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Background: Parkinson’s disease (PD) is the second most common 
neurodegenerative disorder, and it has an unclear pathogenesis and lacks 
validated, specific biomarker-based diagnostic approaches, particularly in PD 
patients with rapid eye movement (REM) sleep behavior disorder (PD-RBD).

Methods: Using untargeted liquid chromatography-mass spectrometry (LC–
MS) metabolomics, serum profiles of 41 drug-naïve PD patients [including 19 
PD-RBD and 22 PD without RBD (PD-nRBD) patients] and 20 healthy controls 
(HCs) were analyzed.

Results: Comparative analyses revealed 144 dysregulated metabolites 
in PD patients versus HCs, with 7 metabolites—sodium deoxycholate, 
S-adenosylmethionine, L-tyrosine, 3-methyl-L-tyrosine, 4,5-dihydroorotic 
acid, (6Z)-octadecenoic acid, and allantoin—demonstrating high classification 
accuracy [area under the curve (AUC) > 0.93]. Compared with PD-nPBD 
patients, PD-RBD patients exhibited distinct metabolic profiles, characterized 
by 21 differentially expressed metabolites, including suberic acid, 3-methyl-L-
tyrosine, and methyl (indol-3-yl) acetate (AUC > 0.86). Notably, 3-methyl-L-
tyrosine displayed dual dynamics, reflecting dopaminergic depletion in PD and 
compensatory metabolic adaptations in PD-RBD. Pathway enrichment analysis 
implicated central carbon metabolism (CCM) disruption in PD and peroxisome 
proliferator-activated receptor (PPAR) signaling pathway inactivation in PD-RBD.

Conclusion: These findings reveal potential serum-based biomarkers for PD 
and PD-RBD, highlight CCM and PPAR pathways as therapeutic targets, and 
underscore the role of metabolic dysregulation in PD pathophysiology.
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1 Introduction

Parkinson’s disease (PD), now recognized as one of the leading causes of neurological 
disability (1), is pathologically characterized by aberrant α-synuclein aggregation and 
progressive degeneration of dopaminergic neurons in the substantia nigra (2). PD exhibits 
significant clinical heterogeneity, with phenotypes typically categorized according to the 
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predominance of motor and non-motor symptom clusters (3). 
Although motor symptoms form the diagnostic cornerstone (4), 
non-motor manifestations—particularly rapid eye movement 
(REM) sleep behavior disorder (RBD), characterized by the loss of 
normal skeletal muscle atonia and vivid dream enactment during 
REM sleep (5, 6)—have emerged as critical markers of disease 
subtype stratification (1). Approximately 30–50% of PD patients 
have RBD (7), a phenotype that is associated with accelerated 
disease progression and a higher risk of cognitive impairment 
compared with PD patients without RBD (8). However, the 
diagnosis of PD remains clinically challenging due to its heavy 
reliance on subjective clinician-based evaluations and the absence 
of validated biomarkers for objectively diagnosing disease or 
identifying pathological changes.

Metabolomics, which focuses on small-molecule metabolites, 
has emerged as a promising strategy for molecular biomarker 
discovery, owing to its ability to detect pervasive metabolic 
dysregulations inherent in neurodegenerative pathologies (9, 10). 
In recent years, metabolomics has become an increasingly valuable 
tool in PD research, effectively connecting molecular mechanisms 
with dysregulated metabolic pathways and clinical manifestations 
that underlie the pathophysiology of PD. Multiple potential 
biomarkers for PD have been proposed, including 
3-hydroxykynurenine (3-HK) (11), ornithine (12), 
1-methylxanthine (13), hypoxanthine (14), caffeine and its 
metabolites (14), and lipid derivatives (15). However, there are no 
currently widely validated and used clinical biomarkers in 
peripheral blood. The clinical translation of these findings remains 
hindered by critical biological and methodological barriers, such 
as clinical heterogeneity, antiparkinsonian medication effects, 
analytical variability, and lack of robust multicenter validation. The 
pathogenic complexity of PD further complicates biomarker 
discovery. Accumulating data suggest that PD results from a 
dynamic interplay among senescence processes (16), inherited 
susceptibility, and environmental exposures (17), affecting 
numerous fundamental cellular processes, such as aberrant protein 
aggregation (18, 19), oxidative stress (20), neuroinflammation (21), 
and mitochondrial dysfunction (22, 23). Despite decades of 
research, the etiology of PD remains incompletely understood. 
Most existing studies have focused on comparing PD patients with 
healthy controls (HCs), with limited attention paid to the metabolic 
differences in PD patients with RBD.

