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Background: Erythropoietin (EPO) plays a crucial role in the early adaption to 
high altitude and is possibly involved in neuroprotection. Neurofilament light 
chain (NfL) is an established marker of neuroaxonal damage.

Objective: To investigate whether EPO dynamics in simulated high altitude are 
linked to neuroaxonal damage as measured by NfL.

Methods: Sixty-three healthy subjects were exposed to simulated altitude of 
4,500 m for 12 h in a normobaric hypoxic chamber at the University of Innsbruck. 
Clinical data (heart rate, arterial oxygen saturation) were assessed before and 3 h 
after high altitude exposure; plasma samples were drawn before (measurement 
(M) 1) and after 12 h (M2). The levels of EPO and hypoxia-inducible factor (HIF)-
1α were quantified using commercially available ELISA kits. NfL concentrations 
were measured using the Simoa SR-X Analyzer, and NfL Z scores calculated 
using age- and body mass index (BMI)-adjusted reference values.

Results: EPO significantly increased after 12 h (M2: 10.12 [7.86–14.06] mU/mL 
vs. M1: 4.17 [2.99–5.67] mU/mL, p < 0.001), while HIF-1α did not significantly 
change (p = 0.409). Subjects with high EPO levels at M2 showed significantly 
lower NfL concentrations (5.85 [4.15–6.85] pg/mL vs. 6.73 [4.70–8.64] pg/mL, 
p = 0.030) as well as lower NfL Z scores (0.64 [−0.88–1.17] vs. 0.95 [0.25–1.48], 
p = 0.040) than those with low EPO levels. The extent of heart rate increase 
showed a positive correlation with EPO levels at M2 (rs = 0.322, p = 0.011).

Conclusion: Higher EPO concentrations were associated with lower NfL levels. 
This might further substantiate the hypothesis of a neuroprotective role of EPO.
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Introduction

Exposure to high altitude carries a risk due to various reasons 
including the decrease in oxygen partial pressure. Physiological ways 
to cope with hypoxia comprise increase of ventilation and heart rate, 
as well as production of red blood cells (RBC) (1–3). Nevertheless, this 
adaption is highly variable depending on the absolute height reached, 
the degree of acclimatization and the time to reach high altitude (4, 5). 
If adaption fails, high-altitude illness spanning a spectrum from acute 
mountain sickness (AMS) to high altitude pulmonary (HAPE) and/or 
cerebral edema (HACE) may occur (6, 7).

Erythropoietin (EPO) plays a key role in the adaption to high 
altitude hypoxia (3, 8) and acts as an anti-inflammatory mediator (9, 
10). Its production is mediated by hypoxia-inducible factor (HIF)-1α 
(11). A neuroprotective effect of EPO has been proposed (10, 12, 13), 
even though data on this are contradictory (14, 15) and 
neuroprotection is difficult to measure.

Neurofilament light (NfL) is an established marker of 
neuroaxonal damage (16), which has proven its potential in several 
neurological diseases, including brain hypoxia (17). While there are 
studies on EPO levels in high altitude, data on a possible link 
between EPO and NfL levels as marker of neuroaxonal damage 
are lacking.

Therefore, we  aimed to investigate whether EPO and NfL 
dynamics in simulated altitude are interlinked and may substantiate 
the proposed neuroprotective role of EPO.

Methods

A detailed description of the study design has been previously 
published (18, 19). Briefly, a cohort of 63 healthy subjects was 
recruited at the University of Innsbruck. Subjects who had visited high 
altitude areas prior to the study (≥2,500 m for a daytrip within 14 days 
prior to study initiation, >24 h within the last month before study 
participation, or permanent residency in heights of ≥1,000 m) were 
not eligible. Also, subjects with reported history of neurological, 
cardiological, pulmonary or psychiatric diseases were excluded. For 
the present analysis, only remaining samples from this prior study 
were used (18, 19).

After a first check-up, all subjects stayed in a normobaric hypoxic 
chamber located at the Department of Sports Science, Leopold-
Franzens University, Innsbruck, Austria, for 12 h simulating an 
approximate altitude of 4,500 m with an artificial oxygen level 
of 12.6%.

