 
institutional specialization.

3.7 Analysis of highly cited publications

Publications with high citations often represent critical 
milestones in the development of a research field. Table  6 lists 
information for the top 10 highly cited publications in the field of AI 
in neurodegenerative diseases.

Published in The Lancet Neurology in 2020, “The genetic 
architecture of Parkinson’s disease” ranks first with 649 citations. 
Blauwendraat et al. establishes a comprehensive genetic framework for 
Parkinson’s disease, enabling AI-driven approaches for risk prediction, 
patient stratification, and precision therapeutics by identifying 
90 + risk loci and highlighting the need for machine learning to 
integrate genetic data with clinical phenotypes (22).

Published in NeuroImage in 2017, “Single subject prediction of 
brain disorders in neuroimaging: Promises and pitfalls” ranks second 
with 600 citations. This study by Arbabshirani et  al. provides a 
comprehensive review of how to leverage artificial intelligence 
techniques to analyze multimodal neuroimaging data, enabling 
automated diagnosis, classification, and prediction of 
neurodegenerative diseases (23). It holds significant guiding 
importance for advancing the application of AI in the precision 
diagnosis and treatment of neurodegenerative diseases.

Published in Nature in 2020, “Clonally expanded CD8 T cells 
patrol the cerebrospinal fluid in Alzheimer’s disease” ranks third 
with 555 citations. This work provides critical antigen-specific 
immune signatures that can enhance AI-driven biomarker 
discovery and therapeutic target identification, demonstrating 
how computational integration of multi-omic data (mass 
cytometry, scRNA-seq, TCR sequencing, and machine learning) 
can decode neuroinflammation mechanisms in neurodegenerative 
diseases (24).

3.8 Burst analysis of references

Burst analysis of references helps identify research that received 
considerable attention during different periods and pinpoint the time 
points when these citations surged. Figure 8 lists the top 25 co-cited 
references with the highest citation burst strength. Among these, the 
study by He  et  al. exhibited the most significant citation burst 
(Strength = 8.43, 2018–2021). Subsequent studies with high bursts 
include those by Krizhevsky et al. (Strength = 8.06, 2020–2022) and 
Liu et al. (Strength = 6.91, 2018–2020).

3.9 Analysis of keywords

3.9.1 Keyword frequency
Author keywords in publications are typically selected to 

emphasize core research themes and reflect study contents. 
Frequently occurring keywords represent key focuses within the 
research field. After excluding the search terms “Artificial 
Intelligence” and “Neurodegenerative Diseases,” we identified 287 
keywords with occurrence frequencies ≥ 3 to establish a 

TABLE 2 Top 10 most productive institutions.

Rank Institution Publications Citations ACP APY Country

1 UCL 27 912 33.78 2021.56 USA

2 Chinese Acad Sci 24 1,358 56.58 2020.71 China

3 Kings Coll London 21 780 37.14 2021.52 UK

4 Shanghai Jiao Tong Univ 20 388 19.40 2021.45 China

5 Univ Calif San Francisco 20 848 42.40 2022.10 USA

6 Johns Hopkins Univ 16 344 21.50 2022.88 USA

7 Univ Oxford 16 391 24.44 2021.00 UK

8 Mayo Clin 15 273 18.20 2022.80 USA

9 Sichuan Univ 15 109 7.27 2023.20 China

10 Univ Penn 15 185 12.33 2022.33 USA

ACP, average citations per publication; APY, average publication year.
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co-occurrence network (Figure 9A). As shown in Figure 9A, the 
top  10 high-frequency keywords were: “alzheimer’s disease,” 
“parkinson’s disease,” “magnetic resonance imaging,” 

“convolutional neural network,” “biomarkers,” “dementia,” 
“classification,” “mild cognitive impairment,” “neuroimaging,” and 
“feature extraction.”

