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This review explores the role of the thalamus in focal epilepsy, focusing on 
insights gained from stereoelectroencephalography (SEEG). The thalamus has 
recently regained attention as a crucial player in seizure dynamics. Thalamic 
SEEG recordings can be used to assess certain aspects of the thalamus’s role in 
human focal epilepsy, in particular the timing and dynamics of involvement of 
distinct thalamic nuclei during seizures and in interictal activity. Estimation of 
thalamic involvement in seizure propagation may be valuable before embarking 
on surgical resection and provide guidance for neuromodulation strategies. High 
thalamic epileptogenicity correlates with poorer surgical outcomes, making it 
a predictive biomarker. Deep brain stimulation (DBS), particularly targeting the 
anterior and pulvinar nuclei, has effectively reduced seizure frequency and 
improved consciousness during seizures. However, the effectiveness of DBS 
varies, emphasizing the need for individual targeting based on individual seizure 
dynamics. High-frequency thalamic stimulation can reduce seizure frequency and 
alter epileptogenic networks, offering tailored therapeutic approaches. Despite 
the potential added surgical risks of depth electrode implantation, thalamic SEEG 
significantly enhances the understanding of epileptogenic networks. It supports 
the development of personalized epilepsy treatments by elucidating the complex 
interplay between cortical and subcortical regions, paving the way for improved 
seizure management and neuromodulation strategies.
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Introduction

The role of the thalamus in the genesis and propagation of spikes-waves discharges is 
well known in generalized epilepsies, particularly in the pathophysiology of absence seizures 
(1–3). This subcortical region has been historically rarely investigated by stereo-
electroencephalography (SEEG), compared with cortical areas, due to the lack of established 
guidelines for its coverage (4). Nonetheless, it has been experimentally shown that thalamic 
connectivity impacts the propagation of temporal lobe seizures (5). Introduced in the sixties, 
the SEEG method was developed as a presurgical tool to investigate focal epilepsies and 
provides a unique means to investigate the role of subcortical regions, including the 
thalamus, in the genesis and dynamic of seizures (6). The first reports on the thalamic SEEG 
recordings during seizures stem from French groups and date back to 2006 (7, 8). Since then, 
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several groups have increasingly implemented thalamic recording 
during SEEG (9). In parallel, the growing interest in thalamic DBS 
for refractory epilepsies highlighted the potential relevance of these 
recordings in stratifying DBS targets.

In the present work, we review the current use of thalamic SEEG 
and its interest in research and treatment of focal epilepsy.

Methods

English-language and French-language articles related to thalamic 
SEEG were identified by a search in PubMed (1965–June 2024) using 
the following keywords: “thalamus,” “stereotactic techniques,” 
“intracranial EEG,” “electroencephalography” and “epilepsy.” The 
references in the selected papers were also included if relevant.

Results

Based on the PubMed search, 67 articles were screened. Overall, 
after inclusion of the relevant references, the reported studies included 
562 patients with SEEG recordings including thalamic implantation 
(1 to 121 patients/study).

SEEG targets based on the anatomy of the 
thalamus

The thalamus consists of several nuclei (Figure 1) defined based 
on chemoarchitecture and cytoarchitecture (10) or connectivity (11) 
leading to multiple atlases with different numbers of defined nuclei 
(e.g., the stereotactic Morel atlas, cited here, involves 13 nuclei). 
However, thalamic nuclei have consistent topography and 

functionality across subjects (12). They can be subdivided into relay 
nuclei, the reticular nucleus and intralaminar nuclei (13). Among 
the relay nuclei, the anterior, mediodorsal, and pulvinar nuclei are 
associative nuclei and, thus, interesting targets for SEEG recordings 
due to their numerous connections to the limbic system, which is 
frequently involved in focal epilepsies (14). The reticular nucleus is 
a shell-shaped structure at the lateral part of the thalamus (15) that 
is difficult to explore by SEEG. Among the intralaminar nuclei, the 
centromedian nucleus is connected to widespread cortical areas. 
Regarding its implication in the seizure dynamics, it has been 
demonstrated that it can drive the cortex or, inversely, follow the 
cortex depending on the seizures (16). The aforementioned nuclei 
are the most frequent targets during SEEG recordings with thalamic 
implantation performed for fundamental and clinical research (4) 
using orthogonal transsylvian or posterior-to-anterior approaches 
(17). The pulvinar can be targeted without additional electrodes, by 
extending the trajectories of electrodes planned for cortical 
sampling in contrast with centromedian and anterior nuclei (6, 
18, 19).

