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Introduction: Glioma is the most common primary malignant tumor of the central 
nervous system. The mutation status of isocitrate dehydrogenase (IDH) and the 
methylation status of the O6-methylguanine-DNA methyltransferase (MGMT) 
promoter are key biomarkers for glioma diagnosis and prognosis. Accurate, non-
invasive prediction of these biomarkers using MRI is of significant clinical value.

Materials and methods: We proposed a novel multitask deep learning framework 
based on Coordinate Attention-EfficientNetV2 (CA-EfficientNetV2) to simultaneously 
predict IDH mutation and MGMT promoter methylation status based on MRI data. 
Initially, unlabeled MR images were annotated using K-means clustering to generate 
pseudolabels, which were subsequently refined using a Vision Transformer (ViT) 
network to improve labeling accuracy. Then, the Fruit Fly Optimization Algorithm 
(FOA) was employed to assign optimal weights to the pseudolabeled data. The 
CA-EfficientNetV2 model, integrated with a coordinate attention mechanism, was 
constructed. The multitask framework comprised three independent subnetworks: 
T2-net (based on T2-weighted imaging), T1C-net (based on contrast-enhanced T1-
weighted imaging), and TU-net (based on the fusion of T2WI and T1CWI).

Results: The proposed framework demonstrated high performance in predicting 
both IDH mutation and MGMT promoter methylation status. Among the three 
subnetworks, TU-net achieved the best results, with accuracies of 0.9598 for IDH 
and 0.9269 for MGMT, and AUCs of 0.9930 and 0.9584, respectively. Comparative 
analysis showed that our proposed model outperformed other convolutional 
neural network (CNN) - based approaches.

Conclusion: The CA-EfficientNetV2-based multitask framework offers a robust, 
non-invasive method for preoperative prediction of glioma molecular markers. 
This approach holds strong potential to support clinical decision-making and 
personalized treatment planning in glioma management.
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1 Introduction

Glioma is the most common primary malignant brain tumor of the central nervous system 
in adults, with an annual incidence of approximately 6 per 100,000 persons (1). It can 
be classified into grades II-IV according to the World Health Organization (WHO). With the 
introduction of the 2016 revised WHO Classification of Tumors of the Central Nervous 
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System (CNS) (2), molecular biomarkers have become increasingly 
important for the diagnosis and prognosis of glioma. The latest 2021 
WHO classification (3) emphasizes the importance of genetic changes, 
such as isocitrate dehydrogenase (IDH), in the classification of 
gliomas. IDH mutant patients have better treatment outcomes and 
overall survival than the IDH wild patients (4). 
O6-methylguanine-DNA methyltransferase (MGMT) is also an 
important prognostic marker for glioma patients (5). MGMT 
promoter methylation can suppress the activity of MGMT, which is a 
DNA repair enzyme and can blunt the therapeutic effect of alkylating 
chemotherapy. Glioma patients with MGMT promoter methylation 
are more sensitive to chemotherapy and have longer survival time (6). 
Identification of the status of critical molecular biomarkers for glioma 
patients at high risk of early progression is critical for personalized 
treatment planning.

The gold-standard procedure for the identification of glioma 
molecular biomarkers is a pathological sampling through a brain 
biopsy or surgery. However, the high risk of complications, high costs 
and sampling biases due to the inherent heterogeneity of glioma (7) 
hinder the application of invasive procedures, and support the need for 
noninvasive and accurate detection of clinically relevant molecular 
information in glioma patients. Magnetic resonance imaging (MRI) is 
a routine noninvasive method for detecting brain tumors. In recent 
years, deep learning networks, especially convolutional neural 
networks (CNNs), have achieved excellent performances in the 
medical image processing field, and the features extracted from MR 
images are related to the gene expression patterns (8–10). Chang et al. 
(11) used a CNN to independently predict the IDH mutation status, 
1p/19q codeletion status and MGMT promoter methylation status, and 
achieved accuracies of 94, 92 and 83%, respectively. Decuyper et al. 
(12) designed a 3D U-Net based on preoperative MR images for fully 
automated segmentations of gliomas, and they split the network into 
three independent fully connected layers to simultaneously predict 
tumor grade, IDH mutation and 1p/19q codeletions in gliomas with 
accuracies of 90, 76 and 75%, respectively. However, these CNNs often 
require a large amount of labeled data, which leads to a significant 
waste of clinically available data due to the lack of labels. Recently, the 
EfficientNet model has gained popularity due to its ability to achieve 
high accuracies in less time with fewer parameters (13).