FIGURE 4

Analysis of institutions. (A) Map of the network of institutions with clusters. (B) Map of the network of institutions with average publication year.
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3.9.2 Keyword emergence analysis
Keyword emergence analysis identifies sudden surges in keyword 

frequency within specific timeframes pinpointing emerging research 
frontiers and reflecting real-time shifts in scientific focus within 
neurodegenerative diseases studies utilizing artificial intelligence. As 
shown in Figure 9B the top five keywords with the highest burst strength 
were: “neural networks” (strength = 4.66, 2022–2023) “support vector 
machine” (strength = 2.61, 2019–2022) “deep neural network” 
(strength = 2.42, 2022–2023) “structural MRI” (strength = 2.3, 2019–
2021) and “medical imaging” (strength = 2.04, 2020–2021)

4 Discussion

4.1 General distribution

Based on the bibliometric analysis, this study systematically 
depicts the research landscape of AI in neurodegenerative diseases. 
Regarding publication trends, the exponential growth in publications 
since 2017 underscores the transformative impact of artificial 
intelligence in neurodegenerative diseases research. This surge aligns 
with advancements in deep learning architectures, increased 
computational power, and the availability of large-scale multimodal 
datasets, which have collectively enabled novel applications in disease 
prediction, biomarker discovery, and therapeutic development.

The prominence of journals like Scientific Reports and Frontiers in 
Aging Neuroscience is the interdisciplinary nature of this field, merging 
computational science with clinical neurology. The classification of all 21 

core journals as Q1/Q2 in the 2024 JCR rankings confirms the high 
scientific rigor and impact of publications in this domain. Notably, 
NeuroImage’s exceptional citation rate despite fewer publications signals 
the critical role of neuroimaging data in AI-driven neurodegenerative 
research. The dual-map overlay analysis further reinforces the 
multidisciplinary integration, with strong citation pathways linking 
computational methodologies to molecular biology and clinical neurology.

4.2 Geographical analysis and leading 
academic teams

The dominance of the USA and China reflects their substantial 
investment in AI in neurodegenerative diseases research. However, 
the UK’s higher citations per publication and centrality suggest 
impactful contributions through international collaboration. India’s 
high output but low citations may indicate a focus on quantity over 
quality or limited global engagement. To address these disparities, 
developing countries need to strengthen international collaboration 
while actively improving research quality and global influence.

Institutions from the USA, China, and the UK dominated research 
productivity, highlighting their central roles in AI-driven 
neurodegenerative diseases studies. UCL (USA) emerged as the most 
prolific institution, underscoring its leadership in both output and 
influence within this interdisciplinary field.

Author collaborations demonstrate pronounced intra-group 
cohesion yet strikingly limited cross-cluster connectivity. This pattern 
likely stems from the field’s inherently interdisciplinary nature 

TABLE 3 The 21 core research productivity journals identified by Bradford’s law of scattering.

Rank Journal Publications H-index G-index Citations IF (2024) JCR (2024)

1 Scientific Reports 47 14 27 813 3.8 Q1

2 Frontiers in Aging Neuroscience 46 15 25 717 4.1 Q2

3 IEEE Access 37 12 26 696 3.4 Q2

4 Frontiers in Neuroscience 30 12 26 726 3.2 Q2

5 International Journal of Molecular Sciences 29 9 18 352 4.9 Q1

6 Sensors 26 11 20 429 3.4 Q2

7 Computers in Biology And Medicine 23 11 23 538 7 Q1

8 Journal of Alzheimer’s Disease 23 6 13 185 3.4 Q2

9 Diagnostics 22 9 15 234 3 Q1

10 Applied Sciences-Basel 21 10 18 350 2.5 Q1

11 Biomedical Signal Processing and Control 21 5 10 121 4.9 Q1

12 Frontiers in Neurology 20 7 14 220 2.7 Q2

13 Neuroimage 19 11 19 1,335 4.7 Q1

14 IEEE Journal of Biomedical and Health Informatics 18 9 18 350 6.7 Q1

15 Computer Methods and Programs in Biomedicine 16 11 16 535 4.9 Q1

16 PLoS One 16 8 16 288 2.9 Q1

17 Neuroimage-Clinical 12 9 12 235 3.4 Q2

18 Artificial Intelligence in Medicine 11 7 11 201 6.1 Q1

19 Bioengineering-Basel 11 6 8 73 3.8 Q2

20 Heliyon 11 5 10 104 3.4 Q1

21 Biomedicines 10 5 9 90 3.9 Q1
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FIGURE 5

Analysis of journals and co-cited journals. (A) Co-occurrence network visualization of journals. (B) Co-cited network visualization of journals.
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FIGURE 6

Dual-map overlay analysis of journals.

TABLE 5 Top 10 most productive authors.