Demographic (age and sex) and basic clinical data [body mass 
index (BMI), heart rate in beats per minute (bmp), and arterial oxygen 
saturation (SaO2)] were assessed prior to entering the hypoxic 
chamber. Measurement of heart rate and SaO2 was repeated after 3 h 
in simulated high altitude. All heart rate and SaO2 measurements 
were performed standardized in sitting position. Symptoms and 
severity of AMS were assessed by the 2018 revised Lake Louise Acute 
Mountain Sickness Score (LLS). This scoring system ranges from 0 (no 

symptoms) to 12 (severe AMS symptoms) (20). AMS was defined as 
a maximal LLS score ≥ 4 (18, 20).

Blood (EDTA plasma) was sampled by a clinician before entering 
the hypoxic chamber (Measurement 1 [M1]) and 12 h later after 
exiting the chamber (M2).

Measurement of analytes

Samples were stored at −20°C until measurement. EPO and 
HIF-1α were measured at the Medical University of Innsbruck under 
blinded conditions using commercially available ELISA kits from 
Thermo Fisher Scientific (Waltham, MA, United States), following the 
manufacturer’s instructions. For the EPO ELISA, samples were diluted 
to achieve a detectable range of 1.6–100.0 mU/mL. Each sample or 
diluted standard (50 μL) was incubated with 50 μL of biotin-conjugate 
for 1 h at room temperature with shaking. After washing, 100 μL of 
Streptavidin-HRP solution was added to each well and incubated at 
room temperature for 15 min on a shaker. Following another washing 
step, 100 μL of TMB substrate solution was added. The reaction was 
stopped after approximately 10 min of incubation at room temperature 
in the dark when the highest standard has reached an OD of 0.90–
0.95. The absorbance was then read on a microplate reader at 450 nm 
with reference wavelength at 620 nm.

For the HIF-1α ELISA, 50 μL of undiluted samples or standards 
were added to each well and incubated for 2 h at room temperature 
with shaking. After washing, 50 μL of biotinylated detection antibody 
was added and incubated for 1 h at room temperature with shaking. 
After washing, 50 μL of streptavidin-HRP was added, which was 
incubated for 30 min at room temperature. After a final washing step, 
100 μL of TMB substrate was added. After 30 min, the reaction was 
stopped with 100 μL of stop solution, and the absorbance was 
measured at 450 nm. In case of undetectable analyte levels, we used 
the lower detection limit (HIF-1α: 81.92 pg/mL; EPO: 1.60 mU/mL).

Plasma levels of Neurofilament light chain (pNfL) have already 
been determined previously (19). Briefly, pNfL was measured by 
single-molecule array (SIMOA) technique using the Simoa® 
NF-Light™ Advantage Kit (lot number: 503470) on the Simoa SR-X 
Analyzer (Quanterix, Lexington, MA, United  States) (21). pNfL 
measurement was performed at the Medical University of Vienna 
under blinded conditions. The inter-assay coefficient of variation of 
pNfL was 12.4%.

To account for physiological variations of NfL levels, we calculated 
age- and BMI-adjusted NfL Z values according to Benkert et al. (22).

Statistical analysis

Statistical analysis was performed using SPSS 26.0 (SPSS Inc., 
Chicago, IL, United States). Data were displayed as median and 25th; 
75th percentile. Group comparisons were done by Mann–Whitney-U 
test, repeated measurements by Wilcoxon test. Spearman correlation 
coefficient (rs) was used for correlation analysis. According to median 
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EPO levels/ median EPO increase subjects were stratified into low and 
high EPO groups. Two-sided p-values < 0.05 were considered 
statistically significant.

Ethics

The ethics committee of the Medical University of Innsbruck 
approved this study (approval number 1130/2022). Written informed 
consent was obtained from all study participants.

Results

A total of 63 previously recruited (19) individuals at a median age 
of 24 [22;28] years were included into the study. Twenty-seven (43%) 
were females, the median BMI was 22 [21;24] kg/m2. Detailed 
information on demographic, clinical and laboratory data of our 
cohort are given in Table 1. Of note, NfL levels were available from a 
previous analysis (19); HIF-1α and EPO concentrations were 
determined for the present study.

Clinical and biomarker changes associated 
with simulated high altitude exposure

Heart rate significantly increased 3 h after simulated high altitude 
exposure (M1: 80 [73;86] bpm, M2: 84 [78;91] bpm, p = 0.001), while 
SaO2 decreased (M1: 97 [96;98] %, M2: 83 [80;87] %, p < 0.001).