In the present study, two comparative serum metabolomics 
analyses using untargeted liquid chromatography-mass 
spectrometry (LC–MS) metabolomics were conducted as follows: 
(i) drug-naïve PD patients versus HCs; and (ii) PD with RBD 
(PD-RBD) patients versus PD without RBD (PD-nRBD) patients. 
Our findings revealed potential diagnostic biomarkers and 
established precision phenotyping frameworks. The dual dynamics 
of 3-methyl-L-tyrosine highlighted phenotype-specific metabolic 
adaptations. Moreover, the present results revealed central carbon 
metabolism (CCM) disruption in PD and PPAR signaling 
inactivation in PD-RBD, linking metabolic dysfunction to 
neurodegeneration and highlighting CCM and PPAR signaling 
pathways as therapeutic targets. Future work requires multicenter 
validation and multiomics integration to translate these insights 
into clinical applications.

2 Materials and methods

2.1 Participants

Participants were recruited from the Outpatient Department of 
the Affiliated Jinhua Hospital of Zhejiang University School of 
Medicine, including 61 individuals (41 patients with PD and 20 HCs). 
All patients with PD were newly diagnosed according to the 
Movement Disorder Society (MDS) Clinical Diagnostic Criteria for 
PD (MDS-PD Criteria) and were drug-naïve, having not initiated any 
antiparkinsonian medications prior to enrollment. The exclusion of 
secondary parkinsonian syndromes was confirmed by normal findings 
on 3.0-Tesla brain magnetic resonance imaging (3.0 T MRI), which 
revealed intact nigrostriatal pathways (without evidence of vascular 
lesions, midbrain atrophy, or iron deposition in globus pallidus). The 
clinical baseline of PD patients was assessed by two movement 
disorder specialists (H.F.C. and X.L.P.), using the Unified Parkinson’s 
Disease Rating Scale (UPDRS III), Hoehn and Yahr (H-Y) staging, the 
RBD screening questionnaire (RBDSQ), and the Mini-Mental State 
Examination (MMSE). In addition, PD patients were stratified into 
the following two subgroups based on the RBDSQ scores, namely, 
PD-RBD (RBDSQ score ≥ 6) and PD-nRBD (RBDSQ score < 6), 
using the validated cutoff of 6 points for clinical relevance (24, 25). 
Age- and sex-matched HCs underwent standardized neurological 
evaluations to confirm the absence of neurological disorders. All 
enrolled participants (both PD patients and healthy controls) were 
free of infections, hepatic dysfunction, renal dysfunction, 
hypertension, diabetes mellitus, neoplasms, and autoimmune diseases. 
All participants were free of any medications (including over-the-
counter drugs, vitamins, nutraceuticals, or herbal supplements) for at 
least eight weeks prior to blood collection. Each participant signed a 
written informed consent before enrollment, and this study received 
approval from the Ethics Committee of the Affiliated Jinhua Hospital, 
Zhejiang University School of Medicine [Approval no. (Research) 
2022-Ethical Review-221, date: September 7, 2022]. This research was 
conducted following the ethical principles of the Declaration 
of Helsinki.

2.2 Serum sample collection and 
processing

Venous blood samples were collected from all participants in the 
morning following an overnight fast of at least 12 h (8: 00 PM to 
8:00 AM) (26). During the fasting period, participants were allowed 
to consume small amounts of pure water until 10:00 PM. The serum 
was separated within 60 min after collection by centrifugation at 
2000 × g for 10 min and subsequently stored at −80°C until 
further analysis.

Samples were processed for metabolite extraction according to 
previously reported methods (27). In brief, serum samples were 
thawed at 4°C and then vortexed for 1 min to ensure complete 
homogenization. Then, 50 μL of serum was mixed with 400 μL of 
methanol in a 2 mL centrifuge tube. After vortexing for 1 min and 
centrifugation at 12,000 × g for 10 min at 4°C, the supernatant was 
transferred to a new 2 mL centrifuge tube. The sample was then 
concentrated and dried. Finally, 150 μL of 2-chloro-l-phenylalanine 
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(4 ppm) solution prepared with 80% methanol in water was added to 
redissolve dried extracts. The solution was then filtered through a 
0.22 μm membrane and transferred to a detection bottle for LC–MS 
analysis. Quality control (QC) samples were prepared by mixing 10 μL 
of each extracted serum sample to monitor the LC–MS 
instrument stability.

2.3 LC–MS analysis

LC–MS analysis was performed on a Vanquish UHPLC System 
(Thermo Fisher Scientific, USA).

Chromatographic separation was performed using an 
ACQUITY UPLC® HSS T3 column (2.1 × 100 mm, 1.8 μm; Waters, 
Milford, MA, USA) maintained at 40°C. The flow rate was 0.3 mL/
min, and the injection volume was 2 μL. For LC-ESI(+)-MS 
(positive ion mode) analysis, the mobile phases consisted of 0.1% 
(v/v) formic acid in water (A1) and 0.1% (v/v) formic acid in 
acetonitrile (B1). For LC-ESI(−)-MS (negative ion mode) analysis, 
the mobile phases were 5 mM ammonium formate in water (A2) 
and acetonitrile (B2). Both analyses were conducted under the 
same elution gradient (28) as follows: 0–1 min, 8% B; 1–8 min, 
8–98% B; 8–10 min, 98% B; 10–10.1 min, 98–8% B; and 
10.1–12 min, 8% B.