Rank Author Publications Citations

1 Ayala, Jose L. 6 94

2 Matias-Guiu, Jordi A. 6 94

3 Kovalenko, Ekaterina 6 92

4 Somov, Andrey 6 92

5 Dickson, Dennis W. 6 54

6 Shen, Dinggang 5 624

7 Tanveer, M. 5 373

8 Graff-Radford, Jonathan 5 109

9 Jones, David T. 5 109

10 Knopman, David S. 5 109

— medical researchers, computer scientists, and bioinformaticians 
predominantly operate within specialized disciplinary silos. The 
current collaboration framework reveals an urgent need for cross-
disciplinary integration, particularly in bridging clinical expertise with 

computational innovation. Establishing structured interdisciplinary 
collaboration mechanisms could dismantle existing academic barriers, 
potentially catalyzing transformative breakthroughs in 
neurodegenerative diseases research.

4.3 Development history

By analyzing highly cited articles and reference burst analysis, 
we  can identify research hotspots in different periods, thereby 
outlining the development trajectory of the AI in neurodegenerative 
disease research field. The development of this field has evolved 
through several key phases, marked by technological advancements 
and interdisciplinary collaborations. In 2011, Hinrichs et  al. 
demonstrated the power of Multi-Kernel Learning to predict MCI-to-
Alzheimer’s progression by fusing multi-modal biomarkers (imaging, 
cognitive, and biological data) into a unified Multi-Modality Disease 
Marker, highlighting machine learning’s potential to capture complex 
disease heterogeneity (25). In 2017, Arbabshirani et  al. 
comprehensively review over 200 neuroimaging-based machine 

TABLE 4 Top 10 co-cited journals.

Rank Co-cited journal Co-citations IF (2024) JCR (2024)

1 NeuroImage 2,159 4.7 Q1

2 PLoS One 1,299 2.9 Q1

3 Neurology 1,228 8.4 Q1

4 Scientific Reports 1,223 3.8 Q1

5 Movement Disorders 1,021 7.4 Q1

6 Alzheimers & Dementia 1,004 13.1 Q1

7 Nature 940 50.5 Q1

8 BRAIN 933 11.9 Q1

9 Journal of Alzheimer’s Disease 870 3.4 Q2

10 PNAS 806 9.4 Q1

https://doi.org/10.3389/fneur.2025.1607924
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Zhang et al. 10.3389/fneur.2025.1607924

Frontiers in Neurology 11 frontiersin.org

learning studies across various brain disorders, identify common 
methodological pitfalls, and propose solutions to enhance clinical 
applicability, thereby establishing a critical framework for improving 
AI-driven diagnosis and biomarker discovery in brain disorder 
research (23). Concurrently, Cole and Franke established “brain-
predicted age” as a biomarker of brain health, demonstrating through 
machine learning that accelerated brain ageing (brain age > 
chronological age) correlates with advanced cognitive decline, 
increased risk of neurodegenerative diseases, and higher mortality 
(26). In 2018, Young et al. developed an AI method that identifies 
heterogeneous disease subtypes and their progression stages from 
cross-sectional data, significantly enhancing precision medicine in 
neurodegenerative disease research by improving patient stratification 
and outcome prediction (27). In 2020, Lian et al. propose a hierarchical 
fully convolutional network that jointly automates discriminative 
atrophy localization and Alzheimer’s disease diagnosis from structural 
MRI, significantly advancing AI in neurodegenerative disease research 
by enabling integrated (28). Myszczynska synthesized AI’s role in drug 
discovery and image interpretation, emphasizing its capacity to 
integrate high-dimensional data for actionable insights (29). In 2023, 

Duering updated the STRIVE neuroimaging standards (STRIVE-2) 
to define and harmonize MRI biomarkers of cerebral small vessel 
disease, emphasizing quantitative methods and emerging features like 
incidental DWI + lesions (30).

4.4 Hotspots and frontiers

The bibliometric analysis reveals four prominent research 
frontiers in AI in neurodegenerative diseases since 2000. Intelligent 
neuroimaging analysis represents a major research focus, 
demonstrated by strong citation bursts in “diffusion tensor imaging” 
(Strength = 2.02, 2018–2020) and “structural MRI” (Strength = 2.30, 
2019–2021), alongside high co-occurrence frequencies for “magnetic 
resonance imaging” (118 occurrences) and “convolutional neural 
networks” (106 occurrences) with recent average publication years of 
2022. Recent advancements in AI-driven neuroimaging have 
significantly facilitated the progress of neurodegenerative diseases 
research. Structural MRI and diffusion tensor imaging are pivotal for 
detecting early-stage brain atrophy, white matter integrity loss, and 

FIGURE 7

Author collaboration network.
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TABLE 6 The top 10 cited publications.