Implication of the thalamus during seizure 
genesis, propagation and termination

Ictal SEEG recordings with available sampling of subcortical brain 
areas demonstrated thalamic implication during the first 15 s of the 
seizure in 86% of patients based on visual analysis (8, 20) (Figure 2).

Similarly to cortical regions (21), various patterns of seizure onsets 
were described at thalamic contacts, i.e., low-voltage fast activity (LVFA; 
31%), rhythmic spikes (38%) or theta activity (18%) (8, 20) (Figure 3). 
High-frequency activity could be detected in all investigated thalamic 
nuclei, especially in the anterior and dorsomedial nuclei at the onset and 
in the centromedian nucleus at the end of the seizure (22). The sequential 
implication of the thalamic nuclei during the seizure time course is 
highly reproducible from one seizure to another, but cannot be predicted 
either based on the neuroanatomical knowledge, the cortical area where 
the seizure is starting, or the seizure semiology (23). The first thalamic 
ictal discharge can emerge before the first clinical manifestation (24).

The pulvinar implication in temporal lobe seizures is more frequent 
in medial temporal lobe epilepsy (mTLE) than in lateral temporal lobe 
epilepsy (lTLE) (7). Pulvinar LVFA occurs more frequently at the 
seizure onset in lTLE (73% vs. 27% in mTLE) and rhythmic repetitive 
spikes and slow waves occur more frequently in mTLE (77% vs. 23% in 
lTLE) (8). No specific thalamic pattern was detected during seizure 
propagation (8). However, thalamic SEEG could assess seizure 
propagation patterns within different sampled thalamic nuclei, and 
demonstrated a prominent implication of the pulvinar (25). Cortical 
LVFA at seizure onset is associated with a rapid propagation to the 
thalamus (22). Clinically, the early medial pulvinar implication in 
temporal seizures correlates with an early loss of consciousness during 
the seizure (7). The loss of consciousness was correlated with the level 
of thalamocortical synchronization, possibly due to the excessive 
synchronization within consciousness-related thalamic structures 
impeding information processing (26). Furthermore, it has been 
demonstrated that during wakefulness, the dorsomedial nucleus 
exhibits rhythmic gamma activity between 30 and 40 Hz that ceases 
during ictal propagation, simultaneously with the loss of consciousness, 
and reappears simultaneously with restoration of consciousness (27).

FIGURE 1

Segmentation of thalamic nuclei. Sagittal slice of T1-weighted 7 T 
brain magnetic resonance imaging where the thalamic nuclei most 
frequently implanted in SEEG are shown, i.e., pulvinar (Pu, green), 
centromedian (CM, grey), mediodorsal (MD, blue) and anterior nuclei 
(AV, purple). Figure from Brun et al. (78).
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Seizure termination, as observed through intracerebral EEG 
(iEEG), is characterized by two main patterns: synchronous, where 
neural activity ceases simultaneously across regions, and 
asynchronous, where cessation occurs in a more regionally staggered 
manner (28–30). Synchronous patterns are characterized by a higher 
thalamocortical synchronization at the end of seizure and more 
thalamic efferences than other seizures (29). Nevertheless, pulvinar 
and anterior nucleus are receivers of afferent information from the 
temporal lobe across the seizure (19) (Figure 4).

