
TYPE Original Research

PUBLISHED 04 June 2025

DOI 10.3389/fneur.2025.1608341

OPEN ACCESS

EDITED BY

Andrea Bianconi,

University of Genoa, Italy

REVIEWED BY

Eichi Takaya,

Tohoku University, Japan

Shinya Sonobe,

Tohoku University, Japan

Luca Francesco Salvati,

ASST Sette Laghi, Italy

*CORRESPONDENCE

Zhongsheng Lu

LZS13997154047@163.com

RECEIVED 08 April 2025

ACCEPTED 15 May 2025

PUBLISHED 04 June 2025

CITATION

He M, Lu Z, Lv Y, Cheng Z, Zhang Q, Jin X and

Han P (2025) Machine learning-based

prediction of 6-month functional recovery in

hypertensive cerebral hemorrhage: insights

from XGBoost and SHAP analysis.

Front. Neurol. 16:1608341.

doi: 10.3389/fneur.2025.1608341

COPYRIGHT

© 2025 He, Lu, Lv, Cheng, Zhang, Jin and

Han. This is an open-access article distributed

under the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited,

in accordance with accepted academic

practice. No use, distribution or reproduction

is permitted which does not comply with

these terms.

Machine learning-based
prediction of 6-month functional
recovery in hypertensive cerebral
hemorrhage: insights from
XGBoost and SHAP analysis

Menghui He1, Zhongsheng Lu2*, Yiwei Lv1, Zihai Cheng1,

Qiang Zhang2, Xiaoqing Jin2 and Pei Han2

1Department of Graduate School, Qinghai University, Xining, China, 2Department of Neurosurgery,

Qinghai Provincial People’s Hospital, Xining, China

Background: The poor prognosis of hypertensive cerebral hemorrhage (HICH)

remains high. The period of 3–6 months after onset is the most rapid phase of

neurological recovery in hemorrhagic stroke patients. Accurate early prediction

of 6-month functional outcomes is critical for optimizing therapeutic strategies.

This study compared the predictive e�cacy of multiple machine learning

models to identify the optimal model for forecasting long-term prognosis in

HICH patients.

Methods: We conducted a retrospective analysis of clinical data from 807

HICH patients admitted to Qinghai Provincial People’s Hospital’s Neurosurgery

Department between June 2020 and June 2024. After data preprocessing, data

from June 2020 to December 2023 (n= 716) were randomly split into training (n

= 497) and test sets (n = 219) at a 7:3 ratio. Data from January to June 2024 (n =

91) served as an external validation set. Recursive Feature Elimination (RFE) was

performed to identify optimal features, and repeated five-fold cross-validation

minimized the risk of overfitting. Model performance was evaluated using Area

Under the Curve (AUC) and Decision Curve Analysis (DCA) across XGBoost,

Random Forest (RF), Logistic Regression (LR), Support Vector Machine (SVM),

and K-Nearest Neighbors (KNN). The optimal model was interpreted via SHapley

Additive exPlanations (SHAP).

Results: The 6-month poor prognosis rate among 807 HICH patients was

27.51%. The XGBoost model exhibited optimal performance in the training set

(AUC = 0.921, 95% CI: 0.896–0.944) and demonstrated stability in the external

validation set (AUC = 0.813, 95% CI: 0.728–0.899). DCA analysis showed that

the XGBoost model provided higher net benefit than other models across

threshold probabilities of 0%−20% and 56%−100%. SHAP analysis identified

hematoma volume as the most critical predictor, with secondary contributions

from Glasgow coma score, white blood cell count, age, serum albumin, and

systolic blood pressure, among others.

Conclusion: XGBoost models demonstrate powerful accuracy in long-term

prognosis prediction of HICH patients. The SHAP framework quantifies the

specific contributions of key pathophysiological indicators to individual patient

model predictions, enabling individualized risk stratification and strategic

allocation of medical resources.
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1 Introduction

Hypertensive cerebral hemorrhage (HICH), caused by the

rupture of small blood vessels due to chronic hypertension, affects

approximately 4 million individuals globally each year (1). HICH

is associated with high mortality and disability rates, posing a

significant threat to patient health and survival (2). As a critical

neurosurgical condition, HICH is clinically characterized by acute

onset, rapid progression, and associated complications (3, 4). Post-

hemorrhagic motor recovery predominantly occurs within the first

3–6 months post-onset (5, 6). Consequently, early prediction of

neurological recovery beyond 6 months and development of an

effective prognostic system hold substantial clinical value, as they

are essential for optimizing medical resource allocation, guiding

individualized treatment strategies, and improving functional

outcomes in affected patients (7).