Rank Title Year Journal First author Total 
citations

DOI

1 The genetic architecture of Parkinson’s 

disease

2020 The Lancet Neurology Blauwendraat, 

Cornelis

649 10.1016/S1474-

4422(19)30287-X

2 Single subject prediction of brain disorders 

in neuroimaging: Promises and pitfalls

2017 NeuroImage Arbabshirani, 

Mohammad R.

600 10.1016/j.

neuroimage.2016.02.079

3 Clonally expanded CD8 T cells patrol the 

cerebrospinal fluid in Alzheimer’s disease

2020 Nature Gate, David 555 10.1038/s41586-019-1895-7

4 Predicting Age Using Neuroimaging: 

Innovative Brain Ageing Biomarkers

2017 Trends in Neurosciences Cole, James H. 519 10.1016/j.tins.2017.10.001

5 A research agenda for ageing in China in the 

21st century (2nd edition): Focusing on basic 

and translational research, long-term care, 

policy and social networks

2020 Ageing Research 

Reviews

Fang, Evandro F. 352 10.1016/j.arr.2020.101174

6 Hierarchical Fully Convolutional Network 

for Joint Atrophy Localization and 

Alzheimer’s Disease Diagnosis Using 

Structural MRI

2020 IEEE Transactions on 

Pattern Analysis and 

Machine Intelligence

Lian, Chunfeng 340 10.1109/tpami.2018.2889096

7 Neuroimaging standards for research into 

small vessel disease-advances since 2013

2023 The Lancet Neurology Duering, Marco 318 10.1016/s1474-

4422(23)00131-x

8 Predictive markers for AD in a multi-

modality framework: an analysis of MCI 

progression in the ADNI population

2011 NeuroImage Hinrichs, Chris 308 10.1016/j.

neuroimage.2010.10.081

9 Uncovering the heterogeneity and temporal 

complexity of neurodegenerative diseases 

with Subtype and Stage Inference

2018 Nature Communications Young, Alexandra L. 307 10.1038/s41467-018-05892-0

10 Applications of machine learning to 

diagnosis and treatment of 

neurodegenerative diseases

2020 Nature Reviews 

Neurology

Myszczynska, 

Monika A.

289 10.1038/s41582-020-0377-8

FIGURE 8

Top 25 references with the strongest citation bursts.
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microstructural changes in conditions like Alzheimer’s disease and 
Parkinson’s disease (31, 32). Structural MRI enables precise 
quantification of region-specific atrophy (e.g., cerebral spinal fluid 
volume changes near the hippocampus in Alzheimer’s disease) via 
deep learning algorithms, enhancing diagnostic accuracy even with 
widely available 2D T1-weighted scans (33). AI-powered image 
classification models, particularly deep learning frameworks, enable 

high-accuracy differentiation of disease subtypes by integrating 
features from multimodal MRI data (34). Fixel-based analysis, reveals 
early white matter macrostructural changes (fiber cross-section 
reduction) specifically linked to tau pathology in Alzheimer’s disease, 
offering potential biomarkers for pre-symptomatic detection (35). 
Emerging frameworks also address MRI sequence recognition to 
standardize data preprocessing (36). Challenges remain in generalizing 

FIGURE 9

Analysis of keywords. (A) Keyword co-occurrence network. (B) Top 23 keywords with the strongest citation bursts.
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models across heterogeneous datasets, but emerging explainable AI 
frameworks address “black-box” limitations by providing interpretable 
saliency maps through gradient-weighted class activation mapping 
(36). Future research should prioritize multimodal integration and 
external validation across diverse cohorts to enhance clinical 
translation (37).

