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Background: Secondary brain injuries, including delayed cerebral ischemia, 
neuroinflammation, and stroke induced cerebral edema can occur following 
both ischemic and hemorrhagic strokes, contributing to a negative impact on 
clinical outcomes. Glibenclamide, a sulfonylurea antidiabetic medication, has 
shown potential in minimizing these consequences by targeting the SUR1-
TRPM4 channel. However, glibenclamide’s therapeutic effectiveness and safety 
in stroke patients remain unknown. Therefore, this systematic review aims to 
assess the safety and efficacy of glibenclamide in improving outcomes following 
both ischemic and hemorrhagic strokes.

Methods: Four databases were searched for RCTs published up to November 
2024. Studies were included if they involved adult patients with ischemic stroke, 
hemorrhagic stroke, or subarachnoid hemorrhage, and reported relevant safety 
and efficacy outcomes. Efficacy outcomes were measured using the Modified 
Rankin Scale at 3 and 6 months. Safety outcomes included adverse events such 
as hypoglycemia, hydrocephalus, and mortality.

Results: Data from six RCTs, involving 555 patients (280 intervention, 275 
control), were included: 4 trials in subarachnoid hemorrhage, one trial in 
ischemic stroke, and one in hemorrhagic stroke. At 3 months, the pooled odds 
ratio (OR) for poor functional outcomes was 0.98 (95% CI: 0.65–1.48), and at 
6 months, 0.52 (95% CI: 0.24–1.12; p = 0.094), with no significant differences 
between glibenclamide and placebo. Safety analysis showed a significant 
increase in symptomatic hypoglycemia (OR 4.69, 95% CI: 1.45–15.23; p = 0.010) 
but no significant differences for hydrocephalus (OR 1.60, 95% CI: 0.76–3.37; 
p = 0.220) or mortality (OR 0.57, 95% CI: 0.32–1.05; p = 0.071). Delayed cerebral 
ischemia (DCI) showed a borderline reduction in risk (OR 0.43, 95% CI: 0.18–
1.00; p = 0.051) in the treatment group.

Conclusion: In patients with ischemic or hemorrhagic stroke, glibenclamide 
demonstrates a favorable safety profile but shows limited efficacy in improving 
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functional outcomes. The elevated risk of hypoglycemia emphasizes the 
necessity of using this medication with caution.
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Introduction

Stroke remains one of the leading causes of morbidity and 
mortality globally, with an increasing burden due to rising incidents 
and prevalent cases over the past three decades (1). It is broadly 
categorized into ischemic stroke, caused by vascular occlusion, and 
hemorrhagic stroke, which includes intracerebral hemorrhage (ICH) 
(2). Despite advancements in acute stroke care, such as improved 
diagnostic tools and interventions, long-term outcomes remain 
suboptimal due to secondary complications like neuroinflammation, 
cerebral edema, and delayed neuronal injury (1, 2). This highlights 
the urgent need for novel therapeutic approaches targeting these 
mechanisms. Current treatments primarily concentrate on managing 
the acute phase, including reperfusion intervention (1, 2). 
Nevertheless, there is a considerable deficiency in therapies aimed at 
the molecular mechanisms that contribute to secondary injury (3). 
Glibenclamide, a well-known sulfonylurea antidiabetic medication, 
is one promising therapeutic approach. Glibenclamide works by 
blocking the sulfonylurea receptor 1 (SUR1)—transient receptor 
potential melastatin 4 (TRPM4) channel complex, which is essential 
in the pathophysiology of many central nervous system (CNS) 
injuries, including aSAH (4). The activation of the SUR1-TRPM4 
channel has been linked to vasogenic edema, neuroinflammation 
aggravation, and neuronal integrity impairment. Glibenclamide, 
which targets this channel, has the ability to minimize cerebral 
edema, limit neuronal death, and reduce inflammation, therefore 
enhancing neurological recovery (5). Preclinical research has 
provided solid evidence for glibenclamide’s neuroprotective 
properties (6). In animal models of ischemic brain damage, 
glibenclamide treatment has been demonstrated to decrease 
vasogenic edema, reduce infarct volume, and enhance functional 
recovery (6). Building on this basis, preliminary clinical studies have 
assessed the function of glibenclamide in the setting of stroke. For 
example, recent research found that high-dose oral glibenclamide 
significantly reduced radiological indicators of cerebral edema 
during 10 days of therapy, implying possible advantages in 
preventing decompressive surgeries (7). Other trials, however, have 
shown conflicting results, with some failing to detect substantial 
increases in functional outcomes or decrease in mortality rates (3). 
While preliminary data suggests that it can minimize vasospasm and 
enhance perfusion, inconsistencies in research design, dosage 
regimens, and outcome measures have restricted the generalizability 
of findings (5). Furthermore, some concerns do exist about 
glibenclamide’s safety profile, including its possible impact on 
glucose homeostasis and other systemic side effects in non-diabetics 
(4, 8, 9).