Machine learning’s powerful data-processing capabilities,

adaptability, and proficiency in capturing non-linear patterns

render it highly suitable for analyzing multifaceted clinical

datasets, with applications in clinical research growing annually

(8). Their capacity to analyze large-scale, intricate data makes

them indispensable for clinical diagnosis and outcome assessment.

SHAP is a strong method in the realm of machine learning

interpretability. This method demystifies the “black-box” nature of

complex models, thereby enhancing transparency and credibility

in model outcomes (9).

This study aimed to comparemultiplemachine learningmodels

using diverse clinical features to predict long-term prognosis in

HICH patients. Following screening, SHAP analysis was performed

on the best-performing models. By identifying key clinical metrics

that influence prognosis prediction, we aimed tomake the decision-

making process of the models transparent.

2 Methods

2.1 Data sources

We retrospectively collected clinical data from 807 patients

diagnosed withHICH admitted to theDepartment of Neurosurgery

at Qinghai Provincial People’s Hospital between June 2020 and June

2024. These patients were included in the study cohort. Specifically,

data from June 2020 to December 2023 were randomly divided

into a training set (70%) and a test set (30%). Data from January

to June 2024 were reserved as an external validation set. The

study protocol was approved by the Research Ethics Committee of

Qinghai Provincial People’s Hospital (reference number: 2025-022-

02), and informed consent was obtained from all participants or

their legal guardians.

Inclusion criteria were as follows: (1) age ≥18 years; (2)

documented history of hypertension; (3) cerebral hemorrhage

confirmed by head CT and/or MRI. Exclusion criteria included: (1)

traumatic cerebral hemorrhage, cerebral amyloid angiopathy, or

secondary hemorrhage (e.g., aneurysms, vascular malformations,

vasculitis, coagulopathies, tumor-related strokes, cerebral

venous thrombosis, and so on); (2) incomplete clinical data

insufficient for analysis; (3) loss to follow-up; (4) comorbidities

that could confound study outcomes, such as life-threatening

systemic diseases.

2.2 Predictor variables

This study defined poor prognosis as the failure of HICH

patients to achieve expected clinical recovery goals 6 months

post-onset. Detailed admission clinical data were retrospectively

collected, including age, gender, hypertension history, diabetes

history, smoking and alcohol consumption status, admission

blood pressure, admission CT hematoma volume, admission

blood glucose, surgical intervention, and admission Glasgow

Coma Scale (GCS) score (15: conscious; 12–14: mildly impaired

consciousness; 9–11: moderately impaired consciousness; 3–

8: coma). Additionally, modified Rankin Scale (mRS) scores

were recorded 6 months post-onset (0–2: good prognosis; 3–6:

poor prognosis).

Imaging data included hemorrhage location (basal ganglia,

thalamus, cerebellum, or lobar), initial hematoma volume

(measured within 24 h of onset using open-source software

3DSlicer for layer-by-layer delineation), and ventricular

rupture status. Laboratory data encompassed red blood cell

count, hemoglobin, white blood cell count, platelet count,

prothrombin time, international normalized ratio, activated partial

thromboplastin time, fibrinogen, serum potassium, serum calcium,

serum sodium, serum albumin, alanine aminotransferase, and

aspartate aminotransferase.

2.3 Data pre-processing

Missing values frequently occur in medical datasets, which

can impair model performance. To address this issue, multiple

imputation was employed to handle missing data (10). Specifically,

the Multivariate Imputation by Chained Equations (MICE)

algorithm was utilized for this purpose. Additionally, continuous

variables underwent standardization, and categorical variables

were factorized. To mitigate class imbalance, the Random Over-

Sampling Examples (ROSE) method was applied. In this study, we

utilized the ROSE package in R to implement the algorithm. We

followed the default settings of the package, which automatically

determine the appropriate sampling ratio based on the imbalance

of the dataset. This approach helps to improve the model’s ability

to generalize and make accurate predictions for both majority and

minority classes (11).