In this paper, we  propose a multitask deep learning model 
utilizing glioma MR images, which is based on Coordinate Attention-
EfficientNetV2 (CA-EfficientNetV2) to solve the following problems:

 i Considering that glioma data often consist of small samples, 
and that labeled data are difficult to obtain, we  propose a 
pseudolabel annotation algorithm based on K-means clustering 
and Vision Transformer.

 ii The pseudolabeling method may decrease the model’s 
prediction accuracy. Therefore, we  propose a weight 
optimization method for pseudolabeled data based on the fruit 
fly optimization algorithm to adjust the pseudolabel 
data weights.

 iii Most widely used deep neural networks contain a large number 
of parameters, making them highly complex and 
computationally inefficient. To solve this problem, the 
coordinate attention (CA) module is introduced into the 
EfficientNetV2 lightweight model, and a multitask classification 
framework based on CA-EfficientNetV2 is proposed.

2 Materials and methods

This retrospective study was approved by the ethical review board 
of the Affiliated Hospital of Xuzhou Medical University. The informed 
consent requirement was waived.

2.1 Data collection

A total of 238 glioma patients from the Affiliated Hospital of Xuzhou 
Medical University were considered for inclusion. These patients met the 
following criteria: (i) age greater than or equal to 18 years, (ii) 
pathologically confirmed glioma (grade II to IV), (iii) preoperative MR 
images, including axial T2-weighted images (T2WI), T1-weighted 
contrast-enhanced images (T1CWI) and (iv) no history of surgery or 
other therapies for brain tumors. All MRI scans were acquired using a 
3.0 T GE scanner. The sequence parameters were as follows: T2-weighted 
imaging (T2WI) with TR = 4,733 ms, TE = 100 ms, field of view 
(FOV) = 240 mm × 240 mm, and slice thickness = 6.0 mm; T1-weighted 
contrast-enhanced imaging (T1CWI) with TR = 2,952 ms, TE = 24 ms, 
FOV = 240 mm × 240 mm, and slice thickness = 6.0 mm.

Among these patients, 71 were diagnosed with WHO grade II 
gliomas, 55 with grade III, and 112 with grade IV. A total of 44 patients 
had IDH-mutant tumors, 86 had IDH wild-type, and 108 patients did 
not have available IDH mutation status. Regarding MGMT promoter 
methylation, 77 patients had methylated MGMT promoter, 86 had 
unmethylated MGMT promoter, and 75 lacked MGMT promoter 
methylation status information. We selected a total of 24 images per 
patient, including 12 T2WI and 12 T1CWI, acquired from different 
axial slices at the same time point. For each imaging sequence, 12 
representative slices were chosen that best captured the tumor and its 
surrounding tissue. The selection was guided by anatomical landmarks 
to ensure comprehensive coverage of the entire tumor regions. The 
gene mutation status of the dataset was shown in Table 1.

2.2 Image preprocessing and data 
augmentation

All MRI images were preprocessed through a series of 
standardized steps to ensure uniformity and compatibility with the 
deep learning framework. First, the MRI images were normalized by 
rescaling the pixel intensity values to the range of [0, 1] using min-max 
normalization. After normalization, the images were resampled to 
standardize their spatial resolution and dimensions. Then, each image 

TABLE 1 Gene mutation status of the dataset.

Biomarker Status Cases Image 
number

Grade

II III IV

IDH Mutant 44 1,056 19 15 10

Wild 86 2,064 12 8 66

Without labels 108 2,592 40 32 36

MGMT Methylation 77 1,848 24 16 37

Nonmethylation 86 2,064 18 19 49

Without labels 75 1,800 29 20 26
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was resized to 224 × 224 using bilinear interpolation. Since the 
original MR images were single-channel grayscale images, and the 
deep learning models required three-channel RGB inputs, 
we expanded the single-channel images into three channels. Through 
the above normalization and resampling process, the MRI images 
were adjusted to a resolution of 224 × 224 × 3 for model input.

To improve model generalization and address class imbalance, 
we  applied various data augmentation techniques, including 
horizontal and vertical flipping, as well as random rotations, aimed at 
increasing the representation of the minority class.

2.3 Pseudolabeling based on K-means 
clustering and vision transformer

The T1CWI and T2WI images were imported into IBEX (14) to 
for manual delineation of the region of interest (ROI). For each 
patient, the tumor region was manually delineated on every slice 
where it was visible. ROI delineation was primarily performed on the 
T2WI images, with T1CWI images as a reference to ensure complete 
coverage of the lesion. ROIs were drawn by experienced 
neuroradiologists under supervision and were subsequently reviewed 
to ensure consistency and accuracy. The drawn ROIs were saved and 
exported along with the corresponding image data for radiomic 
feature extraction based on the gray level co-occurrence matrix 
(GLCM) and gray level run length matrix (GLRLM). The radiomic 
features extracted from the MR images constituted an original feature 
set. To eliminate non-informative features, independent sample t-tests 
were performed on the labeled data. The selected features were then 
used to identify useful radiomic features from the unlabeled dataset.