Overall, EPO showed a significant increase 12 h after simulated 
high altitude exposure (M1: 4.17 [2.99;5.67] mU/mL, M2: 10.12 
[7.86;14.06] mU/mL, p < 0.001, Figure 1A). Concentrations of HIF-1α 
(M1: 81.92 [81.92;159.51] pg/mL, M2: 81.92 [81.92;194.83] pg/mL, 
p = 0.409) as well as of absolute pNfL concentrations (M1: 5.57 
[4.39;8.01] pg/mL, M2: 6.20 [4.54;7.64] pg/mL, p = 0.755, Figure 1B) 
and NfL Z scores (M1: 0.41 [−0.28;1.37], M2: 0.71 [−0.39;1.28], 
p = 0.631) did not show a statistically significant change.

High EPO levels are associated with low 
NfL levels

However, the change of pNfL concentrations was different 
depending on the EPO levels. pNfL concentrations decreased between 
M1 and M2 in the high EPO group (−0.36 [−1.34;0.63] pg/mL), while 
there was an increase of pNfL in the low EPO group (0.26 [−0.41;1.68] 
pg/mL, p = 0.052, Figure 1C). NfL Z scores also decreased in the high 
EPO group (−0.20 [−0.83;0.26]) and increased in the low EPO group 
(0.21 [−0.07;0.53], p = 0.012). At M2 absolute pNfL concentrations 
and NfL Z scores were significantly lower in individuals with high 
EPO levels compared to those with low EPO (pNfL: 5.85 [4.15;6.85] 
pg/mL vs. 6.73 [4.70;8.64] pg/mL, p = 0.030, Figure 1D NfL Z score: 
0.64 [−0.88;1.17] vs. 0.95 [0.25;1.48] p = 0.040).

Physiological variables correlate with EPO 
increase

There was a positive correlation between the extent of the heart 
rate increase and EPO levels at M2 (rs = 0.322, p = 0.011), while a 
negative correlation between SaO2 decrease and EPO levels 
(rs = −0.276, p = 0.031). There was no correlation between the LLS 
score and EPO levels (rs = −0.050, p = 0.702). EPO levels of individuals 
experiencing AMS at any point of the study did not differ from 
AMS-free individuals at M1 (4.72 [3.02;5.66] mU/mL vs. 3.83 
[2.54;5.67] mU/mL, p = 0.289) and M2 (12.07 [7.86;15.85] mU/mL vs. 
9.52 [7.84;12.78] mU/mL, p = 0.410).

Discussion

In the present study, we provide data on EPO and NfL metrics 
before and after simulated high altitude exposure. There were two main 
findings: (i) EPO increased already 12 h after simulated high altitude 
exposure correlating with heart rate increase and SaO2 decrease, (ii) 
subjects with higher EPO increase showed lower NfL levels.

Worldwide, high altitude regions are visited for various reasons 
with the risk of developing high-altitude illness, of which AMS is the 
most common (7). The predominating cornerstone of AMS 
pathophysiology is hypoxia, caused by a low oxygen partial pressure 
and leading to expected oxygen saturation in healthy subjects of 

TABLE 1 Demographic, clinical, and laboratory data of participants.

Demographics

Number of participants 63

Sex (female) 27 (43)

Age (years) 24 [22;28]

BMI (kg/m2) 22 [21;24]

M1 M2 p-value

Laboratory characteristics

Number of 

samples
63 63

EPO (mU/mL) 4.17 [2.99;5.67] 10.12 [7.86;14.06] <0.001

HIF-1alpha 

(pg/mL)
81.92 [81.92;159.51] 81.92 [81.92;194.83] 0.409

pNfL (pg/mL) 5.57 [4.39;8.01] 6.20 [4.54;7.64] 0.755

NfL Z score 0.41 [−0.28;1.37] 0.71 [−0.39;1.28] 0.631

Clinical characteristics

Heart rate 

(bpm)
80 [73;86]* 84 [78;91]* 0.001

Heart rate 

Increase (bpm)
6 [−2;14] n.a.

SaO2 (%) 97 [96;98]* 83 [80;87]* <0.001

SaO2 Decrease 

(%)
14 [10;17] n.a.

Highest LLS 3 [1;4] n.a.