Mass spectrometric detection of metabolites utilized an 
Orbitrap Exploris 120 instrument (Thermo Fisher Scientific, USA) 
equipped with an ESI ion source. Data acquisition employed full-
scan MS1 (m/z 100–1,000) at 60,000 FWHM, followed by data-
dependent MS/MS (ddMS2) scans at 15,000 FWHM. Source 
parameters included sheath gas pressure (40 arb), auxiliary gas flow 
(10 arb), spray voltage (+3.5 kV for ESI[+] and-2.5 kV for ESI[−]), 
capillary temperature (325°C), number of data-dependent scans per 
cycle (4), normalized collision energy (30%), and dynamic exclusion 
time (automatic) (29).

2.4 Data processing and metabolite 
identification

Prior to analysis, raw metabolite intensities underwent total peak 
area normalization followed by log2 transformation to improve 
normality. The raw LC–MS data were firstly converted to mzXML 
format by MSConvert in ProteoWizard software package (30) 
(v3.0.8789) and processed using XCMS (version 3.12.0) in R for 
feature detection, retention time correction, and alignment (31), 
yielding a quantitative list of metabolites. Metabolites exhibiting a 
relative standard deviation (RSD) > 30% in QC samples were 
excluded, while the remaining metabolites were retained for 
subsequent analysis (29).

Metabolites were identified using MS1 and MS/MS spectra against 
the following databases: the Human Metabolome Database (HMDB) 
(32), Kyoto Encyclopedia of Genes and Genomes (KEGG) (33), 
LipidMaps (34), MassBank (35), mzCloud (36), and the metabolite 
database built by Biomedical Tech Co., Ltd. (Suzhou, China). Primary 
identification was achieved by matching precursor ion m/z (mass 
error tolerance < 30 ppm) and adduct information to derive molecular 
formulas. The quantitative metabolites with MS/MS spectra were 
compared and matched to the fragment ion information of each MS/

MS spectrum in these databases to achieve the secondary identification 
of these metabolites.

2.5 Statistical and pathway analyses

All statistical analyses were performed using R statistical software 
(version 4.3.1). The orthogonal partial least squares discriminant 
analysis (OPLS-DA) model was employed to evaluate group separation 
and clustering (37–39). The R2 (model explainability) and Q2 (model 
predictability) were calculated to assess the stability and reliability of 
the model by 7-fold cross-validation (40). In 7-fold cross-validation, 
the dataset was randomly partitioned into seven equally sized subsets, 
with each subset iteratively serving as the validation set while the 
remaining six subsets were used for model training (41). A variable 
importance in projection (VIP) score threshold > 1 was used to extract 
the significant contributor metabolites to group separation in the 
OPLS-DA model (42).

Differential metabolites between groups were identified using 
Student’s independent t-tests, with statistical significance defined as 
p < 0.05. Multiple comparison adjustments were implemented 
through the Benjamini-Hochberg procedure with a false discovery 
rate (FDR) < 0.05. Fold change (FC) values were calculated as the 
median intensity ratio between groups (PD vs. HC and PD-RBD vs. 
PD-nRBD). Volcano plots were used to visualize metabolite 
significance [−log10 (p-value)] and magnitude of FC [log2(FC)]. 
Hierarchical biclustering analysis was applied to both samples and 
metabolites, generating clustered heatmaps. Receiver operating 
characteristic (ROC) curves were constructed, and the area under the 
curve (AUC) was computed to evaluate biomarker diagnostic 
performance. AUC values were interpreted as follows: 0.9–1.0 
(excellent), 0.8–0.9 (good), 0.7–0.8 (fair), 0.6–0.7 (poor), and <0.6 
(fail) (43). Age, UPDRS part III, H-Y stage, RBDSQ, and MMSE were 
compared between groups using Student’s independent t-tests. Sex 
composition was analyzed via a chi-squared test. All quantitative data 
are presented as the means ± standard deviations (SDs) unless 
specified otherwise.

Significantly altered metabolites were analyzed for pathway 
enrichment using MetaboAnalyst (44),1 followed by mapping onto 
KEGG pathways to elucidate higher-level systemic functional 
implications. Visualizations of metabolite-pathway associations were 
generated through the KEGG Mapper tool.