We used K-means clustering algorithm for pseudolabeling. To 
improve the clustering performance, we specified both the number of 
clusters (k = 2) and biologically informed initial centroids. The two 
initial centroids were defined as IDH mutant/ MGMT promoter 
methylated, and IDH wild-type/MGMT promoter unmethylated 
tumors. These two subtypes were known to differ significantly in terms 
of prognosis and treatment response in gliomas patients, and their 

inclusion as initial centroids was intended to guide the clustering process 
toward meaningful subgroup separation. Through the iterative K-means 
clustering process, we obtained the mutation status of the unlabeled data 
by using the similarity between the unlabeled data and the labeled data. 
In this way, the preliminary pseudolabels were added to the unlabeled 
data. To evaluate the performance of the pseudolabeling methods, a 
separate validation subset with known ground truth was used to 
compute accuracy, precision, and recall of the generated pseudolabels.

The pseudolabels obtained from K-means clustering were 
subsequently refined by a Vision Transformer (ViT) model. The class 
with the highest predicted probability was selected as the final 
pseudolabel. The ViT model was consist of several modules. First, the 
input images were divided into a sequence of flattened 2D patches. 
These vectorized patches were then projected into a latent 
768-dimensional embedding space via a trainable linear projection. To 
retain spatial information, learnable position embeddings were added 
to each patch embedding. Additionally, a classification embedding was 
added to the patch embeddings to retain category information. Next, 
we fed the patch embeddings along with position and classification 
embeddings into transformer blocks. Each transformer block consisted 
of a multihead self-attention (MSA) module and a multilayer 
perceptron (MLP) module. Finally, we used a MLP block to accomplish 
the classification task. For the development of our ViT model, the 
patch size P was set to 16, and the number of transformer blocks was 
set to 12. The initial learning rate was set to of 1e-4 with a batch size of 
32, and the epoch was 100. The model was repeated independently for 
four times. The overall process of pseudolabeling was shown in 
Figure 1. The ViT architecture was summarized in Figure 2.

2.4 Optimization of pseudolabeled data 
weights based on the fruit fly optimization 
algorithm

Since the labeling of pseudolabels might incur some errors, which 
might adversely affect the model’s accuracy, a pseudolabeled data weight 
optimization algorithm based on the fruit fly optimization algorithm 

FIGURE 1

The overall process of pseudolabeling.
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(FOA) (15, 16) was proposed. We used FOA to find the optimal weights 
of pseudolabeled data during the training process to improve the 
accuracy of the model. In the training process, the cross entropy error 
(CEE) was used as the loss function, as shown in Equation (1):

 ( ) ( ) ( )( )( = − + − − c [ log 1 log 1i i i iL y f x y f x  (1)

Assume that the glioma image dataset has a total of 
N data points, including Nk labeled data, 

( ) ( ) ( ){ }= …1 1 2 2, , , , , ,
k kk N NX x y x y x y , and (N-Nk) pseudolabeled 

data, ( ) ( ) ( ){ }+ + + +
= …

1 1 2 2
, , , , , ,

k k k kl N N N N N NX x y x y x y ; then, the loss 
function during the training period was expressed as shown in 
Equation (2):

 
( )( )

=
=∑

1
,

N

c i i
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L L f x y
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The loss function was adjusted by fixing the weight of the real 
labeled data to 1 and applying different weights to the pseudolabeled 
data. Since the labeled data and the pseudolabeled data had different 
degrees of importance, the loss function could be re-expressed as 
shown in Equation (3):
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(3)

where α was the weight applied to the pseudolabeled data.
The optimization algorithm of the pseudolabeled data weights 

based on FOA was shown in Algorithm 1, where popsize was the 

population size of the fruit flies, Maxgen was the maximum number 
of iterations, R was the Drosophila flight radius, D was the number of 
optimization variables, bestSmell was the optimal flavor concentration, 
and α was the pseudolabel data weight.

2.5 A multitask classification framework 
based on CA-EfficientNetV2

2.5.1 CA-EfficientNetV2
In this study, EfficientNetV2-S (17) was used as the backbone 

network. Considering the computational cost and training speed, the 
network structure was shown in Table 2.