The estimation of ictal epileptogenicity of different brain structures 
using the epileptogenicity index (EI) (31) highlighted higher 
epileptogenicity values in the thalamic nuclei (implanted nuclei: 

pulvinar in 57% of patients, medial nucleus in 11%, lateral nucleus in 
22%, not localized in 10%) compared to other subcortical structures, 
with the thalamus EI values as high as in the epileptogenic zone in 20% 
of cases (20). The thalamic epileptogenicity was correlated with the 
extent of the epileptogenic network (ρ = 0.32, p = 0.02) (20). Functional 
connectivity analysis highlighted increased thalamocortical connectivity 
at the seizure-onset of temporal seizures compared with the interictal 
period (7), followed by a subsequent increase at the end of the seizure 
(19). Connectivity did not significantly differ between two investigated 
thalamic nuclei (anterior nucleus and medial pulvinar), but the pulvinar 
seems to initiate the seizure cessation (19). Similarly to global cerebral 
synchronization, thalamic synchronization is higher at the end of a 

FIGURE 2

Timing of the thalamic implication in a temporal lobe seizure. Top: A 20-s SEEG recording dataset including a temporal lobe seizure and three-
dimensional representation of the epileptogenicity index (EI). Seizure-onset is characterized by a DC-shift with low-voltage fast activity involving the 
anterior insula and the temporal pole, rapidly involving the pulvinar, and later amygdala and hippocampus. Bottom: Axial (left), coronal (middle) and 
sagittal (right) slices of T1-weighted brain MRI with a representation of the normalized EI values on the respective intracranial contacts (for details on 
the EI, see Bartolomei et al. (31), involved contacts represented according to a color scale from yellow to red, green contacts non involved in the 
discharge): Ia1-2 (anterior insula, right), EI = 1; H1-2 (pulvinar, left), EI = 0.97; TP2-3, TP3-4 and TP4-5 (temporal pole, middle), EI = 0.89 to 0.44.
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seizure compared to seizure onset (29). An increase in these global 
cerebral synchronization values was associated with a shorter seizure 
duration (p = 0.045), and thalamic synchronization followed the same 
tendency (p = 0.052) (29). Thalamic and cortical synchronization could 
lead to seizure cessation (32). The coherence between seizure onset and 
thalamic activity increases in the delta, theta, and alpha bands, and delta 
activity is mainly found at the centromedian nucleus during frontal lobe 
seizures and at the anterior nucleus during limbic seizures (33).

Electro-clinical seizures induced modification of local field 
potentials within the anterior nucleus, in contrast with electrical 
infraclinical seizures (34). Time-frequency analysis allows to 
discriminate focal seizures with preserved consciousness and those 
with altered consciousness or secondary bilateralization based on the 
frequency content of ictal activity (34) (Figure 5).

During the postictal period, it has been shown that the centromedian 
nucleus showed a postictal rhythmic 1.5–2.5  Hz delta activity 
simultaneously to the suppression of cortical background activity (35).

Interictal thalamic recordings

The high rates of thalamic spikes/ripples and a high 
thalamocortical connectivity in the beta and gamma bands during 
sleep were related to poor surgical outcome (Engel class III/IV) (36).

Thalamic stimulations

Electrical thalamic stimulation can induce various types of 
afterdischarges. However, electroclinical seizures triggered by 

thalamic stimulation are only exceptionally reported, e.g., 
mesiotemporal seizures induced by a 50 Hz stimulation of the 
midline thalamus (37). A 10 Hz stimulation increases cortical 
gamma activity, while a 50 Hz stimulation suppresses responses 
in the gamma band, however both those frequencies reduce the 
post-stimulation excitability (38) by either inhibition of upstream 
brain areas and short-term synaptic depression of thalamocortical 
connections in case of low-frequency stimulations, or inhibition 
of thalamic responses in case of high-frequency stimulations (39). 
Both hippocampi and neocortical brain areas with high 
epileptogenicity were more sensitive to this type of stimulation 
(38). Transient awareness alteration could be  triggered by 
stimulations of the anterior thalamic nucleus or pulvinar, and was 
associated with a decreased functional connectivity (node 
strength) within the pulvinar as well as decrease in thalamo-
cortical functional coupling (link strength), impacting 
connections with the insular, orbitofrontal, lateral prefrontal, 
temporal and parietal associative cortices (40). Interestingly, high-
frequency stimulations of the centromedian nucleus during 
SEEG-recorded focal electro-clinical seizures were shown to 
discontinue seizures and associated ictal apnea (41), whereas 
130 Hz stimulation of medial pulvinar could decrease seizure 
duration and loss of conciousness during SEEG-recorded temporal 
seizures, triggered by 50 Hz stimulation of the ipsilateral 
hippocampus (42).