2.4 Selection of candidate variables and
predictors

For feature selection, Recursive Feature Elimination (RFE) was

employed to identify the optimal subset of predictors. RFE, a widely

utilized feature selection method in machine learning, enhances

model accuracy and generalizability by eliminating redundant

or irrelevant features. This process also reduces computational

complexity and improves model interpretability. RFE was strictly
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conducted on the training dataset alone to avoid any potential

information leakage. And during the RFE process, five-fold

cross-validation was employed to ensure robustness and prevent

overfitting. RFE analysis generated 25 potential predictors, from

which the top 10 were selected formodel development. The optimal

feature subset included hematoma volume, GCS score, white blood

cell (WBC) count, age, serum albumin, systolic blood pressure

(SBP), blood glucose, platelet count, mean corpuscular volume

(MCV), and serum potassium.

2.5 Machine learning models

We employed five machine learning models for training

and validation:

• SVM: A supervised learning algorithm widely used for

classification and regression tasks. SVM constructs

hyperplanes to maximize the margin between classes,

enabling effective data separation.

• LR: A generalized linear model commonly applied to

classification problems. Its simplicity and interpretability

make it a foundational tool in predictive modeling.

• RF: An ensemble learning method that constructs multiple

decision trees to improve prediction accuracy and stability.

RF’s inherent resistance to overfitting and ability to handle

high-dimensional data make it suitable for complex datasets.

• KNN: A straightforward yet effective algorithm used for

classification and regression. KNN predicts outcomes

by measuring distances between data points, with

performance enhanced through feature selection and

optimal K-value tuning.

• XGBoost: A state-of-the-art gradient-boosting framework

that combines weak learners (typically decision trees) into a

strong predictive model. XGBoost is renowned for its high

performance, scalability, and support for diverse loss functions

and regularization techniques.

Each model was selected based on its unique strengths

in addressing classification tasks and handling complex

clinical datasets.

2.6 Machine learning explainable tool

The model interpretation was performed using the SHAP

method, which quantifies the contribution of each feature to the

final prediction. By isolating independent feature contributions and

analyzing feature interactions, SHAP provides a comprehensive

and interpretable framework. Each observation in the dataset is

associated with a unique set of SHAP values, enabling granular

insights into individual predictions.

2.7 Statistical analysis

All statistical modeling and visualization analyses were

performed using R software (version 4.4.2). Categorical variables

were analyzed via chi-square tests or Fisher’s exact probability

method and reported as frequency percentages. Continuous

variables following a normal distribution were described using

mean± standard deviation, with group comparisons conducted via

t-tests. Non-normally distributed data were expressed as quartiles

and analyzed for variability using the Wilcoxon rank-sum test. A

significance level of (P < 0.05) was adopted.

The model’s discriminative ability was quantified by the

area under the receiver operating characteristic curve (AUC),

complemented by assessments of sensitivity and accuracy. To

evaluate clinical applicability, DCA was employed to calculate net

benefit values across different risk thresholds, thereby assessing the

decision-making utility of the predictive model.

3 Results

3.1 Patient characteristics

From June 2020 to June 2024, the Department of Neurosurgery

at Qinghai Provincial People’s Hospital admitted a total of 1,407

HICH cases. After applying the inclusion and exclusion criteria,

807 patients were included in the final cohort of this study. The

data was divided into a training set (n = 497), a test set (n

= 219), and an external validation set (n = 91). In the above-

mentioned dataset, the proportion of missing values was 8.7%,

and multiple imputation was performed. Baseline characteristic

comparisons (Table 1) revealed statistically significant differences

in Platelet Count (188.11 ± 64.70 vs. 172.01 ± 60.45, P = 0.001),

APTT (26.37 ± 3.19 vs. 25.73 ± 3.25, P = 0.002), and WBC (10.67

± 3.77 vs. 10.12 ± 3.83, P = 0.036), which were higher in the test

set, while ALT levels were higher in the training set (28.63 ± 21.91

vs. 26.81± 21.41, P = 0.017).

Within the training set, comparisons between prognosis

groups (Table 2) showed that the poor prognosis group exhibited

significantly higher Hematoma Volume (30.64 ± 9.06 vs. 21.35

± 11.84, P < 0.001) and WBC (11.20 ± 4.44 vs. 9.67 ± 3.46,

P < 0.001), but lower GCS (9.85 ± 2.16 vs. 11.63 ± 2.53, P <

0.001). These findings highlight key clinical indicators associated

with prognosis.