The Fused-MBConv (Fused Mobile Inverted Bottleneck 
Convolution) was a simplified and efficient variant of the standard 
MBConv block, introduced in EfficientNetV2 (17). Unlike MBConv, 
which used a sequence of expansion (1 × 1 convolution), depthwise 
convolution (3 × 3), and projection (1 × 1 convolution), the Fused-
MBConv eliminated the depthwise convolution and merged the 
expansion and spatial filtering into a single 3 × 3 regular convolution. 
This design reduced memory access cost and improved computational 
efficiency, especially in the early layers where input resolution was high. 
In our study, we replaced the squeeze and excitation (SE) attention block 
contained in the MBConv module in EfficientNetV2 with a coordinate 
attention (CA) block to optimize the network structure. CA utilizes two 
one-dimensional global pooling operations to aggregate the vertical and 
horizontal input features into two independent direction-aware feature 
maps, and then encodes the two feature maps with embedded direction-
specific information into two attention maps. Each attention map 
captures the long-range dependencies of the input feature maps along 
one spatial direction. Therefore, positional information could be saved 

FIGURE 2

The architecture of vision transformer model.
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in the generated attention map, and the attention maps of two 
independent directions were applied to the input feature map by 
multiplication to emphasize the representation of interest. In our study, 
global pooling was transformed into an encoding operation of two 1D 
vectors. For input X, the pooling kernels (H, 1) and (1, W) were used to 
encode the horizontal and vertical features, and the output of the c-th 
dimensional feature was:

 
( ) ( )

≤ ≤
= ∑

0

1 ,h
c c

i W
z h x h i

W  
(4)

 
( ) ( )

≤ ≤
= ∑

0

1 ,w
c c

j H
z w x j w

H
 

(5)

Equations 4 and 5 integrate features from different directions and 
output a pair of directionally knowable feature maps. We  used a 
reduction ratio 𝑟 = 32, a kernel size of 1 for the shared convolutional 
layer, and ReLU and Sigmoid activations for intermediate and final 
mappings, respectively. The specific structure of the CA module was 
shown in Figure 3.

2.5.2 A multitask classification framework based 
on CA-EfficientNetV2

As shown in Figure  4, the output of the CA-EfficientNetV2 
network was split into two independent fully connected (FC) layers to 
predict both IDH mutation and MGMT methylation statuses. 
We applied the multitask model to construct independent networks 

Input: loss function L’, initial position of fruit fly X_axis, Y_axis, population size of fruit fly 

popsize, maximum number of iterations Maxgen, flight radius of fruit fly R, number of 

optimization variables D

Output: bestSmell, the optimal solution for the pseudolabel data weights α

1. X_axis = rand(1, 1), Y_axis = rand(1, 1);

2. Calculate the taste concentration function from L’ and record it in the taste concentration Smell.

3. [bestSmell bestIndex]=min(Smell);
4. Smellbest = bestSmell;
5. X_axis = X(bestIndex), Y_axis = Y(bestIndex);

6. α= 1/Dist(X_axis, Y_axis);

7. for i in range(Maxgen) do

8. for j in range(popsize) do

9. [bestSmell bestIndex]=min(Smell);
10.    if Smellbest < bestSmell then

11.      X(bestIndex)→X_axis;
12.      Y(bestIndex)→Y_axis; 

13.      Smellbest→bestSmell; 
14. α= 1/Dist(X_axis, Y_axis);

15.  end if;

16. end;

17. return bestSmell, α.

ALGORITHM 1

A pseudolabel data weight optimization algorithm based on the fruit fly optimization algorithm.

TABLE 2 EfficientNetV2-S network structure.

Stage Operator Stride Channels Layers

0 Conv3 × 3 2 24 1

1 Fused-MBConv1, k3 × 3 1 24 2

2 Fused-MBConv4, k3 × 3 2 48 4

3 Fused-MBConv4, k3 × 3 2 64 4

4 MBConv4, k3 × 3, SE0.25 2 128 6

5 MBConv6, k3 × 3, SE0.25 1 160 9

6 MBConv6, k3 × 3, SE0.25 2 256 15

7 Conv1 × 1 and Pooling and FC - 1,280 1
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based on T2WI, T1CWI and T2 + T1CWI (T2-net, T1C-net and 
TU-net).

To prevent data leakage, a patient-level train-test split was 
performed. All images from each patient were exclusively assigned to 
either the training set or the test set to avoid any potential data leakage. 
The dataset was randomly partitioned, with 80% of the patients used 
for training and 20% for testing. We used PyCharm as the development 
environment, PyTorch as the deep learning framework, and Python 
as the programming language. The training set and the testing set were 
divided at a ratio of 8:2. The model was trained using the Adam 
optimizer with an initial learning rate of 1e-4. A piecewise constant 
decay strategy was employed, where the learning rate was multiplied 
by a decay factor of 0.1 every 30 epochs. This approach facilitated 
rapid convergence in the early stage of training while mitigating 
oscillations in the later stage, thereby enhancing overall optimization 
performance. The batch size was set to 32, and the model was trained 
for 100 epochs.