3 Results

3.1 Comparison of demographic and 
clinical variables of participants

The demographic characteristics of the PD and HC groups are 
presented in Table  1. There were no significant differences in age 
distribution or sex composition. The demographic and clinical 
features of PD-RBD and PD-nRBD patients are detailed in Table 2. 
Age, sex composition, UPDRS part III, H-Y stage, and MMSE scores 

1 http://www.metaboanalyst.ca
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FIGURE 1

Altered metabolic profiles between patients with PD and HCs. (A) OPLS-DA score plot. ESI (+): positive ion mode, R2X = 0.599, R2Y = 0.967, Q2 = 0.927. 
(B) OPLS-DA score plot. ESI (−): negative ion mode, R2X = 0.115, R2Y = 0.972, Q2 = 0.827. (C) Volcano plot of metabolites in the PD group versus the HC 
group. Red: upregulated metabolite; Blue: downregulated metabolite; Grey: metabolite not meeting the significance thresholds.

did not show significant differences between the PD-RBD and 
PD-nRBD groups, but there was a significant difference in the RBDSQ 
scores between the groups.

3.2 Metabolic signatures of drug-naïve PD 
patients compared to HCs

To investigate the differential metabolites in PD patients, the 
serum metabolites were introduced to OPLS-DA models. The 
metabolites of PD patients were clearly separated from HCs on the 
OPLS-DA score plots [ESI(+): R2X = 0.599, R2Y = 0.967, Q2 = 0.927; 
ESI(−): R2X = 0.115, R2Y = 0.972, Q2 = 0.827] (Figures 1A,B). Among 
the 425 metabolites, 144 metabolites exhibited significant distinction 
between PD and HC groups (VIP scores > 1), with 107 upregulated 
metabolites (represented by red dots) and 37 downregulated 
metabolites (represented by blue dots) in PD patients relative to HCs. 

The volcano plot provided a graphical representation of the 
significance and magnitude of changes in metabolite levels, 
highlighting the most prominent alterations in the PD group 
(Figure 1C). Univariate analysis with FDR correction revealed 132 
different metabolites between the PD and HC groups (FDR < 0.05). 
These metabolites included mainly lipids, amino acids and their 
derivatives, organic acids and their derivatives, nucleotides and their 
derivatives, carbohydrates and their derivatives, terpenoids, sterols, 
vitamins, cofactors, alkaloids compounds, nitrogen compounds, and 
phenolic compounds (Supplementary Table S1).

3.3 Identification of potential metabolic 
biomarkers for PD

To evaluate the diagnostic potential of serum metabolites in PD, 
ROC curve analysis was applied to metabolomic profiles derived 

TABLE 1 Demographic data for recruited patients with PD and HCs.

Demographic characteristics PD (n = 41) HC (n = 20) p-valuea

Age (years) 63.97 ± 9.09 61.70 ± 13.14 0.43

Sex (F/M) 21/20 11/9 0.78

PD, Parkinson’s disease; HC, healthy control; F/M, female and male; Values are presented as the means ± SDs. ap-value using a Student’s independent t-test for age and a chi-squared test for sex 
composition.

TABLE 2 Demographic and clinical data of PD-RBD and PD-nRBD.

Demographic and clinical 
characteristics

PD-RBD (n = 19) PD-nRBD (n = 22) p-valuea

Age (years) 64.42 ± 8.80 63.59 ± 9.53 0.78

Sex (F/M) 9/10 12/10 0.65

UPDRS part III 26.68 ± 10.61 26.82 ± 14.79 0.97

H-Y stage 1.89 ± 0.72 1.98 ± 0.61 0.69

RBDSQ 8.05 ± 2.17 2.00 ± 0.87 <0.001

MMSE 25.00 ± 3.73 23.77 ± 5.73 0.43

PD-RBD, PD with RBD patients; PD-nRBD, PD without RBD patients; F/M, female and male; UPDRS part III, Unified Parkinson’s Disease Rating Scale III; H-Y stage, Hoehn and Yahr stage; 
RBDSQ, RBD screening questionnaire; MMSE, Mini-Mental State Examination; Values are presented as the means ± SDs. ap-value using Student’s independent t-tests for age, UPDRS part III, 
H-Y stage, RBDSQ, MMSE, and a chi-squared test for sex composition.
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from PD patients and HCs. The AUC values of ROC curves were 
used to assess the diagnostic potential of the identified metabolites. 
Among the 132 selected metabolites, sodium deoxycholate had the 
greatest ability (AUC = 0.991, Figure  2A) to differentiate PD 
patients from HCs, followed by S-adenosylmethionine 
(AUC = 0.978, Figure 2B), L-tyrosine (AUC = 0.974, Figure 2C), 
3-methyl-L-tyrosine (AUC = 0.967, Figure 2D), 4,5-dihydroorotic 
acid (AUC = 0.967, Figure  2E), (6Z)-octadecenoic acid 
(AUC = 0.957, Figure 2F), and allantoin (AUC = 0.935, Figure 2G). 

The p-values for all selected metabolites were statistically significant 
(p < 0.001). Compared with the HC group, the concentrations of 
sodium deoxycholate, S-adenosylmethionine, L-tyrosine, and 
3-methyl-L-tyrosine were lower in the PD group, while the 
concentrations of 4,5-dihydroorotic acid, (6Z)-octadecenoic acid, 
and allantoin were higher in the PD group (Table 3). This analysis 
identified seven candidate metabolites with significant 
discriminatory power, highlighting their potential as biomarkers for 
PD diagnosis.