Machine learning methodological iterations show significant 
momentum through the burst of “neural networks” (Strength = 4.66, 
2022–2023) and “deep neural networks” (Strength = 2.42, 2022–2023), 
further evidenced by “vision transformer” (Strength = 1.65, 2023–
2025) and substantial co-occurrence of “transfer learning” (18 
occurrences) and “explainable AI” (13 occurrences) in recent 
publications. The evolution of machine learning in neurodegenerative 
diseases research reflects a dynamic shift from traditional algorithms 
to advanced architectures. Early approaches, such as support vector 
machines (SVMs), demonstrated utility in biomarker prediction and 
early disease classification by leveraging handcrafted features from 
neuroimaging or cerebrospinal fluid data (38). However, their reliance 
on handcrafted features limits scalability. Artificial neural networks 
(ANNs), including multilayer perceptrons, improved drug delivery 
predictions by integrating perturbation theory and machine learning 
(IFPTML-ANN models) (39). The rise of deep neural networks 
(DNNs), especially convolutional neural networks (CNNs), 
revolutionized neuroimaging analysis. For instance, 3D-CNN 
outperformed many models in Alzheimer’s disease detection by 
leveraging spatial patterns from MRI data, achieving the highest 
accuracy in multi-class classification tasks (40). Emerging vision 
transformers (ViTs) leverage self-attention mechanisms to process 
global contextual features in medical imaging (41). ViTs outperform 
CNNs in MRI-based Alzheimer’s Disease classification when trained 
on limited datasets, achieving nearly fourfold improvements in 
accuracy and computational efficiency (42). This progression 
underscores a paradigm shift from manual feature engineering (SVM) 
to automated, context-aware learning (ViTs/DNNs), driven by 
neuroimaging and multimodal data integration (43, 44). Future 
hotspots include hybrid architectures (45, 46) and interpretable AI to 
bridge clinical translation gaps (47).

Molecular mechanisms and drug discovery maintain sustained 
interest, reflected in “molecular docking” burst activity 
(Strength = 1.51, 2016–2018) and current high co-occurrence of “drug 
discovery” (13 occurrences, avg. pub. year 2022.15) and 
“bioinformatics” (12 occurrences, avg. pub. year 2022.08), 
complemented by recent “biomarker” research prominence (67 
occurrences). Recent advances in AI-driven research have significantly 
enhanced the understanding of neurodegenerative diseases 
pathogenesis and therapeutic development. Molecular docking 
combined with AI approaches has been applied to expedite virtual 
screening. Computational tools and deep learning methods assist in 
identifying dual-target ligands (e.g., A2A receptor antagonists and 
MAO-B inhibitors) for Parkinson’s disease, as demonstrated in recent 
studies (48). A recent study combined docking with molecular 
dynamics simulations, including binding pose metadynamics, to 
identify a novel JNK3 inhibitor, which demonstrated efficacy in 
reducing TNF-α release and holds potential for mitigating 
neuroinflammation (49). Bioinformatics pipelines leverage AI and 
machine learning approaches to decode neurodegenerative disease-
specific pathways, employing network analysis tools such as WGCNA 
and STRING. These methods have been successfully applied to 

investigate network analysis of neurodegenerative disease-associated 
genes, such as those linked to α-synuclein interactions in Parkinson’s 
disease (50). Multi-omics integration facilitates biomarker discovery, 
with hiPSC-derived 3D models enabling the identification of cell-
type-specific drug responses (51). These approaches synergistically 
bridge molecular insights and AI-driven drug design.

Clinical decision support systems exhibit robust development 
patterns through extended citation bursts in “decision support 
systems” (Strength = 1.92, 2014–2021) and “computer-aided 
diagnosis” (Strength = 1.54, 2017–2021), with emerging “diagnostic 
model” co-occurrences (7 occurrences, avg. pub. year 2023) signaling 
ongoing innovation in clinical translation. Recent advancements in 
AI-driven clinical decision support systems (CDSS) for 
neurodegenerative diseases focus on enhancing diagnosis accuracy. 
For Alzheimer’s disease, novelty detection models trained on healthy 
control data, combined with a distance-to-boundary strategy, enable 
early risk identification by detecting deviations from normal cognitive 
patterns (52). Knowledge-based systems leveraging decision tables 
and semantic networks have shown efficacy in multiple sclerosis 
diagnosis, achieving 99% accuracy in trials by analyzing 45 clinical 
parameters (53). Moreover, ensemble learning optimizes differential 
diagnosis by fusing structural/functional connectivity data, as 
demonstrated in Parkinson’s disease and amyotrophic lateral sclerosis 
classification studies (54). Similarly, in Parkinson’s disease, mHealth-
based CDSS integrate wearable sensor data, patient-reported 
symptoms, and clinical assessments to optimize treatment plans amid 
symptom complexity and disease fluctuation (55). Challenges persist, 
including heterogeneous data integration and technical uncertainty. 
For example, mHealth-based CDSS for Parkinson’s disease faces 
“technical uncertainty” due to variable patient-reported and sensor-
derived data, complicating real-world implementation (55). Emerging 
trends focus on low-cost, non-invasive tools and multimodal 
integration of clinically accessible data (e.g., gait, speech, handwriting), 
aiming to enable early neurodegenerative diseases detection in clinical 
and potentially home settings (56). Overall, AI-powered CDSS are 
pivotal in advancing precision diagnostics, yet require robust clinical 
validation and interdisciplinary collaboration to bridge 
implementation gaps.