Thalamo-cortical evoked potentials (TCEPs) following a pulvinar 
stimulation were observed in the operculo-insular areas in 90% of 
cases, in the lateral temporal areas in 78%, in the parietal cortex in 65%, 
in the frontal cortex in 52%, in the occipital cortex in 43%, in the 
mesiotemporal areas in 34% and in the cingular gyrus in 33% (43).

FIGURE 3

Thalamic seizure-onset patterns. (A,B) Low voltage fast activity. (C) Rhythmic spikes. (D) Theta discharge. Figure from Pizzo et al. (20).
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Thalamic responses to cortical stimulations

Cortico-thalamic evoked potentials (CTEPs) were mainly 
observed within the pulvinar (23). CTEPs recorded in the pulvinar 
followed 80% of mesiotemporal stimulations, 76% of lateral temporal 
stimulations, 66% of cingular gyrus stimulations, 40% of parietal 
stimulations, 25% of occipital stimulations, 17% of frontal stimulations 
and 14% of operculo-insular stimulations (43).

Similarly to the results from CTEPS and TCEPs, a higher effective 
connectivity is described from the hippocampus to the thalamus than 
in the opposite direction (37). Additionally, the cortico-cortical 
evoked potentials (CCEPs) recorded within the posterior cingular 
gyrus following a hippocampal stimulation have a specific morphology 
related to their propagation in the Papez circuit through the anterior 
nucleus, that was confirmed by TCEPs of the anterior thalamus 
inducing an earlier but similar response (44).

The CCEPs analysis demonstrated a late evoked potential around 
500 ms after stimulation in rodents via cortico-thalamo-cortical 
pathways (45). It was therefore assumed that the described third peak 
in human CCEPs also evidences cortico-thalamo-cortical connectivity 
(46). Furthermore, the increased latency (46) and the increased 
variability (47) of this third CCEP peak within the epileptogenic zone 
could be  the interictal correlate of thalamic involvement in the 
epileptogenic network. The transmission via electrical synapses could 

induce the third peak of the CCEPs (46). Moreover, a higher 
proportion of subcortical responses are elicited after a single-pulse 
electrical stimulation within the epileptogenic zone (48).

Prediction of the surgical and 
neuromodulation outcome

Estimating ictal and interictal epileptogenicity biomarkers is 
important for the prognostication of surgical outcome (49, 50) and 
might help to limit epilepsy surgery failures (51). High ictal thalamic 
epileptogenicity values, as estimated by the EI (EI > 0.3), were 
associated with a poorer surgical outcome at 1 year (20). Thus, 
thalamic EI values assessed from ictal SEEG recordings could be a 
potential biomarker of the postoperative prognosis (20). Similarly, 
increased thalamocortical coupling at the seizure onset was related to 
a poor surgical outcome (7). Moreover, thalamocortical connectivity 
was demonstrated to be predictive of the neuromodulation response 
in focal epilepsy in several recent studies (36, 52, 53). Finally, greater 
functional connectivity between the seizure sites and the DBS site 
correlated with more favorable outcome of DBS (54).