FIGURE 2

Potential metabolite biomarkers for PD diagnosis. (A-G) Box plots and ROC curves for the serum levels of (A) sodium deoxycholate, 
(B) S-adenosylmethionine, (C) L-tyrosine, (D) 3-methyl-L-tyrosine, (E) 4,5-dihydroorotic acid, (F) (6Z)-octadecenoic acid, and (G) allantoin for the 
diagnosis of PD. Data are expressed as the means ± SDs. ***p ≤ 0.001 and ****p ≤ 0.0001.
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3.4 Metabolomic analysis reveals distinct 
metabolic profiles in PD-RBD compared to 
PD-nRBD

The OPLS-DA score plots for all serum metabolites demonstrated 
clear separation between the PD-RBD and PD-nRBD groups. 
Additionally, the OPLS-DA score plots exhibited high separative and 
predictive validity, with robust R2Y and Q2 values in the positive ion 
mode [ESI(+): R2Y = 0.974, Q2 = 0.758] and negative ion mode 
[ESI(−): R2Y = 0.981, Q2 = 0.536], respectively (Figures 3A,B). The 
volcano plot revealed distinct regulatory patterns among these 
metabolites, with 59 upregulated metabolites (represented by red dots) 
and 43 downregulated metabolites (represented by blue dots) validated 
through the OPLS-DA score plots (Figure  3C). Furthermore, the 
heatmap shown in Figure 3D illustrates the differential expression 
patterns of the 102 metabolites (VIP scores > 1.0, p < 0.05) in the 
PD-RBD group compared with the PD-nRBD group. Among these, 
21 metabolites (FDR < 0.05) displayed significant differential 
abundance between the PD-RBD and PD-nRBD groups. These 
differentially expressed metabolites were predominantly categorized 
as seven secondary metabolites, five amino acid derivatives, four 
lipids, two organic acids, one cofactor, one nucleotide, and one 
aromatic amine, as shown in the VIP score analysis (Figure 4A).

Next, we  conducted ROC curve analyses for the 21 selected 
metabolites to further evaluate their potential as diagnostic biomarkers 
for patients with PD-RBD. Notably, suberic acid exhibited the highest 
diagnostic accuracy (AUC = 0.967, Figure 4B), followed by 3-methyl-
L-tyrosine (AUC = 0.876, Figure 4C) and methyl (indol-3-yl)acetate 
(AUC = 0.864, Figure 4D). The concentrations of these metabolites 
were higher in the PD-RBD group than in the PD-nRBD group 
(Table  4). These findings highlighted the potential of these three 
metabolites as candidate biomarkers for diagnosing patients with 
PD-RBD and provided insights into the metabolic pathways that may 
be involved in the pathogenesis of RBD within the context of PD.

3.5 Metabolic pathway enrichment analysis

Compared with the HC group, KEGG pathway analysis of the 
differentially abundant metabolites identified significant enrichment 
(p < 0.05) of the following nine metabolic pathways in the PD group: 
CCM; protein digestion and absorption; mineral absorption; 
cholesterol metabolism; PPAR signaling pathway; aminoacyl-tRNA 

biosynthesis; glucagon signaling pathway; arginine and proline 
metabolism; and beta-alanine metabolism (Figure 5A). Compared 
with the PD-nRBD group, KEGG pathway analysis of the altered 
metabolites revealed significant enrichment (p < 0.05) of the following 
seven pathways in the PD-RBD group: PPAR signaling pathway; 
D-amino acid metabolism; neuroactive ligand-receptor interaction; 
protein digestion and absorption; linoleic acid metabolism; ABC 
transporters; and arginine and proline metabolism (Figure 5B).