3.2 Model construction and evaluation

Using the training set data, we constructed five predictive

models: XGBoost, RF, LR, SVM, and KNN. The training set was

employed for training the models and performing hyperparameter

tuning. We used a five-fold cross-validation approach on the

training set to optimize model parameters during the development

phase. The test set and the external validation set remained

completely independent and were used only once after model

selection and training were completed. This ensures an unbiased

assessment of the model’s generalization performance. The AUC

values of the five ML models based on the training set are 0.921,

0.881, 0.789, 0.849, and 0.879, respectively (Figure 1). The XGBoost

model demonstrated superior predictive accuracy, achieving an

AUC of 0.921 (95% CI: 0.896–0.944), while the LR model showed

relatively weaker performance (AUC = 0.789, 95% CI: 0.748–

0.829).
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TABLE 1 Demographic and clinical characteristics of the training and test

set studies.

Group All data Train data Test data P-value

N 817 497 219

Gender 0.928

Female 203 (28.4%) 140 (28.2%) 63 (28.8%)

Male 513 (71.6%) 357 (71.8%) 156 (71.2%)

Ethnicity 0.458

Han 403 (56.3%) 280 (56.3%) 123 (56.2%)

Tibetan 199 (27.8%) 133 (26.8%) 66 (30.1%)

Hui 114 (15.9%) 84 (16.9%) 30 (13.7%)

Smoking 0.556

Yes 619 (86.5%) 427 (85.9%) 192 (87.7%)

No 97 (13.5%) 70 (14.1%) 27 (12.3%)

Drinking 0.800

No 634 (88.5%) 441 (88.7%) 193 (88.1%)

Yes 82 (11.5%) 56 (11.3%) 26 (11.9%)

Intraventricular hemorrhage 0.515

No 393 (54.9%) 277 (55.7%) 116 (53.0%)

Yes 323 (45.1%) 220 (44.3%) 103 (47.0%)

Bleeding location 0.639

Basal ganglia 367 (51.3%) 261 (52.5%) 106 (48.4%)

Thalamus 81 (11.3%) 52 (10.5%) 29 (13.2%)

Cerebellum 80 (11.2%) 55 (11.1%) 25 (11.4%)

Cerebral lobe 188 (26.3%) 129 (26.0%) 59 (26.9%)

Surgical treatment 0.745

No 380 (53.1%) 266 (53.5%) 114 (52.1%)

Yes 336 (46.9%) 231 (46.5%) 105 (47.9%)

Poor prognosis 0.239

No 517 (72.2%) 352(70.8%) 165(75.3%)

Yes 199 (27.8%) 145(29.2%) 54(24.7%)

Age 58.28± 10.17 57.97± 10.28 58.98± 9.9 0.283

WBC 10.29± 3.82 10.12± 3.83 10.67± 3.77 0.036

RBC 5.39± 0.98 5.39± 0.97 5.38± 1.00 0.879

Hemoglobin 165.66± 29.90 165.88± 29.64 165.15± 30.54 0.852

MCV 90.97± 7.51 90.85± 7.89 91.25± 6.60 0.737

Platelet count 176.93± 62.18 172.01± 60.45 188.11± 64.70 0.001

PT 11.68± 1.10 11.65± 1.07 11.74± 1.16 0.233

INR 1.02± 0.15 1.02± 0.15 1.030± 0.15 0.343

APTT 25.93± 3.24 25.73± 3.25 26.37± 3.19 0.002

FBG 2.860± .90 2.860± .92 2.880± .87 0.648

ALT 28.07± 21.76 28.63± 21.91 26.81± 21.41 0.017

AST 26.44± 16.44 26.58± 16.41 26.11± 16.53 0.401

Albumin 38.24± 4.73 38.12± 4.76 38.53± 4.67 0.277

(Continued)

TABLE 1 (Continued)