2.6 The CNN-based network development

Five of the widely used CNN models, including Xception, ResNet-
50, DenseNet-121, MobileNet-V2, EfficientNet-B0 models, were 
selected for the comparison with our proposed model in terms of 
prediction performance. All baseline models were initialized with 
ImageNet-pretrained weights and subsequently fine-tuned on our 
dataset. To ensure a fair comparison, all models were trained using the 
same protocol, including the Adam optimizer, a learning rate of 1e-4, 
and a batch size of 32. Furthermore, identical data preprocessing and 
image augmentation procedures were applied across all models.

2.7 Statistical analysis

To evaluate the model’s performance, the metrics accuracy, 
precision, recall and F1-Score were calculated based on the equations 
(TP: true positive; TN: true negative; FP: false positive; FN: 
false negative).

 
+

=
+ + +
TP TNAccuracy

TP TN FP FN

 
=

+
TPPrecision

TP FP

 
=

+
TPRecall

TP FN

 
=

+ +1
2TPScore

2TP FP FN
F -

The receiver operating characteristic (ROC) curve was plotted, 
and the area under the ROC curve (AUC) was calculated to measure 
the classification accuracy. The parameters were calculated in 
PyCharm with the programming language Python (version 3.10; 
Wilmington, DE, USA).1

3 Results

3.1 Comparisons of the pseudolabeling 
algorithms

A total of 363 radiomics features were extracted in this 
experiment, including 330 features derived from the GLCM and 33 
features derived from the GLRLM. Through an independent sample 
t-test, 94 statistically significant features were retained. Based on these 
94 features, the labeled data and the unlabeled data were clustered 
together. Then, the ViT model was used to correct the pseudolabels 
obtained from the clustering. The training process was shown in 
Figure 5. The accuracy of the 108 pseudolabels for the prediction of 
the IDH mutation status was 83.33%, and the accuracy of the 75 
pseudolabels for the prediction of the MGMT promptor methylation 
status was 81.93%. The accuracy comparisons among the different 
pseudolabeling algorithms were shown in Table 3.

3.2 Optimization result of pseudolabel data 
weight based on the fruit fly optimization 
algorithm

In our study, the weight of the labeled data was fixed at 1, and the 
weight of the pseudolabeled data was adjusted by the FOA. In the 
optimization process using the FOA, the population size was set to 5, 
the maximum number of iterations (MaxGen) was set to 50, the 
radius (R) was set to 1, and the number of optimization variables (D) 

1 https://www.python.org/

FIGURE 3

CA module structure.
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was set to 1. When the flavor concentration reached the optimal 
value, the optimization was over. The process of optimizing the 
pseudolabel weight for IDH mutation and MGMT methylation was 
shown in Figure  6. For IDH mutation, when the final taste 

concentration was 0.0104, and the weight of the pseudolabel data 
reached the optimal value of 0.17. For MGMT methylation, when the 
final taste concentration was 0.0118, the weight of the pseudolabel 
data reached the optimal value of 0.12.

3.3 Performance of multitask classification 
networks based on CA-EfficientNetV2

The multitask classification model converged after 100 iterations, 
and the training and validation processes were depicted in Figure 7. 
We  compared three independent networks (T2-net, T1C-net and 
TU-net) based on the proposed multitask classification model. 
Performance comparisons of the three networks were shown in 
Table  4. The three networks showed high accuracy and AUCs in 
predicting both IDH mutation and MGMT promoter methylation. 
Compared with T2-net and T1C-net, TU-net achieved the best 
performance with the highest accuracy and AUC. The ROC curves of 
the multitask classification networks (including T2-net, T1C-net and 
TU-net) were shown in Figure 8.

FIGURE 4

Structure of multitask classification model based on CA-EfficientNetV2.

FIGURE 5

Training process of ViT model. (A) Training accuracy. (B) Training loss.

TABLE 3 Accuracy of pseudolabeling algorithms (K-means and ViT).

Parameter Method IDH MGMT

Accuracy Attribute reduction 0.7812 0.7684

K-means clustering 0.8077 0.7968

K-means clustering + ViT 0.8333 0.8193

AUC Attribute reduction 0.8429 0.7928

K-means clustering 0.8841 0.8542

K-means clustering + ViT 0.9092 0.9001

Time (s) Attribute reduction 657 669

K-means clustering 368 375

K-means clustering + ViT 425 429

Accuracy was computed using a held-out labeled validation subset, which was used solely to 
evaluate pseudolabeling quality.
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3.4 Ablation experiments and comparisons 
with CNN-based models

To validate the effectiveness of the proposed model, a series of 
ablation experiments were performed. Table  5 showed that the 
accuracy, precision, recall, F1-score and AUC of the model decreased 
without using the CA module to replace the SE attention block in 
EfficientNetV2-S, without using the FOA to optimize the 
pseudolabeled data weights, and without using the pseudolabeled 
data. These results demonstrated that each component  - the CA 
module, the FOA, and the pseudo-labeling strategy  - played a 
significant role in enhancing the model’s predictive performance.