4 Discussion

The present study utilized untargeted LC–MS analysis to 
investigate serum metabolic profiles in drug-naïve PD patients 
compared to HCs. The metabolites that significantly decreased in the 
PD group included L-tyrosine and S-adenosylmethionine. L-tyrosine, 
a primary precursor of dopamine, plays a crucial role in dopamine 
(DA) synthesis (45), and the depletion of L-tyrosine indirectly reflects 
DA deficiency in the nigrostriatal pathway. A previous study reported 
similar tyrosine levels between levodopa-treated PD patients and 
healthy controls (46), which contrasts with our observation of reduced 
L-tyrosine in a drug-naïve PD cohort. This discrepancy may reflect the 
modulatory effects of levodopa therapy on tyrosine metabolism. 
L-tyrosine faces therapeutic challenges due to the blood–brain barrier, 
while its downstream metabolite, L-Dopa, is used to supplement DA 
substrates in the brain (47). The limitations of DA replacement 
therapy, such as diminishing efficacy and drug-induced motor 
complications (48), highlight the need to reconsider its upstream 
metabolite, L-tyrosine. Specifically, targeting L-tyrosine metabolism 
may offer novel opportunities to enhance DA synthesis through the 
upregulation of tyrosine hydroxylase (TH) activity using genetic 
engineering techniques. Similarly, S-adenosylmethionine serves as a 
principal methyl donor in epigenetic regulation (49), glutathione 
synthesis (50), and neurotransmitter synthesis (including DA 
metabolism) (51). Consistent with previous findings demonstrating 
significantly reduced S-adenosylmethionine levels in PD patients 
compared to control subjects (51–53), the observed 
S-adenosylmethionine depletion in our study may indicate a 
pathology of impaired methylation capacity, increased oxidative stress, 
and mitochondrial dysfunction, collectively contributing to 
α-synuclein aggregation and progressive neurodegeneration. 
Additionally, S-adenosylmethionine restricts the expression of A2A 
receptors, which are upregulated in PD patients, thereby indirectly 

TABLE 3 Identification of biomarkers between patients with PD and HCs.

Biomarkers Molecular 
formula

Measured 
m/z

RT 
(s)

ppm VIP log2(FC) p-
valuea

AUC Trend ESI 
mode

Sodium deoxycholate C₂₄H₃₉O₄Na 415.2105 465.3 0.293 1.259 −1.42 <0.0001 0.991 ↓ ESI+

S-adenosylmethionine C₁₅H₂₂N₆O₅S 398.2395 459.6 3.317 1.079 −1.1 <0.0001 0.978 ↓ ESI+

L-tyrosine C₉H₁₁NO₃ 182.0807 74.1 2.614 1.254 −1.08 0.0001 0.974 ↓ ESI+

3-methyl-L-tyrosine C₁₀H₁₃NO₃ 195.1016 485.5 0.025 1.455 −1.07 <0.0001 0.967 ↓ ESI+

4,5-dihydroorotic acid C₅H₆N₂O₄ 158.9611 189.9 0.706 2.157 2.85 <0.0001 0.967 ↑ ESI+

(6Z)-octadecenoic acid C₁₈H₃₄O₂ 281.2479 663.8 0.016 1.684 0.15 0.0003 0.957 ↑ ESI-

Allantoin C₄H₆N₄O₃ 158.9607 88.2 18.197 2.159 3.07 <0.0001 0.935 ↑ ESI+

PD, Parkinson’s disease; HC, healthy control; RT, retention time; ppm, part per million; VIP, variable important in projection; FC, fold change; AUC, area under the curve; ↑: up-regulation; ↓: 
down-regulation; ESI+/−: Positive ion mode/Negative ion mode; ap-value obtained Student’s independent t-tests.
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enhancing DA signaling (54–57). This suggests that 
S-adenosylmethionine replenishment strategies may have a specific 
targeted effect on A2A receptors in the brain and could synergize with 
existing dopaminergic therapies. Moreover, we observed significantly 
elevated serum allantoin levels in PD patients compared with HCs, 
which is consistent with previous metabolomic findings (8), indicating 
increased oxidative stress in synucleinopathy. The levels of sodium 
deoxycholate, 4,5-dihydroorotic acid, and (6Z)-octadecenoic acid 
were also significantly altered in the PD group, which may reflect 
underlying pathological processes in PD, such as gut dysbiosis (58), 
energy metabolism dysfunction (59), and inflammation (60). These 
findings demonstrate the complexity of metabolic disturbances in PD, 
suggesting that these metabolites could serve as both diagnostic 
biomarkers and potential therapeutic targets.

KEGG pathway analysis revealed that CCM was the most 
significantly altered pathway in PD pathology, with the highest 
number of PD-associated metabolic changes localized to this category 
(e.g., L-malic acid, citric acid, and isocitrate), consistent with findings 
from previous studies (61, 62). CCM, traditionally encompassing the 
glycolytic pathway [Embden-Meyerhof-Parnas (EMP) pathway], the 
pentose phosphate pathway (PPP), and the tricarboxylic acid (TCA) 
cycle, serves as the core of energy production and also as a hub 
connecting lipid and amino acid metabolism (63). Dysregulation of 
this pathway underscores insufficient energy and mitochondrial 
dysfunction in PD (4). For example, reduced levels of L-malic acid 
impair the TCA cycle, resulting in decreased nicotinamide adenine 
dinucleotide (NADH, reduced form) production and adenosine 
triphosphate (ATP) synthesis, ultimately inhibiting oxidative 