A better understanding of the seizure cessation mechanisms 
could help to select more appropriate DBS targets and/or 
stimulation parameters (19, 55, 56). Indeed, one third of patients 

FIGURE 4

Afferences vs. efferences between the temporal regions and thalamic nuclei depending on the ictal timing. Mean and standard deviation of link 
strength between anterior nucleus (ANT), medial pulvinar (PuM), temporo-mesial structures (TM) and neocortical structures (NC) highlighting (i) 
stronger IN connectivity to the ANT at the middle (p < 0.01) and at the end (p < 0.001) of seizures than OUT connectivity, (ii) stronger IN connectivity to 
the PuM at the middle (p < 0.001) and at the end (p < 0.01) of seizures than OUT connectivity, (iii) stronger OUT connectivity from TM to NC at the 
middle (p < 0.001) and the end (p < 0.001) of seizures than IN connectivity. Figure from Soulier et al. (19).
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are not responsive to the anterior nucleus DBS. It has been 
suggested that this failure could be due to the early implication of 
other thalamic nuclei in the ictal discharge (23). The pulvinar 
represents a promising target for DBS due to its role in the 
cessation of seizures (19). As already mentioned above, medial 
pulvinar stimulations applied during the SEEG recorded temporal 
seizures could reduce seizure duration and ictal consciousness 
alteration (42).

Cortico-cortical connectivity modifications induced by 
thalamic stimulation could be used as a biomarker for the DBS 
efficacy (36, 53, 57–59). A prolonged thalamic stimulation 
(≥90 min) at a high frequency (145 Hz) reduced the amplitude 
of distant CCEPs, showing a modulation of the distant 
connectivity (58). Disruption of the ictal discharges (i.e., mainly 
low-voltage fast activity commonly occurring within the first 
400 ms in 95% of seizures) occur after thalamic responsive 
neurostimulation (RNS) (60). Nonetheless, the mechanism that 
underlies the efficacy depending on the stimulation target is not 
well understood (61). The development of algorithms to detect 
seizures during thalamic SEEG would allow to develop closed-
loop thalamic stimulation (62).

Deep brain and responsive stimulation 
recordings of thalamic activity

DBS and RNS recordings also help to better understand the 
timing of thalamic involvement. Such recordings linked the evolution 
to bilateral tonic–clonic seizures with the centromedian nucleus 
involvement in patients with focal epilepsy (63). It was shown that 
during generalized seizures thalamic activity precedes cortical activity 
whereas thalamic activity follows cortical discharge in frontal seizures 
(16). The same study demonstrated presence of independent focal 
unilateral epileptiform discharges restricted to the centromedian 
nucleus suggesting the possibility of autonomous ictogenesis by these 
thalamic structures (16). Other studies compared the results of 
thalamic and scalp EEG recordings and demonstrated that discharges 
in the anterior nucleus were observed in patients disclosing bilateral 
scalp EEG discharges, whereas discharges in the dorsomedial nucleus 
were seen in patients presenting with unilateral scalp EEG 
discharges (64).

A few recent studies attempted to demonstrate potential benefit 
of better stratifying the stimulation target depending on electro-
clinical features. In particular, centromedian nucleus DBS reduced the 

FIGURE 5

Frequency changes in the thalamic anterior nucleus during focal seizure with impaired awareness (A) vs. focal to bilateral tonic–clonic seizure (B). Top: 
Filtered signal in the time domain and spectral analysis. Bottom: Signal power at each frequency of interest. Time-frequency analysis showed a large 
2–6 Hz activity and a thin 8 Hz activity in the interictal period with a significant gain at 4 Hz during focal seizures with preserved consciousness and at 
4 Hz, 8 Hz, 16 Hz during focal seizures with altered consciousness or secondary bilateralization. Moreover, an increase in 100–200 Hz activity occured 
during seizures with secondary bilateralization while a decrease at 32 Hz occurs during seizures with preserved consciousness. Figure from Singh et al. 
(34).
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generalized seizure frequency (65) while having a little effect on focal 
seizures (66), anterior nucleus DBS reduced temporal lobe seizures 
(59), whereas pulvinar DBS has been shown to reduces seizure 
frequency in different subtypes of focal drug resistant epilepsy not 
accessible to surgery or after failure of resective surgery (67, 68). 
Another recent study has suggested that thalamic nucleus to 
be stimulated might be chosen depending on the type of epilepsy (69). 
Furthermore, multisite thalamic stimulation could be considered (70).