To overcome these gaps, this systematic review and meta-analysis 
will analyze data from randomized controlled trials to assess the 
effectiveness and safety of glibenclamide in stroke. This study aims to 
clarify the influence of glibenclamide on major clinical outcomes.

Methods

Search strategies

Following the Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses (PRISMA) guidelines, four online databases were 
used to search relevant literature: PubMed/Medline, Cochrane, 
Science Direct, and Web of Science. We only included peer-reviewed 
journals published from inception until November 2024 published in 
English only. The keywords used in this study are (Glibenclamide OR 
Glyburide) AND (Aneurysmal subarachnoid hemorrhage OR SAH 
OR Intracranial aneurysm OR Ischemic stroke OR Hemorrhagic  
stroke).

Screening and selection of studies

All studies were retrieved through database searches and entered 
on an Excel spreadsheet. Initially, two researchers independently 
reviewed the titles and abstracts. Any disagreements were resolved by 
conducting a full-text review of the article. Next, the full texts of the 
selected studies were assessed for eligibility by two researchers 
working independently. Data from the full-text articles were extracted 
using a standardized form, with two independent researchers 
performing the extraction.

Study design and criteria

Inclusion
Studies evaluating adults with stroke (confirmed by clinical 

assessment and imaging).
Only RCTs reporting outcomes relevant to the research question 

will be included.

Exclusion
Studies that include adolescents (under 18 years of age) and 

elderly people (over 74).
Studies that include patients currently using glibenclamide.
Studies written in any language other than English.
There will be  no restrictions on the geographical location 

of studies.
The flowchart illustrates the systematic review process of our 

study, starting with the identification of 1,670 initial records. After 
removing duplicates, 1,361 studies remained. These studies were 
carefully reviewed by title and abstract to assess their eligibility for 
inclusion. A total of 21 studies were selected for full-text screening, 
resulting in the exclusion of 15 studies for various reasons 
illustrated in Figure 1. Ultimately, six studies were included in the 
final analysis.
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Risk assessment

The risk of bias for included studies was assessed using the 
Cochrane Risk of Bias Tool for randomized controlled trials (RCTs). 
The tool assesses selection, performance, detection and attrition risk 
of bias. Risk of bias was assessed independently by two reviewers to 
ensure consistency and reliability. Any disagreements between 
reviewers were resolved through discussion.

Statistical analysis

Records collected as median and interquartile ranges (IQR) 
were converted to their respective mean and standard deviation 
values as described previously (10). The efficacy outcomes in this 
study were defined as poor functional outcomes, measured by the 
Modified Rankin Scale (mRS 3–5) at 3 and 6 months. Safety 
outcomes included reported adverse events (hydrocephalus, 
hypoglycemia, or cerebral infarction events) and death. Meta-
analyses were conducted using the Mantel–Haenszel method to 
calculate pooled odds ratios (OR) with corresponding 95% 
confidence intervals. Subgroup analyses were performed based on 

the type of stroke. Heterogeneity across studies was assessed using 
the I2 statistic to quantify the percentage of total variation due to 
heterogeneity. Forest plots were generated to illustrate pooled 
outcomes, subgroup analyses, and the results of sensitivity analyses, 
which assessed the effect of excluding each study sequentially. 
Statistical analyses were conducted using RStudio (version 
2024.9.1.394, Boston, MA, United States) with R version 4.4.2. A 
p-value <0.05 was considered statistically significant.