FIGURE 3

Altered serum metabolites of PD-RBD compared to PD-nRBD. (A) OPLS-DA score plots. ESI (+): positive ion mode, R2X = 0.564, R2Y = 0.974, 
Q2 = 0.758. (B) OPLS-DA score plot. ESI (−): negative ion mode, R2X = 0.0938, R2Y = 0.981, Q2 = 0.536. (C) Volcano plot of upregulated (red) and 
downregulated (blue) metabolites in the PD-RBD group versus the PD-nRBD group. (D) Heatmap of the 102 differential metabolites in the PD-RBD 
group versus the PD-nRBD group. Red indicates an increased level, and blue indicates a decreased level.
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phosphorylation in mitochondria. Thus, the pathway enrichment 
analysis highlighted the potential role of CCM in the 
neurodegenerative process of PD and provided a basis for further 
investigation into the underlying mechanisms. To bridge these 
findings to clinical applications, a heterogeneous information network 
(HIN) learning model integrating multi-omics data (e.g., 
metabolomics, proteomics, and mitochondrial genomics) could map 
PD-specific CCM bottlenecks (e.g., malate dehydrogenase 
dysfunction) to prioritize therapeutic targets (64). For instance, 3D 
molecular pocket-based generation techniques could design small 
molecules to allosterically activate TCA cycle enzymes, compensating 
for L-malic acid depletion and restoring NADH/ATP production (65).

Further analysis of differential serum metabolites between the 
PD-RBD and PD-nRBD groups revealed that only 3 out of 102 
differentially expressed metabolites associated with PD-RBD 
demonstrated potential as biomarkers (AUC > 0.86). Methyl (indol-
3-yl)acetate, a derivative of indole-3-acetic acid (66), is associated with 
the tryptophan metabolic pathway (67)—encompassing serotonin and 
melatonin synthesis—which is critically implicated in sleep regulation 
and mood disorders (68–70). The elevation of methyl (indol-3-yl)
acetate in PD-RBD patients suggested alterations in gut microbiota 
composition or function, leading to disturbances in the tryptophan 
metabolic pathway and potentially contributing to sleep–wake cycle 
dysregulation. This dysregulation may reflect a gut-brain axis 

FIGURE 4

Significantly altered metabolite clusters and potential metabolite biomarkers for PD-RBD. (A) Twenty-one metabolites had VIP > 1 (also with 
FDR < 0.05), indicating their contribution to the classification in the OPLS-DA score plot. (B–D) Box plots and ROC curves for the serum levels of 
(B) suberic acid, (C) 3-methyl-L-tyrosine, and (D) methyl (indol-3-yl)acetate for the diagnosis of PD patients with RBD. Data are expressed as the means 
± SD. ***p ≤ 0.001 and ****p ≤ 0.0001.

TABLE 4 Identification of biomarkers between PD-RBD and PD-nRBD.

Biomarkers Molecular 
formula

Measured 
m/z

RT 
(s)

ppm VIP log2(FC) p-
valuea

AUC Trend ESI 
mode

Suberic acid C₈H₁₄O₄ 157.0834 135.3 0.162 2.820 1.16 <0.0001 0.967 ↑ ESI+

3-methyl-L-

tyrosine

C₁₀H₁₃NO₃ 195.1016 485.5 0.025 2.088 1.05 <0.0001 0.876 ↑ ESI+

Methyl (indol-3-yl)

acetate

C₁₁H₁₁NO₂ 172.0715 675 0.384 2.098 0.86 0.0001 0.864 ↑ ESI+

PD-RBD, PD with RBD patients; PD-nRBD, PD without RBD patients; RT, retention time; ppm, part per million; VIP, variable important in projection; FC, fold change; AUC, area under the 
curve; ↑: up-regulation; ↓: down-regulation; ESI+/−: Positive ion mode/Negative ion mode; ap-value obtained Student’s independent t-tests.
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dysfunction, as altered microbial tryptophan metabolism modulates 
systemic levels of neuroactive metabolites (71). In PD, the propagation 
of α-synuclein pathology from the gut to the brain (Braak’s hypothesis) 
(72) may be exacerbated by gut dysbiosis (73, 74). Suberic acid, an 
aliphatic dicarboxylic acid, was significantly elevated in PD-RBD 
patients, indicating impaired fatty acid β-oxidation and exacerbation of 
neuronal energy deficits. Notably, increased suberic acid levels have also 
been observed in the urine metabolites of PD patients, further 
supporting the role of mitochondrial energy metabolism dysregulation 
in PD-related pathology (75, 76). This impaired fatty acid β-oxidation 
could lead to ATP depletion, thereby impairing synaptic function and 
exacerbating neurodegeneration in vulnerable regions such as the 
substantia nigra—a key site affected in PD (77). Moreover, suberic acid 
accumulation could promote reactive oxygen species (ROS) 
overproduction, exacerbating oxidative stress that facilitates α-synuclein 
misfolding and aggregation (78, 79). This mechanism supports the 
established pathological association between mitochondrial ROS 
generation and α-synucleinopathy—a pathological hallmark of PD—in 
synucleinopathies (80–82). In contrast, 3-methyl-L-tyrosine exhibited 
a dual pattern, with decreased serum levels in PD patients compared 
with HCs and increased levels in PD-RBD patients compared with 
PD-nRBD patients. As a methylated derivative of L-tyrosine (83), the 
significant reduction in 3-methyl-L-tyrosine levels in the PD group 
aligns with the observed decline in L-tyrosine levels in our study, 
thereby providing another perspective on dopaminergic depletion. 
Notably, previous studies have demonstrated that PD patients receiving 
levodopa therapy exhibit significantly elevated serum levels of 3-methyl-
L-tyrosine compared to healthy controls (2, 46), whereas our drug-naïve 
cohort exhibited the opposite trend. This contrast suggests that L-Dopa 
may modulate tyrosine metabolism through alternative pathways or 
altered enzymatic activity during dopaminergic replacement therapy. In 
PD-RBD patients, TH activity is more severely reduced compared with 
PD-nRBD patients (84). This pronounced TH deficiency leads to 