All values are depicted as median [25th; 75th percentile] and counts as n (%) as appropriate. 
p-values < 0.05 are marked bold. *M2 of clinical data was performed after 3 h in simulated 
high altitude. LLS was assessed according to Roach et al. (20), NfL Z values were calculated 
according to Benkert et al. (22). BMI, Body mass index; bpm, beats per minute; HIF, 
Hypoxia induced factor; LLS, Lake Louise Acute Mountain Sickness Score; M, Measurement; 
n.a., not applicable; SaO2, arterial oxygen saturation.
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around 75–85% in 4,500 m (23, 24). EPO is crucial in the early 
adaption to high altitude (11) and during the adaption to hypoxia, 
respectively (3, 8). Of note, also a neuroprotective role of EPO has 
been proposed (12, 13), even though not undisputed. For instance, it 
has been reported that EPO application ameliorates the clinical and 
histological outcome in cuprizone-induced demyelination in mice 
(25), that EPO improves the survival and even regeneration of insect 
neurons (26), or that in a rat model of multiple sclerosis EPO increased 
the survival of retinal ganglion cells (27). From a clinical perspective, 
a recent multicenter study, investigating EPO as add-on therapy to 
mechanical thrombolysis during acute ischemic stroke, seems to be of 
special interest. Herein the first investigation showed a negative result, 
even if, an explorative subgroup analysis suggested that patients not 
receiving thrombolysis had a benefit from EPO (15). In a previous 
study body fluid biomarkers for brain damage after ischemic stroke 

including S100B, glial fibrillary acid protein (GFAP) and ubiquitin 
C-terminal hydrolase (UCH-L1) were significantly lower in the EPO 
treated patients than in placebo treated ones (14).

Here, we provide data of EPO and NfL levels measured in 63 
healthy individuals before and after a 12 h-exposure to simulated high 
altitude in a normobaric hypoxic chamber. The first finding of our 
study, i.e., the significant increase of EPO already 12 h after simulated 
high altitude exposure is in line with existing literature. The temporal 
dynamics of biological markers in human organisms after high 
altitude exposure follow roughly the following schedule. First, within 
minutes to hours after the ascent, heart and ventilation rate as well as 
cerebral blood flow increase. Secondly, within hours to days EPO 
levels start to increase. It has been suggested that EPO levels are one 
of the first humoral reactions to high altitude, with a time lag of a few 
hours (23). This hypothesis is substantiated by our data of significant 

FIGURE 1

EPO and NfL concentrations before and after simulated high altitude exposure. (A) EPO levels before and 12 h after simulated high altitude. (B) NfL 
levels before and 12 h after simulated high altitude. (C) NfL increase between M1 and M2 in subjects within the low and high EPO group. Stratification 
into low and high EPO group was done according to the median increase of EPO concentrations between M1 and M2 (5.85 mU/mL). (D) NfL levels at 
M2 in subjects within the low and high EPO group. Stratification into low and high EPO group was done according to the median EPO concentration 
at M2 (10.12 mU/mL). EPO, Erythropoietin; NfL, Neurofilament Light.
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EPO increases already after 12 h in simulated high altitude. Thirdly, 
after days to weeks the increase of ventilation comes to a maximum, 
alongside with increases in red blood cell counts and hemoglobin (23).

Analyzing the link of EPO levels to NfL leads to the probably most 
important finding of our study. Individuals with a higher increase in 
EPO concentrations showed lower pNfL levels after 12 h in simulated 
high altitude. Vice versa, lower EPO increase was associated with 
higher pNfL. This finding has to be contextualized with the discussion 
on the potential neuroprotective role of EPO. NfL is an established 
surrogate for neuroaxonal damage (16). Therefore, one might 
hypothesize that subjects with higher EPO levels after 12 h of 
simulated high-altitude exposure experience less neuroaxonal 
damage. A possible explanation for a neuroprotective effect of EPO is 
that EPO shows anti-apoptotic, anti-inflammatory, and antioxidant 
effects in neural tissue (28). In response to reduced oxygen availability, 
hypoxia-inducible factors—particularly HIF-1α—are activated as key 
transcriptional regulators. Among their various target genes, EPO is 
one of the most prominent (29). EPO binds to its receptor, expressed 
also on neurons, astrocytes and endothelial cells, and leads to 
activation of downstream signaling cascades such as the Janus kinase 
2 (JAK2/STAT5) or the Mitogen-activated protein kinase (MAPK/
ERK) pathways (30, 31). These pathways are involved in promoting 
neuronal survival, reducing oxidative stress, and stabilizing the blood–
brain barrier (32). It has been demonstrated that EPO reduces 
glutamate toxicity, inhibits caspase-mediated apoptosis, and promotes 
the expression of neurotrophic factors (33, 34). Taken together, these 
effects could reduce neuroaxonal injury under hypoxic conditions. 
When neuroaxonal damage occurs in hypoxia, it is thought to 
be caused by mitochondrial dysfunction and increased production of 
reactive oxygen species. This can lead to structural damage of the 
neuronal cytoskeleton and consequently to degradation of 
neurofilaments, particularly of the light chain protein (i.e., NfL), by 
calcium-dependent proteases such as calpain. Subsequently, 
neurofilaments are released into the extracellular space and are 
reflected by elevated NfL levels in cerebrospinal fluid and blood (16).