Results

Characteristics of studies and patients

A total of six RCTs were analyzed in the current study. Trials were 
published between 2018 and 2024. Three trials were conducted in 
China (4, 7, 9), two trials in Brazil (8, 11) and one trial in the 
United States (12). A total of 555 patients were recruited across the 
included studies, of whom 280 (50.5%) and 275 (49.5%) patients were 
allocated to the intervention and control groups, respectively. Gender 
distribution was available in five studies, where 241 males and 249 
females were included out of 490 patients, accounting for 49.2 and 
50.8%, respectively. One trial included patients with ischemic stroke 
(12), one trial included those with hemorrhagic stroke (9), while the 
remaining trials included patients with aneurysmal subarachnoid 
hemorrhage (aSAH). More details about patients are included in 
Table 1.

Characteristics of interventions and 
controls

The reported doses of glibenclamide ranged from 1.25 mg 
administered three times daily to 15 mg daily. The route of 
administration was primarily oral or via nasogastric tube (NGT), 
except for one trial (12), which used an intravenous (IV) regimen with 
a bolus dose followed by continuous infusion over 72 h. Treatment 
durations varied from 3 to 21 days across studies. Placebo types 
included starch, vitamin B1, and standard care, while two studies (11, 
12) did not specify placebo details (Table 2).

Results of the efficacy outcomes

The pooled odds ratio (OR) for a poor functional outcome (mRS 
3–5) at 3 months was 0.98 (95% CI: 0.65 to 1.48), indicating no 
statistically significant difference between glibenclamide and placebo. 
Heterogeneity was moderate, with an I-squared of 38.4%. Subgroup 
analysis by stroke type showed no statistically significant effects in any 
group. The pooled ORs were 1.17 (95% CI: 0.61 to 2.21) for 
aneurysmal subarachnoid hemorrhage, 2.25 (95% CI: 0.77 to 6.59) for 
ischemic stroke, and 0.60 (95% CI: 0.31 to 1.15) for hemorrhagic 
stroke. The test for subgroup differences was not statistically significant 
(chi-squared = 4.77, p = 0.092). Based on the sensitivity analysis, the 
omission of the Zhao et al. (9) study reduced heterogeneity to 0% and 
shifted the pooled effect size to an OR of 1.39 (95% CI: 0.80 to 2.40), 
indicating that this study contributed substantially to the observed 
heterogeneity and overall effect size (Figure 2).

FIGURE 1

PRISMA flowchart for the screening process.
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TABLE 1 Characteristics of the included trials and patients.

Authors Country Sample size Gender Study 
groups

Type of stroke Location of stroke/aneurysm Stroke management Baseline 
NIHSS score, 
median (IQR)

M/F I/C Anterior 
circulation

Posterior 
circulation

da Costa et al. (8) Brazil 78 19/59 38/40 aSAH NR NR

Surgical clipping: Control 

n = 30, Intervention n = 20

Endovascular coiling: Control 

n = 10, Intervention n = 18

NR

Feng et al. (7) China 56 29/27 28/28 aSAH
Intervention: 23

Control: 25

Intervention: 5

Control: 3

Vascular embolisation 

intervention: Intervention 

n = 26, Control n = 24

NR

Lin et al. (4) China 111 53/58 57/54 aSAH
Intervention: 2

Control: 4

Intervention: 1

Control: 0
NR NR

Sheth et al. (12) US 65 NR/NR 35/30 Ischemic stroke 65 0 IV rtPA: (61%)

Intervention: 19 

(16–22), Control 21: 

(16–23)

Windlin et al. (11) Brazil 45 12/33 23/22 aSAH NR NR
Microsurgery: n = 27

Embolization: n = 18
NR

Zhao et al. (9) China 200 128/72 99/101 Hemorrhagic stroke 200 0 Standard care (BP control)

Intervention: 7.0 

(5.0–10.0), Control: 

8.0 (4.0–12.0)

aSAH, aneurysmal subarachnoid hemorrhage; I, the intervention group; C, the control group; M, male; F, female; IQR, interquartile range.
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FIGURE 2

Forest plots depicting the effect sizes (A) and sensitivity analysis (B) for the meta-analysis of a poor functional outcome (mRS 3–5) at 3 months.