CNN-based models, including Xception, ResNet-50, DenseNet-
121, Mobile-NetV2 and EfficientNet-B0 were compared with our 
CA-EfficientNetV2 model in terms of prediction performance. Table 6 
showed that our CA-EfficientNetV2 model was superior to all baseline 
CNN models in terms of accuracy, precision, recall, F1-score and AUC.

4 Discussion

In this study, we proposed a multitask MR-based deep learning 
framework based on CA-EfficientNetV2 for the automatic prediction 
of molecular biomarkers in glioma patients. In the absence of a large 
amount of labeled clinical data, we proposed a pseudolabeling method 
to add pseudolabels to the data and improved upon the lightweight 
model EfficientNetV2. The results showed that our proposed model 
could accurately predict IDH mutation and MGMT promopter 
methylation simultaneously in glioma patients. Compared with other 
CNN-based models, our proposed CA-EfficientNetV2 model 
outperformed these classic CNN models on the same dataset.

The training of deep neural network models usually requires a large 
amount of labeled data to achieve the desired results. Due to the limited 
amount of labeled data used in clinical practices, we performed data 
augmentation by labeling the unlabeled glioma data with pseudolabeling 
algorithms. Pseudolabeling (18) is a method of adding labels to unlabeled 
data based on labeled data, which improves the robustness of the model 
and avoids overfitting. In this study, we  proposed a pseudolabeling 
algorithm based on K-means clustering and Vision Transformer to 

improve the performance of the algorithm. The conventional K-means 
clustering algorithm randomly selects the initial centroid, and the 
clustering effect is affected by the selection of the initial centroid. Here, 
we specified two initial centroids of mass, the IDH mutant type/MGMT 
promoter methylated samples and IDH wild type/MGMT promoter 
unmethylated samples, because of the strong association between IDH 
mutation and MGMT promoter methylation in gliomas (19, 20). 
Recently, Vision Transformer (ViT) was introduced in the field of 
medical image analysis (21, 22); it recruits self-attention mechanisms in 
image patches and has demonstrated promising results, even fully 
replacing pure CNN models. After clustering by the K-means algorithm, 
the ViT model was introduced to speed up the convergence of the model. 
As shown in Table 3, compared with the attribute reduction method or 
K-means clustering method alone, K-means clustering combined with 
the ViT method, achieved the highest accuracy in the shortest time. 
Although the computational requirements of ViT might limit its 
applicability in resource-constrained environments, due to the focus of 
this study, we  did not explore model optimizations or alternative 
architectures such as the Swin Transformer. Future work will focus on 
investigating these optimization strategies to improve the efficiency and 
practicality of our model in clinical applications.

In our study, we employed the Fruit Fly Optimization Algorithm 
(FOA) to optimize the weights of the pseudo-labeled data, thereby 
enhancing the accuracy of the model. The computational efficiency and 
practical applicability of FOA were critical considerations in the 
context of medical image processing. FOA is a lightweight and effective 
metaheuristic algorithm with limited number of parameters (15). In 
our study, the FOA parameters were deliberately set to conservative 
values (population size = 5, MaxGen = 50, and D = 1) to ensure rapid 
convergence without compromising accuracy. The algorithm 
demonstrated consistent and stable performance, highlighting its 
robustness. Moreover, FOA’s low computational overhead makes it 
feasible for deployment in clinical settings (16). Many medical image 
processing applications, such as computer-aided diagnosis or image 
segmentation, require quick response times. The simplicity and speed 
of FOA enable real-time execution on standard clinical hardware, 
without the need for high-performance computing infrastructure.

EfficientNet (13) is a neural search network proposed by a Google 
team in 2019. By using Neural Architecture Search (NAS), it searches 