Group All data Train data Test data P-value

Blood glucose 7.52± 3.04 7.56± 3.05 7.45± 3.02 0.310

Serum

potassium

3.69± 0.44 3.67± 0.45 3.72± 0.43 0.063

Serum sodium 137.53± 3.99 137.64± 3.90 137.29± 4.18 0.267

Serum calcium 2.26± 1.08 2.28± 1.29 2.22± 0.15 0.810

Body

temperature

36.53± 1.17 36.51± 1.39 36.56± 0.30 0.963

Heart rate 79.79± 15.96 79.84± 15.77 79.67± 16.42 0.771

Respiratory

rate

19.61± 1.86 19.63± 1.81 19.59± 1.97 0.446

SBP 163.47± 25.43 163.08± 25.61 164.35± 25.04 0.595

DBP 98.36± 15.62 98.41± 16.18 98.26± 14.29 0.834

Hematoma

volume

24.05± 11.81 24.06± 11.87 24.03± 11.71 0.847

GCS 11.13± 2.62 11.11± 2.55 11.18± 2.75 0.624

Group comparisons were performed using theWilcoxon rank sum test (continuous variables)

and Fisher’s exact test (categorical variables).

WBC, white blood cell count; RBC, red blood cell count; MCV, mean corpuscular

volume; PT, prothrombin time; INR, international normalized ratio; APTT, activated

partial thromboplastin time; FBG, fibrinogen; ALT, alanine aminotransferase; AST, aspartate

aminotransferase; SBP, systolic blood pressure; DBP, diastolic blood pressure; GCS, glasgow

coma scale; Hb, hemoglobin; PLT, platelet count; IVH, intraventricular hemorrhage.

To further assess the generalization ability of these models, we

evaluated their performance on an independent external validation

set (Figure 2). The results showed that the XGBoost model

sustained superior performance on the external validation set,

achieving an AUC of 0.813 (95% CI: 0.728–0.899). This consistency

with its training set performance indicates strong generalization

capabilities. Other models also demonstrated varying levels of

performance: the RF model achieved an AUC of 0.794 (95% CI:

0.704–0.884), the KNN model an AUC of 0.779 (95% CI: 0.685–

0.874), the SVM model an AUC of 0.730 (95% CI: 0.603–0.856),

and the LR model an AUC of 0.788 (95% CI: 0.689–0.887).

To evaluate clinical utility, decision curve analysis (DCA)

quantified the net clinical benefit of each model across threshold

probabilities (Figure 3). All models outperformed the “treat all

patients” (orange reference line) and “treat no patients” (yellow

reference line) strategies. Notably, XGBoost provided the highest

net benefit across a broad range of thresholds. Further performance

assessment using metrics such as accuracy, sensitivity, positive

predictive value (PPV), negative predictive value (NPV), and F1

score (Table 3) confirmed XGBoost’s superiority. Consequently,

XGBoost was selected as the core model for long-term HICH

prognosis prediction.

3.3 Interpretation of XGBoost model by
SHAP method

As depicted in Figure 4, Hematoma Volume emerged as the

most influential predictor of prognosis, followed by GCS, WBC,

Age, Albumin, and SBP. Figure 5 further elucidates the directional
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TABLE 2 Characteristics of HICH patients in the training set.

Characteristic Good
prognosis

Poor
prognosis

P-value

N 352 145 0.661

Gender 0.661

Female 97 (27.6%) 43 (29.7%)

Male 255 (72.4%) 102 (70.3%)

Ethnicity 0.063

Han 210 (59.7%) 70 (48.3%)

Tibetan 87 (24.7%) 46 (31.7%)

Hui 55 (15.6%) 29 (20.0%)

Smoking >0.999

No 302 (85.8%) 125 (86.2%)

Yes 50 (14.2%) 20 (13.8%)

Drinking 0.876

No 313 (88.9%) 128 (88.3%)

Yes 39 (11.1%) 17 (11.7%)

Intraventricular hemorrhage 0.013

No 209 (59.4%) 68 (46.9%)

Yes 143 (40.6%) 77 (53.1%)

Bleeding location 0.791

Basal ganglia 183 (52.0%) 78 (53.8%)

Thalamus 40 (11.4%) 12 (8.3%)

Cerebellum 38 (10.8%) 17 (11.7%)

Cerebral lobe 91 (25.9%) 38 (26.2%)

Surgical treatment 0.001

No 205 (58.2%) 61 (42.1%)

Yes 147 (41.8%) 84 (57.9%)