TABLE 2 Characteristics of interventions and controls.

Author Glibenclamide dose Route of administration Duration of 
treatment

Type of placebo

da Costa et al. (8) 5 mg Oral, NGT 21 days Starch

Feng et al. (7) 15 mg Oral, NGT 10 days Vitamin B1

Lin et al. (4) 3.75 mg oral 7 days None

Sheth et al. (12)

IV 0.13 mg bolus during first 2 min, 

followed by IV infusion at a rate of 

0.16 mg/h for 6 h, followed by 

0.11 mg/h for 66 h

IV 3 days NR

Windlin et al. (11) 5 mg Oral, NGT 21 days
Placebo (not otherwise 

defined)

Zhao et al. (9) 1.25 mg, 3 times/day oral 7 days
Standard care (not 

otherwise defined)
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For the poor functional outcome (mRS 3–5) at 6 months, the 
pooled OR was 0.52 (95% CI: 0.24 to 1.12), indicating no statistically 
significant difference between glibenclamide and placebo (p = 0.094). 
There was no heterogeneity in the analysis, with I-squared at 0%. 
Subgroup analysis was not applicable as all studies focused on 
aneurysmal subarachnoid hemorrhage. Sensitivity analysis 
demonstrated consistent findings, with the pooled OR remaining 
similar when any single study was omitted (Figure 3).

Results of safety outcomes

The pooled OR for the occurrence of hydrocephalus was 1.60 
(95% CI: 0.76 to 3.37), indicating no statistically significant difference 
between glibenclamide and placebo (p = 0.220). Heterogeneity was 
low, with an I-squared of 23.3%. Sensitivity analysis showed consistent 
results, with the pooled OR remaining within a similar range when 
either study was omitted (Figure 4).

The pooled OR for hypoglycemic events was 4.69 (95% CI: 1.45 to 
15.23), indicating a statistically significant increase in the odds of 
hypoglycemia with glibenclamide compared to placebo (p = 0.010). 
Heterogeneity was negligible, with an I-squared of 0%. Sensitivity 
analysis showed that the pooled OR remained consistently significant 
when individual studies were omitted, with no impact on 
heterogeneity (Figure 5).

The pooled OR for delayed cerebral ischemia (DCI) was 0.43 (95% 
CI: 0.18 to 1.00), with a borderline statistically significant reduction 
in risk for patients receiving glibenclamide compared to placebo 
(p = 0.051). Heterogeneity was low, with an I-squared of 5.1%. 
Sensitivity analysis showed that the pooled OR ranged from 0.27 to 
0.68 when individual studies were omitted, and heterogeneity 
remained low (Figure 6).

The pooled OR for death was 0.57 (95% CI: 0.32 to 1.05), 
indicating no statistically significant difference between 
glibenclamide and placebo (p = 0.071). Heterogeneity was 
negligible, with an I-squared of 0%. Subgroup analysis did not 

FIGURE 3

Forest plots depicting the effect sizes (A) and sensitivity analysis (B) for the meta-analysis of a poor functional outcome (mRS 3–5) at 6 months.
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show significant differences across stroke types, and the test for 
subgroup differences was not statistically significant (p = 0.264). 
Sensitivity analysis showed that the pooled OR remained stable 
and within a similar range, with heterogeneity remaining low 
regardless of the study omitted. These results indicate the 
robustness of the findings (Figure 7).