4.5 Future directions

Through analyzing recent high-frequency keywords from 
VOSviewer co-occurrence mapping and CiteSpace burst detection, 
the future directions in AI for neurodegenerative disease research 
include the following aspects.

Advanced deep learning models may be a key future direction, as 
evidenced by the strong burst strength of “neural networks” (Strength 
4.66, 2022–2023) and “deep neural network” (Strength 2.42, 2022–
2023) in CiteSpace, alongside high occurrence and recent average 
publication years in VOSviewer data, such as “convolutional neural 
network” (106 occurrences, avg. year 2022.10) and “vision 
transformer” (6 occurrences, avg. year 2023.83), indicating growing 
adoption for tasks like image classification and disease diagnosis.

Integration of bioinformatics and multi-omics approaches may 
be a major focus, supported by the citation burst of “bioinformatics 
analysis” (Strength 1.87, 2022–2023) and high-frequency keywords 
like “drug repurposing” (10 occurrences, avg. year 2023) and 
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“multi-omics” (3 occurrences, avg. year 2022) in the VOSviewer map, 
reflecting trends toward combining genetic, proteomic, and AI-driven 
analyses for uncovering molecular pathways in diseases like 
Alzheimer’s.

Explainable AI for clinical decision support may emerge as a 
critical area, with VOSviewer showing recent prominence of 
“explainable artificial intelligence” (13 occurrences, avg. year 2023.23) 
and “diagnostic model” (7 occurrences, avg. year 2023), complemented 
by burst analysis keywords such as “decision support systems” 
(Strength 1.92, 2014–2021) and “computer-aided diagnosis” (Strength 
1.54, 2017–2021), suggesting a shift toward transparent AI systems for 
reliable diagnostics and treatment planning.

Early detection using digital biomarkers and multimodal data 
may be  a significant direction, as indicated by high-frequency 
VOSviewer terms like “early detection” (10 occurrences, avg. year 
2022.5) and “wearable sensors” (11 occurrences, avg. year 2022.36), 
along with burst keywords such as “mild cognitive impairment” 
(Strength 1.55, 2012–2014) and “gait analysis” emerging in recent data, 
highlighting the role of AI in non-invasive monitoring and predictive 
modeling for early intervention.

Emerging technologies like transformers and telemedicine may 
drive innovation, evidenced by the strong burst of “vision transformer” 
(Strength 1.65, 2023–2025) and “large language model” (3 
occurrences, avg. year 2024) in the datasets, alongside keywords such 
as “telemedicine” (7 occurrences, avg. year 2021.29) and “wearables” 
(6 occurrences, avg. year 2022.33), pointing to AI advancements in 
remote healthcare, personalized medicine, and real-time 
disease management.

5 Limitation

While this bibliometric analysis provides a comprehensive 
overview of artificial intelligence in neurodegenerative diseases 
research, several limitations should be  acknowledged. First, the 
exclusive reliance on the WoSCC database may have introduced 
selection bias, as relevant studies indexed in other databases were 
excluded. Second, the restriction to English-language publications 
and article/review formats likely underrepresented contributions 
from non-English-speaking regions and emerging research 
disseminated through conference proceedings or gray literature. 
Third, keyword standardization, though rigorously performed, may 
have inadvertently omitted nuanced terminology due to evolving 
AI subfield lexicons. Finally, the rapid pace of AI innovation may 
not be  fully captured due to the inherent citation lag in 
scholarly publishing.

6 Conclusion

This bibliometric analysis reveals rapid growth in AI in 
neurodegenerative diseases research since 2017. The USA and 
China lead in productivity, while the UK excels in collaborative 
influence. Highly cited publications and burst references highlight 
important milestones in the development history. Key hotspots 
include intelligent neuroimaging analysis, machine learning 

methodological iterations, molecular mechanisms and drug 
discovery, and clinical decision support systems for early diagnosis. 
Future priorities include: advanced deep learning models, 
integration of bioinformatics and multi-omics approaches, 
explainable AI for clinical decision support, early detection using 
digital biomarkers and multimodal data, emerging technologies like 
transformers and telemedicine.
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