Risk–benefit ratio and safety 
considerations

Few studies reported rare short-term complications following 
thalamic implantation (4), especially symptomatic hemorrhages not 
in the thalamic area (71). Robot-assisted procedures improve the 
safety and precision of implantation allowing to reach the thalamic 
targets using conventional SEEG trajectories without adding 
supplementary electrodes (72). Yet the risk–benefit ratio may vary 
across the targeted nuclei and should be  particularly carefully 
evaluated when targeting centromedian, dorsomedial and anterior 
nuclei (6). To date, the hemorrhagic complications reported in 
patients with thalamic coverage have not occurred within the thalamic 
areas and could be regarded as possibly unrelated to the thalamic 
targeting, per se.

Discussion and conclusion

SEEG implantation eventually including thalamic targets always 
involves surgical risks, therefore risk–benefit ratio should be carefully 
considered (72). Still, no percentage of additional risk related to 
thalamic implantation is provided in published studies. Nonetheless, 
there is a large body of evidence for a safety of conventional thalamic 
SEEG targets. Thalamic recordings provide valuable insides into 
pathophysiology of focal epilepsies, in particular the ictogenesis and 
epileptogenesis, and help to better estimate the global organization of 
the epileptogenic networks in a given patient (6). The existing literature 
data underline the importance of studying both cortical and subcortical 
brain areas that may be  synchronously involved in epileptogenic 
networks (7). The early and/or prominent involvement of the thalamus 
is associated with worser epilepsy surgery outcome (7), specifically in 
cases of bitemporal epilepsy. Thus, estimating the thalamic 
epileptogenicity during the SEEG recording may be  valuable for 
predicting surgical outcome (20). While this can be estimated with only 
one implanted thalamic nucleus (20), the evaluation of neurostimulation 
targets during SEEG should require the implantation of multiple nuclei. 
Through stimulation and recording of different thalamic nuclei, SEEG 
can provide helpful information to guide target selection for 
personalized neuromodulation strategies using model-free (72, 73) and 
model-based approaches (74). Targeting the medial pulvinar is relatively 
straightforward. It can be accessed by inserting the superior temporal 
gyrus electrode deeper (6). In our view, the medial pulvinar should 
be almost systematically targeted when a single orthogonal trajectory is 
used to sample the planum temporale, Heschl’s gyrus, and the posterior 
inferior insular cortex. These areas would require electrode implantation 
regardless, and reaching the posterior thalamus would require only a 
modest extension of the planned trajectory. In contrast, targeting the 

centromedian or anterior thalamic nucleus often necessitates a 
dedicated oblique trajectory. These nuclei—especially the anterior 
thalamus—are not easily accessible through a standard orthogonal 
approach. Their inclusion should therefore be considered on a case-by-
case basis, informed by preoperative noninvasive data. This is all the 
more significant given the absence of definitive evidence that thalamic 
involvement observed on SEEG reliably predicts the therapeutic 
response to DBS. The cortical entry point should lie within the putative 
epileptogenic zone, and the trajectory should ideally extend from 
already sampled regions. Such approaches should remain within 
academic epilepsy surgery centers, preferably within clinical research 
protocols, discussed in multidisciplinary team meetings, and supported 
by the patient’s comprehensive informed consent. The recent technique 
from the Stanford group (17) offers an elegant solution by enabling the 
recording of multiple thalamic nuclei with a single lead. This strategy 
facilitates personalized mapping of seizure propagation networks 
through the thalamus. It should be reserved for carefully selected cases 
in experienced centers, particularly when preoperative investigations 
suggest resective surgery is unlikely and when thalamic recordings are 
expected to yield relevant data for neuromodulation planning. Finally, 
additional thalamic sampling requires specific MRI protocols to 
visualize the relevant nuclei accurately. Routine MRI sequences used in 
standard SEEG planning may be insufficient. Sequences such as STIR, 
f-GATIR, or QSM have demonstrated improved delineation of thalamic 
nuclei (75–77).

To conclude, the thalamic implantation scheme, including the 
number of implanted thalamic nuclei, should be defined based on the 
questions that are to be answered during SEEG.
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