Age 57.10± 10.41 60.08± 9.68 0.008

WBC 9.67± 3.46 11.20± 4.44 <0.001

RBC 5.38± 0.91 5.44± 1.11 0.788

Hemoglobin 165.79± 28.57 166.12± 32.20 0.754

MCV 90.70± 8.31 91.23± 6.76 0.874

Platelet count 172.17± 60.73 171.61± 59.97 0.910

PT 11.66± 1.02 11.62± 1.19 0.675

INR 1.02± 0.15 1.02± 0.16 0.973

APTT 25.75± 3.27 25.70± 3.21 0.828

FBG 2.84± 0.92 2.90± 0.90 0.579

ALT 29.85± 23.24 25.69± 18.03 0.170

AST 26.58± 16.58 26.59± 16.04 0.310

Albumin 38.07± 4.58 38.23± 5.18 0.579

Blood glucose 7.34± 3.05 8.08± 3.00 0.001

Serum potassium 3.68± 0.43 3.64± 0.49 0.312

Serum sodium 137.60± 3.54 137.72± 4.66 0.636

(Continued)

TABLE 2 (Continued)

Characteristic Good
prognosis

Poor
prognosis

P-value

Serum calcium 2.22± 0.13 2.41± 2.39 0.330

Body temperature 36.56± 0.30 36.41± 2.54 0.513

Heart rate 79.73± 15.39 80.11± 16.72 0.865

Respiratory rate 19.47± 1.75 20.01± 1.89 0.023

SBP 160.24± 24.95 169.99± 25.96 <0.001

DBP 97.45± 16.21 100.74± 15.94 0.080

Hematoma volume 21.35± 11.84 30.64± 9.06 <0.001

GCS 11.63± 2.53 9.85± 2.16 <0.001

WBC, white blood cell count; RBC, red blood cell count; MCV, mean corpuscular

volume; PT, prothrombin time; INR, international normalized ratio; APTT, activated

partial thromboplastin time; FBG, fibrinogen; ALT, alanine aminotransferase; AST, aspartate

aminotransferase; SBP, systolic blood pressure; DBP, diastolic blood pressure; GCS, glasgow

coma scale; Hb, hemoglobin; PLT, platelet count; IVH, intraventricular hemorrhage.

FIGURE 1

ROC curve analysis of five machine learning algorithms in the

training dataset for predicting the long-term prognosis of HICH

patients.

impact of each variable. Positive SHAP values (right side, orange)

indicate features that increase the probability of poor prognosis,

while negative values (left side, purple) suggest a reduced risk.

Hematoma Volume showed a strong positive association with poor

prognosis, with high values (orange) correlating with increased

risk. Conversely, higher GCS scores (left side, orange) were linked

to better outcomes, as indicated by negative SHAP values. For

instance, larger hematoma volumes (right side, orange) were

associated with poorer prognoses, whereas higher GCS scores (left

side, orange) predicted better outcomes compared to lower scores

(right side, purple).
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3.4 SHAP individual force plots

Figure 6 presents individual SHAP force diagrams for two

patients: one with a poor prognosis (A) and one with a good

prognosis (B). The model’s base value (E[f(x)] = 1.29) represents

the initial predicted value in the absence of feature inputs. The

individual predictive value (f(x)) quantifies deviations from the

base value using a logarithmic odds ratio, reflecting the cumulative

effect of clinical characteristics on prognosis. In the diagram,

red arrows denote risk-enhancing features, while blue arrows

denote risk-suppressing features. The arrow length corresponds to

the magnitude of the feature contribution. For Patient A (poor

FIGURE 2

ROC curve analysis of five machine learning algorithms in the

external validation set for predicting the long-term prognosis of

HICH patients.

prognosis), high-risk features such as large hematoma volume

(46.4mL), low GCS score (8 scores), and metabolic abnormalities

(e.g., blood glucose 15 mmol/L) collectively elevated the predictive

value (f(x) = 2.0) above the baseline, strongly indicating adverse

outcomes. Conversely, for Patient B (good prognosis), protective

features dominated, driving the predictive value (f(x) = 0.999)

below the baseline.

4 Discussion

Current research on HICH prognosis primarily focuses

on identifying key prognostic factors and elucidating their

mechanisms. While established early predictors include age,

gender, smoking and alcohol history, neurological deficit severity,

hematoma volume, intraventricular hemorrhage, and subarachnoid

hemorrhage, their prognostic utility remains debated (4, 12, 13).