FIGURE 6

Process of optimizing the pseudolabel weight for IDH mutation (A) and MGMT methylation (B).
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for a rational configuration of network depth, width and resolution, 
thus obtaining better performances than CNNs. In 2021, the Google 
team released EfficientNetV2 (17), which introduced the Fused-
MBConv module to the search space, they also proposed a progressive 
learning strategy that could adjust the regularization factor based on 
the size of the image, thus accelerating the training process and 
improving the model accuracy compared with EfficientNet. In our 
study, we improved the EfficientNetV2 model by replacing the original 
SE attention mechanism with coordinate attention and adjusting the 
weights of the pseudolabeled data via the fruit fly optimization 
algorithm. To highlight the performance capabilities of our proposed 
CA-EfficientNetV2 model, we performed ablation experiments and 
compared it with other classical CNN models. The CA-EfficientNetV2 
model yielded a better performance than these CNN-based models in 
shorter time. There are several potential reasons for this. First, CNN 
models typically contain a large number of parameters, which makes 
it difficult for them to effectively capture localized lesion features, 
especially when trained on a relatively small dataset. Second, CA 
embeds positional information into channel attention and can capture 
both long-range dependencies and positional information along two 
spatial directions (23), while SE uses global pooling to compress the 
global information into a single feature vector and has difficulty in 
retaining important positional information (24). Therefore, by using 
CA block, the proposed model can locate targets more accurately and 

extract more representative features from the MR images. Third, 
we use a fruit fly optimization algorithm to adjust the weights of the 
pseudolabeled data to reduce the impact of inaccurate pseudolabeling 
on model accuracy. In addition, thanks to the training-aware neural 
architecture search (NAS) and compound scaling strategy, our 
proposed model outperforms other CNN models in inference speed, 
making it a promising candidate for future clinical applications.

In this study, we employed a multitask classification framework 
based on a hard parameter sharing mechanism for the simultaneous 
predictions of IDH mutation and MGMT methylation. Genomic 
analysis, laboratory studies and case series have demonstrated a 
strong association between IDH mutation and MGMT methylation. 
The molecular basis may be  that IDH mutation lead to the 
accumulation of 2-hydroxyglutarate (2-HG), which inhibits the 
activity of histone and DNA demethylases, resulting in DNA 
hypermethylation and histones that drive the disease phenotype (25). 
By sharing most of the parameters among the same hidden layers 
between multiple tasks, hard parameter sharing greatly reduces the 
risk of overfitting and improves the performance of the model when 
dealing with tasks with strong correlation (26), which also explains 
the high accuracy of the model.

In our study, we developed three networks using different MR image 
sequences, namely, T2-net, T1C-net and TU-net. Among these networks, 
TU-net outperformed the other two networks. In the field of 

FIGURE 7

Training accuracy curve (A), training loss curves (B) and validation loss curve (C) over epochs.

TABLE 4 The prediction performance of the three networks based on CA-EfficientNetV2.

Parameter Biomarker T2-net T1C-net TU-net

Accuracy IDH 0.9231 (0.8929, 0.9533) 0.9470 (0.9238, 0.9702) 0.9598 (0.9409, 0.9787)

MGMT 0.9143 (0.8786, 0.9500) 0.9132 (0.8773, 0.9491) 0.9269 (0.8949, 0.9589)

AUC IDH 0.9682 (0.9492, 0.9872) 0.9820 (0.9705, 0.9935) 0.9930 (0.9877, 0.9983)

MGMT 0.9500 (0.9232, 0.9768) 0.9450 (0.9168, 0.9732) 0.9584 (0.9364, 0.9804)

Precision IDH 0.9201 0.9472 0.9593

MGMT 0.9161 0.9076 0.9268

Recall IDH 0.9153 0.9468 0.9538

MGMT 0.9180 0.9073 0.9270

F1-score IDH 0.9176 0.9469 0.9564

MGMT 0.9225 0.9075 0.9269

Values in parentheses represent 95% confidence intervals.
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FIGURE 8

ROC curves of multitask classification networks (including T2-net, T1C-net and TU-net) for the prediction of IDH (A) and MGMT (B) statuses.

TABLE 5 Ablation study of key components in the CA-EfficientNetV2 model for IDH mutation and MGMT promoter methylation status prediction.

Parameter Biomarker Full model w/o CA 
module

w/o FOA w/o Pseudolabel 
data

w/ Backbone 
network

Accuracy IDH 0.9587 0.9474 0.9406 0.9399 0.9192

MGMT 0.9406 0.9249 0.9188 0.9115 0.9013

Precision IDH 0.9598 0.9499 0.9418 0.9307 0.9273

MGMT 0.9269 0.9265 0.9208 0.9190 0.9086

Recall IDH 0.9593 0.9217 0.9417 0.9206 0.9272

MGMT 0.9268 0.9264 0.9158 0.9184 0.9071

F1-Score IDH 0.9538 0.9178 0.9420 0.9099 0.9275

MGMT 0.9270 0.9266 0.9129 0.9058 0.8941

AUC IDH 0.9564 0.9197 0.9418 0.9150 0.9273

MGMT 0.9269 0.9265 0.9143 0.9114 0.8999

w/o = without; w/ = with.

TABLE 6 Comparison of our CA-EfficientNetV2 model with CNN-based models in terms of prediction performance.