Publication bias assessment

The funnel plots for the outcomes suggested no significant 
publication bias, since effect sizes were evenly distributed around 
the main effect estimate. This observation was supported by Egger’s 
test results, which showed no statistical evidence of publication 
bias for mRS at 3 months (p = 0.299), mRS at 6 months (p = 0.395), 
hypoglycemic events (p = 0.062), and mortality (p = 0.211) 
(Figure  8). Publication bias assessment was not performed for 

hydrocephalus and cerebral infarction events because they were 
reported in two studies. Using the Cochrane risk of bias assessment 
tool, two studies had low risk of bias (4, 8), while the rest had some 
concerns (Figure 9).

Discussion

Our findings revealed that glibenclamide did not achieve a 
statistically significant improvement in functional outcomes as 
measured by the modified Rankin Scale. According to the 
individual RCTs results, glibenclamide showed no significant 
improvements in mRS scores with only a single trial demonstrating 
a trend toward functional benefit at 90 days after adjustment for 
age (odds ratio, 2.31; p = 0.07) in glibenclamide group (12). A 
systematic review by dos Santos et  al. (13) reported a notable 
reduction in poor functional outcomes (mRS ≥4) among patients 

FIGURE 4

Forest plots depicting the effect sizes (A) and sensitivity analysis (B) for the meta-analysis of hydrocephalus.
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with ischemic strokes, indicating potential benefits of 
glibenclamide. These findings highlight a disparity between 
aggregated and individual study results, raising questions about 
variability in patient populations, study designs, and intervention 
protocols. The underlying mechanisms of glibenclamide’s 
functional benefits may extend beyond infarct volume reduction, 
such as its impact on neurogenesis and neural repair, as supported 
by previous evidence (6). The present study found no significant 
impact of glibenclamide on hydrocephalus, as the current 
evidence of its effect on hydrocephalus remains limited and 
inconclusive. There is, however, well-established evidence 
demonstrating its efficacy in reducing malignant cerebral edema 
compared to placebo group (7, 9). These effects are attributed to 
glibenclamide’s inhibition of SUR1-TRPM4 channels, which play 
a critical role in preventing cytotoxic edema and ionic imbalances 
(14). Moreover, a visible decreasing trend in cases of delayed 
cerebral ischemia has been shown in the treatment group, with 

one trial reporting similar results between the two groups (4, 11). 
Hypoglycemia emerged as a significant concern in in this meta-
analysis, aligning with another study highlighting frequent 
hypoglycemic episodes requiring intervention (13). This warrants 
further attention due to its potential to limit therapeutic 
application. Strategies such as careful dosing adjustments, timing 
of administration, and potential combination therapies with 
glucose-stabilizing agents may help optimize safety and 
efficacy (15).

Limitations

Despite such results, several limitations must be acknowledged. 
Variability in treatment protocols, ranging from intravenous 
administration to continuous subcutaneous infusion, complicates 
direct comparisons. Additionally, small sample sizes limit the 

FIGURE 5

Forest plots depicting the effect sizes (A) and sensitivity analysis (B) for the meta-analysis of hypoglycemia.
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generalizability of findings. Furthermore, rigorous evaluation of 
glibenclamide long-term effects on cognitive outcomes, health-
related quality of life, and comprehensive stroke recovery 
trajectories is imperative to establish its definitive role in 
clinical practice.

Conclusion

In conclusion, this study evaluates the effectiveness and safety 
of glibenclamide in stroke management. While preliminary 
evidence from preclinical and early clinical studies suggests 
potential neuroprotective benefits, our analysis found no 
statistically significant improvement in functional recovery or 
mortality outcomes at 3 and 6 months. The safety profile of 
glibenclamide raised concerns regarding its potential to induce 
hypoglycemia, although the risk of hydrocephalus and cerebral 
infarction appeared comparable to placebo. Given the limited 

evidence on its clinical impact, further well-designed, large-scale 
randomized controlled trials are warranted to more definitively 
determine the role of glibenclamide as a therapeutic agent in 
stroke. The findings underscore the need for cautious 
interpretation of glibenclamide’s benefits and risks.
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