Traditional approaches, such as univariate and multivariate logistic

regression, have demonstrated limited accuracy in predicting

outcomes. Machine learning algorithms, increasingly utilized in

medical research (14), often outperform conventional statistical

models. Recent applications in HICH include predicting hematoma

expansion using techniques like XGBoost, which showed superior

TABLE 3 Predictive performance of the models.

Model AUC
(%)

Sensitivity
(%)

F1
score

Accuracy
(%)

PPV NPV

XGBoost 0.921 0.634 0.715 0.853 0.821 0.862

RF 0.881 0.351 0.485 0.782 0.784 0.782

LR 0.789 0.386 0.466 0.742 0.589 0.778

SVM 0.849 0.379 0.516 0.792 0.808 0.790

KNN 0.879 0.324 0.456 0.774 0.770 0.775

AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value;

XGBoost, extreme gradient boosting; RF, random forest; LR, logistic regression; SVM, support

vector machine; KNN, K-nearest neighbors.

FIGURE 3

Decision curve analysis of five models plotting net benefits with di�erent threshold probabilities.
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FIGURE 4

The weights of variables importance.

performance in early prognosis (15, 16). However, the use of

machine learning for long-term functional recovery assessment

remains underexplored.

In this study, we compared multiple machine learning

algorithms and demonstrated, for the first time, the significant

advantage of the XGBoost model in predicting 6-month HICH

prognosis (AUC= 0.921 in the training set and AUC= 0.813 in the

external validation set). The research findings confirm that the high

performance of the XGBoost model reflects its genuine predictive

capability, rather than overfitting. Sonobe et al. (17) constructed

an RF model for predicting poor prognosis in ICH patients after

rehabilitation therapy, and the model also demonstrated excellent

performance. Previous studies have primarily employed machine

learning algorithms to predict the short-term prognosis of HICH

patients (18, 19). However, HICH patients possess the potential

for continuous neurological recovery, and their neurological

function may progressively improve over time. A longitudinal

study conducted by Sreekrishnan et al. (20) on 173 HICH patients

demonstrated that the mRS scores of most patients showed

significant improvement at 3 and 6 months post-discharge. This

study uniquely predicts the long-term prognosis of HICH patients

through machine learning models. It can provide critical evidence

for the development of personalized treatment and rehabilitation

plans in clinical practice, thereby enhancing patient prognosis

and quality of life. Using the SHAP method, we systematically

evaluated the clinical weights of predictor variables, ranking them

by importance. The SHAP individual force plot reveals the specific

contributions of key pathophysiological indicators to the model

predictions for individual patients. This holds significant value in

enhancing the transparency of the model. Top-ranked variables,

including hematoma volume and GCS score, were analyzed in

conjunction with clinical insights, providing a foundation for

individualized risk assessment and clinical decision-making.

Hematoma volume was identified as the most critical

predictive variable in this study, aligning with previous findings

(21). Larger volumes increase brain tissue compression, exacerbate

blood-brain barrier disruption, and induce cerebral edema

and intracranial pressure elevation, ultimately worsening

neurological deficits (22). A study by Delcourt et al. (23)

demonstrated that each 1mL increase in hematoma volume

raised the risk of death or dependence by 5%. Different

brain regions exhibit significant threshold differences in their

tolerance to hematoma volume due to variations in anatomical

structure, functional importance, and compensatory capacity

(24). Future research needs to further integrate location-specific

volume thresholds to optimize prognostic scoring systems and

intervention protocols.

Since its introduction in 1974, the GCS has become the

international standard for assessing consciousness impairment in

patients with traumatic brain injury and spontaneous cerebral

hemorrhage (25). It indirectly reflects the extent of brain tissue

damage (26). While GCS is widely used for acute-phase severity
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FIGURE 5

The SHapley Additive exPlanation (SHAP) values.

assessment, therapeutic decision-making, and long-term prognosis

prediction, its predictive accuracy can be enhanced by integrating

it with multidimensional indicators such as hematoma volume

and age (27). Age emerged as another critical predictor (28), with

advancing age significantly increasing the risk of adverse outcomes

due to reduced physiological reserve and recovery capacity. A study

by Huang et al. (29) highlighted aging as a key risk factor for poor

prognosis in HICH.