Parameter Biomarker Xception ResNet-50 DenseNet-121 MobileNet-V2 EfficientNet-B0 CA-
EfficientNetV2

Accuracy IDH 0.7831 0.6667 0.8692 0.7576 0.7624 0.9598

MGMT 0.8421 0.7751 0.7416 0.7544 0.7911 0.9269

Precision IDH 0.9000 0.5239 0.8531 0.8585 0.7821 0.9593

MGMT 0.8464 0.7802 0.7203 0.7763 0.8078 0.9268

Recall IDH 0.4655 0.8678 0.7792 0.3991 0.5148 0.9538

MGMT 0.8820 0.8587 0.9033 0.8104 0.8239 0.9270

F1-Score IDH 0.6136 0.6534 0.8145 0.5449 0.6209 0.9564

MGMT 0.8638 0.8176 0.8015 0.7930 0.8158 0.9269

AUC IDH 0.9042 0.8399 0.9385 0.8054 0.8181 0.9930

MGMT 0.9299 0.8541 0.9225 0.8149 0.8602 0.9584

Time (s) IDH 658 754 674 545 524 385

MGMT 660 759 680 552 528 385

Bold values indicate the best performance among the compared models.
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radiogenomics, specific imaging features are correlated with glioma 
molecular markers to identify their imaging phenotypes, assuming that 
the tumor molecular differences and biological behavior are mirrored in 
the imaging features (27, 28). Previous studies have shown that a greater 
percentage of nonenhancing tumors, frontal lobe localization, a larger 
tumor size and the presence of cysts and satellites are correlated with 
IDH mutation (29); limited peritumoral edema and mixed nodular 
enhancement are potentially indicative of MGMT methylation (29, 30). 
These imaging features are mainly obtained from T2WI and T1CWI, 
which indicates that the features extracted from T2WI and T1CWI 
provide additional key information to predict tumor phenotypes.

Previous studies by Choi et al. (8) and Bangalore Yogananda et al. 
(10) employed single-task deep learning models focused exclusively 
on predicting IDH mutation status, highlighting the robustness of 
their models across large-scale, multi-institutional datasets. In 
contrast, our study proposed a multitask deep learning framework 
capable of simultaneously predicting two critical molecular 
biomarkers - IDH mutation and MGMT promoter methylation - and 
achieved superior accuracy and AUC in both tasks. This highlighted 
the model’s enhanced clinical utility and diagnostic value. 
Furthermore, our framework incorporated a novel data augmentation 
strategy, which involved generating and refining pseudo-labels 
through K-means clustering and Vision Transformer-based 
correction, along with a weighting mechanism based on the Fruit Fly 
Optimization Algorithm (FOA). This approach effectively increased 
the quantity and quality of training data, making the model 
particularly well-suited for real-world scenarios involving limited or 
weakly annotated datasets. Furthermore, we measured the average 
time required for image preprocessing and model inference, with the 
total processing time per case being approximately 7 min, suggesting 
the model’s potential feasibility for real-time clinical application.

There are several limitations to our study. First, the current 
sample size is relatively limited. To confirm the robustness and 
generalizability of our model, validation on larger, multicenter 
datasets is necessary. Future research should incorporate multiple 
external datasets from diverse institutions to more comprehensively 
evaluate the model’s performance across varied imaging protocols 
and patient populations. Second, the proposed model relies solely on 
structural MR images. We chose to focus on structural MRI images 
for simplicity and to avoid the additional complexity that would arise 
from integrating functional MRI or clinical data. However, 
we  recognize the potential benefits of incorporating such data. 
Functional MRI (fMRI) can provide valuable information on brain 
activity and connectivity, which may be  linked to tumor 
characteristics and prognosis. Similarly, clinical data (e.g., age, sex 
and tumor location) can offer important insights into the patient’s 
response to treatment and disease progression. In future work, 
we plan to integrate these additional data sources to explore their 
potential in improving prediction accuracy.

5 Conclusion

We proposed a multitask CA-EfficientNetV2 model based on 
MR imaging for the simultaneous prediction of IDH mutation and 
MGMT promoter methylation in gliomas. Firstly, in order to 
increase the available data, the pseudolabels were added to the 
unlabeled MR images using the K-means clustering algorithm and 
Vision Transformer network. Secondly, the fruit fly optimization 

algorithm was used to assign optimal weights to the pseudo-labeled 
data to improve the accuracy of the model. Finally, CA block 
combined with EfficientNetV2 model was built to simultaneously 
predict the IDH mutation and MGMT promoter methylation status 
of glioma. The proposed model can accurately predict glioma gene 
mutation statuses, and is superior to other CNN models.
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