impaired conversion of tyrosine to L-Dopa, thereby disrupting DA 
biosynthesis. Consequently, such metabolic blockage may redirect 
tyrosine flux toward alternative pathways, resulting in the accumulation 
of tyrosine-derived intermediates—such as 3-methyl-L-tyrosine—in the 
systemic circulation. This duality underscores the dynamic interplay 
between neurodegeneration and metabolic adaptation across 
PD progress.

Pathway enrichment analysis identified the PPAR signaling pathway 
as a key dysregulated pathway in PD-RBD, with a tendency towards 
inactivation. PPARs are nuclear receptors that modulate lipid 
metabolism, inflammation, cellular differentiation, and mitochondrial 
biogenesis (85, 86). The present findings of altered metabolites involved 
in lipid metabolism, such as alpha-dimorphecolic acid, align with the 
involvement of PPAR signaling in these conditions. Dysregulation of 
the PPAR signaling pathway has been implicated in the pathogenesis of 
PD (86, 87), as it plays a crucial role in energy metabolism (88), 
antioxidant stress response (89), and circadian metabolic homeostasis 
(90). For example, PPARα agonists demonstrate neuroprotective effects 
in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD 
mice by attenuating oxidative stress (89). Additionally, the deletion of 
PPARγ has been shown to disrupt diurnal rhythms in mice (91)—a 
dysfunction particularly relevant to the progression of RBD symptoms 
in PD. These findings collectively suggest that targeting the PPAR 
signaling pathway may alleviate metabolic disturbances in 
PD-RBD. Coupled with large language models (LLMs) trained on 
biomedical literature and clinical trial databases, researchers could 
rapidly screen FDA-approved drugs for repurposing candidates (e.g., 
anti-diabetic agents targeting PPARγ) that mitigate both motor and 
non-motor symptoms in PD-RBD (92). To optimize therapeutic 
efficacy, geometric deep learning (GDL) could predict drug–drug 
associations (DDAs) within a PPAR-centered heterogeneous network 
(93). By analyzing the geometric relationships between PPAR agonists, 
mitochondrial enhancers, and circadian modulators, GDL models may 

FIGURE 5

Scatter plot showing the KEGG pathway enrichment analysis results. (A) Pathway analysis of the significantly altered metabolites in the PD group versus 
the HC group. The red-to-yellow gradient signifies ascending p-values, and the dot size is scaled to show the magnitude per pathway. (B) Pathway 
analysis of the significantly altered metabolites in the PD-RBD group versus the PD-nRBD group.
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identify synergistic combinations (e.g., pioglitazone with melatonin) to 
address multifactorial PD-RBD pathology while minimizing adverse 
effects (94, 95).

Although our study provides a comprehensive analysis of 
metabolic profiling and identifies potential biomarkers in PD and 
PD-RBD, it had several limitations. Firstly, PD and PD-RBD were 
diagnosed based on clinical criteria. To address this, future studies 
should link pathophysiology markers, genetic technology, and 
neuroimaging to enhance diagnostic specificity. Secondly, the genetic 
background, dietary habits, and lifestyle factors of the patients and 
HCs may have influenced metabolite levels. Future research should 
calibrate these variables in larger cohorts to improve robustness and 
reproducibility. Finally, the present study focused on serum 
metabolites, and further investigation should integrate genomics, 
transcriptomics, and proteomics to provide additional insights into 
the molecular mechanisms underlying PD.

In summary, the present study identified valuable serum metabolic 
alterations that distinguish PD patients from HCs and PD-RBD patients 
from PD-nRBD patients, implicating dysregulated pathways (e.g., CCM 
and PPAR signaling) in PD pathogenesis. The identified metabolites 
(e.g., S-adenosylmethionine and 3-methyl-L-tyrosine) offer the 
potential for diagnosing and monitoring disease progression, while 
PPAR modulation may address RBD-specific pathology in PD. These 
findings enhance the understanding of neurodegenerative processes in 
PD and may facilitate the discovery of therapeutic targets.
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