Elevated peripheral bloodWBC counts are a critical prognostic

factor in HICH. A study indicates that an early increase in WBC

levels after hemorrhage is closely associated with a higher mortality

rate (30). This link may stem from inflammation triggered

by brain tissue damage, which releases mediators attracting

WBCs, primarily neutrophils and monocytes. Neutrophils, the first

responders, phagocytose debris but also release reactive oxygen

species (ROS) and matrix metalloproteinases (MMPs) like MMP-9.

While these degrade damaged tissue, excessive ROS andMMPs can

disrupt the blood-brain barrier, worsen cerebral edema, and cause

secondary injury (31). High WBC levels often indicate increased

risks of complications such as cerebral edema and rebleeding (32),

which may lead to poorer long-term functional outcomes (33).

However, a study by Morotti et al. (34) highlighted differing roles

of neutrophils and monocytes: reduced neutrophil counts were tied

to a higher risk of hematoma expansion, while elevated monocyte

counts correlated with increased expansion risk. These findings

underscore the complex relationship between leukocyte subsets and

HICH prognosis, suggesting a need for further research into the

specific mechanisms of WBC action post-hemorrhage.

Serum albumin levels exhibit a significant negative correlation

with poor prognosis in HICH. Research consistently indicates

that low serum albumin is strongly associated with increased

mortality and adverse outcomes in HICH patients. Specifically,

diminished albumin levels may reflect severe comorbidities (Acute

inflammation, infection, liver disease, or vascular endothelial

injury) or malnutrition, both of which contribute to poor

prognoses. Studies have highlighted that reduced albumin levels

directly correlate with higher mortality risk (35). Furthermore,

admission albumin levels serve as an independent prognostic

indicator. One study observed that patients with low admission

albumin had prolonged hospital stays and elevated short-

term and long-term mortality rates (36). In clinical practice,

monitoring albumin levels provides critical insights into patient

prognosis. Physicians should closely track these levels and

consider interventions to enhance nutritional status or address

underlying conditions.

Systolic blood pressure (SBP) is a key risk factor in hypertensive

HICH, impacting severity and prognosis. Each 10 mmHg SBP

increase raises hemorrhage risk by 60% (37). In the acute phase,

high SBP exacerbates hemorrhage and may cause further brain

damage by increasing cerebral blood flow and intracranial pressure
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FIGURE 6

SHapley Additive exPlanation (SHAP) force plot for two selected patients. (A) Person with a poor prognosis. (B) Person with a good prognosis.

(38). Therefore, stabilizing SBP and minimizing fluctuations are

essential for improving long-term prognosis. Clinical guidelines

recommend controlling acute-phase SBP to approximately 140

mmHg, as this level is associated with reduced poor prognosis

risk (39, 40). However, overly rapid SBP reduction may adversely

affect short-term and long-term outcomes (41). Rational SBP

management can significantly lower the risk of poor prognosis and

enhance patients’ quality of life.

5 Conclusion

We developed an interpretable XGBoost prediction model

that demonstrated superior performance in assessing the risk

of poor prognosis in patients with HICH. Furthermore, by

quantifying the specific contributions of key pathophysiological

indicators to individual patient model predictions through

the SHAP framework, individualized risk stratification

and optimization of medical resource allocation can

be achieved.

6 Strengths

This study’s strength lies in constructing a long-term

prognostic prediction model for the high-risk HICH subtype

(comprising 50%−70% of spontaneous cerebral hemorrhage

cases), addressing the etiological heterogeneity limitations

of broader sICH models. Beyond traditional indicators like

hematoma volume and GCS score, the study confirmed the

independent predictive value of serum albumin, white blood

cell count, and systolic blood pressure fluctuations for HICH’s

long-term prognosis. The model’s real-world generalizability is

supported by external validation and decision curve analysis

across independent time periods. Clinicians can utilize this model

to identify at-risk patients and optimize rehabilitation resource

allocation. Additionally, the SHAP framework’s application

enhances model transparency, offering an interpretable basis for

personalized interventions.

7 Limitations

Our study has several limitations. First, the GCS is influenced

by patient cooperation and rater experience, which may introduce

data bias. Second, as a retrospective analysis, selection bias

may affect the generalizability of the results. Third, the

limited number of externally validated cases may impact the

reliability of the findings. Fourth, since the data is sourced

from a single institution, there are limitations in terms of

coverage and diversity, which may result in the analysis lacking

comprehensiveness and broad representativeness. Finally,

future research should not only focus on developing high-

performance predictive models but also aim to create accessible

application platforms.
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