It has to be pointed out, that a change in pNfL by high altitude 
exposure shows a peak significantly later than after 12 h, i.e., after 
weeks to months (19, 35–37). One might hypothesize, that the inverse 
correlation between EPO and NfL might be even stronger after longer 
follow-up. However, due to insufficient sample volume (19), we were 
not able to determine EPO levels at later time points. This quite short 
study duration restricts our ability to evaluate a potential, long-term 
neuroprotective effects of EPO under sustained hypoxic conditions. It 
is a limitation of our study leaving an interesting field for future research.

Of note, our findings show that EPO levels correlate with the extent 
of heart rate increase after 3 h in simulated high altitude. Increasing 
heart rates are a well-known phenomenon occurring nearly immediately 
after sudden exposure to high altitude (23). Indeed, it is known that the 
degree of hypoxia and resulting hypoxemia is the key driver of EPO 
production in the kidneys; hypoxemia in turn is correlated with the 
degree of heart rate increase (38, 39). Herein our findings are in line with 
earlier studies suggesting that EPO increases are predictable early after 
simulated high altitude (i.e., after 3 h in our cohort) by assessing vital 
parameters like the heart rate increase or the SaO2 decrease. This may 
have implications in both, sports medicine, for strategical high altitude 
training and neurological risk assessment of high altitude exposure.

In regard of increasing EPO levels the lacking increase of HIF-1α 
between M1 and M2 has to be pointed out. Indeed, increasing HIF-1α 

levels are known to usually precede EPO increases (11). The lacking 
increase of HIF-1α in our cohort may be explained by the timing of 
M2 in our cohort (i.e., after 12 h). HIF-1 is thought to mediate the 
acute adaption to high altitude, i.e., to hypoxia, while HIF-2 is essential 
in chronic hypoxia. This transition from HIF-1 to HIF-2 is called the 
“HIF switch” and probably occurs within hours after initiation of 
hypoxia (40). More precisely, it has recently been reported that HIF-1 
expression is maximal after 4 h of hypoxia and is reduced dramatically 
by hour 8 (29). Therefore, the timing of our second measurement may 
have been too late, to detect the initial HIF-1α increase, as the HIF 
switch has already been completed.

Some limitations of this study have to be acknowledged. A first 
limitation may arise from the fact that not actual high-altitude exposure 
was tested, but simulated high altitude exposure. The simulation was 
done by means of a hypoxic chamber, using normobaric hypoxia. In 
general, normobaric hypoxia has been proposed to be a valid model of 
high altitude exposure (41). Nevertheless, we  cannot exclude that 
reactions of body fluid biomarkers including EPO and NfL to actual 
high altitude exposure may differ from our findings. Further sources of 
influence may include extreme weather impact, physical exhaustion, 
lack of hydration or nutrition. On the other hand these confounding 
factors were ruled out systematically. Furthermore, we want to highlight, 
that our study was not designed to provide direct experimental evidence 
linking EPO to reductions in NfL levels, or even a causal relationship 
between both. To address this, future studies could involve 
interventional designs—both in preclinical models and clinical trials—
measuring NfL levels before and after EPO treatment under controlled 
hypoxic or neuroinflammatory conditions. Finally, the absolute pNfL 
increases and differences between the two EPO groups were small. 
While the clinical relevance of our findings can be questioned, this was 
an exploratory study focusing on pathophysiological changes.

In summary, in this exploratory study we showed that EPO levels 
increase after simulated high altitude exposure, correlate with the 
increase of heart rate and the decrease of SaO2 after 3 h and that 
higher EPO levels are associated with lower NfL levels. Further studies 
including a larger number of participants and longer follow-up are 
needed to replicate our findings.
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