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Initially considered distinct systems with independent physiological functions,

recent evidence highlights the crucial role of active crosstalk between

the nervous and immune systems in regulating critical physiological and

neurological processes and immunological homeostasis. The identification of a

direct body-brain circuitry allowing the monitoring of peripheral inflammatory

responses, a unique skull bone marrow source of immune cells to the

central nervous system (CNS), and the physical interface of the blood-brain

barrier with the meningeal system suggest direct intersystem interactions,

which can be further modulated by the local tissue environment, allowing

non-neurological factors to influence neurological outcomes and vice versa.

While there is a recognized age-dependent decline in both neurological

and immune system function, in part due to the natural accumulation of

cellular defects and the development of chronic systemic inflammation, it

is unclear if the pre-existing bidirectional feedback mechanisms between

the neurological and peripheral immune system plays a role in shaping

the system decline, beyond commonly investigated pathological conditions.

In this review, we will explore the e�ect of aging on the bidirectional

communication between the neurological and immunological systems and

attempt to understand how the inevitable age-dependent alterations of the

interaction may concurrently drive immunosenescence, normal neurological

decline, and neuropathological progression.

KEYWORDS

aging, neuroimmune crosstalk, immunosenescence, neurological decline,

neurodegeneration

1 Introduction

Humankind has long pursued the goal of extending both lifespan and healthspan,
often through lifestyle modifications, diet interventions, or natural remedies aimed at
counteracting diseases (1, 2), despite a limited understanding of the underlying causes
of human mortality. Systemic scientific investigation into the mechanisms driving the
time-dependent decline in physiological integrity began only about half a century ago,
initially focusing on non-mammalian organisms (3–6) and cancer models (7, 8), which
revealed that lifespan is under polygenic control. In recent years, it has become increasingly
apparent that aging outcomes can be driven independently or in combination by
physiological and pathological degenerative processes. Physiological aging is a universal
process characterized by the gradual accumulation of damage in cellular structures and
repair mechanisms (9–12). In contrast, pathological aging shares many of the molecular
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pathways of physiological aging but is further influenced by
genetic predispositions and environmental factors that accelerate
the decline of specific organ systems (13, 14). A comprehensive
review of the hallmarks of aging has been provided by López-Otín
et al. (15, 16).

The immune system is among the first system hit by aging and
its associated process. Following puberty, the thymus undergoes a
natural involution, leading to a marked decline in the production of
non-self-reactive naïve T cell and the reduced capacity to respond
to novel antigens (17). Although the T cells maturation can occur
in secondary lymphoid organs such as the spleen and lymph nodes
(18, 19), or in response to environmental cues (20), this process
is significantly impaired with age. Chronic infections further
deplete the naïve T cell pool and promote the accumulation of
senescent and exhausted T-cell clones (21). This immunosensence
is accompanied by an increased risk of autoimmunity due to the
expansion of self-reactive T cells (22) a shift of self-reactive CD8+
T cells toward innate-like immune responses (23), heightened
pro-inflammatory activity from autoreactive T cells (24), and
impaired immune regulation, partially due to reduced recruitment
of functional capacity of regulatory T cells (25, 26).

Experimental studies often examine immune function in
isolation, focusing on individual immune components or on
the role of systemic or neuroinflammation in the development
and progression of neuropathology (27). However, the nervous
system itself is an underappreciated yet critical regulator of
systemic immune responses. To comprehensively understand how
aging impacts immune function, as well as how bidirectional
communication between the immune and nervous systems
contributes to neurological disease, it is essential to elucidate the
role of the immune mediators in neural function.

2 The interdependence of the nervous
and immune system development and
function

2.1 Contribution of the primitive immune
system to early central nervous system
(CNS) development and function

Although the immune and nervous systems originate from
distinct embryonic tissues (28, 29), they develop concurrently
and exert reciprocal reciprocal influences on each other’s basal
functional capacities. The central nervous system (CNS) harbors
resident immune cells, derived from peripheral sources, that are
essential for maintaining normal neurological function throughout
life. Hematopoiesis begins in the yolk sac, giving rise to immune
cells with structural and physiological functions but limited
cytotoxic potential compared to those generated in the bone
marrow. Fetal natural killer (NK) cells are predominantly localized
in the choroid plexus and meninges during development (30).
Dysregulation of their activity has been linked to cerebral
malformations, potentially mediated by pleiotrophin secreted by
NK cells (30), which influence neural stem cell differentiation
(31, 32), neurite outgrowth (33), and synaptic function (34). These
fetal NK cells are rapidly depleted over time and replaced by bone

marrow-derived NK cells, particularly under inflammatory and
pathological conditions. In contrast, fetal mast cells enter the brain
as early as embryonic day 12.5 (E12.5) in mice. The contribute
to brain vascular remodeling (35) and hormone-dependent sexual
differentiation of the brain (36, 37). Unlike NK cells, thesemast cells
persist into adulthood, within the brain’s pia matter and thalamus
(38, 39). They retain fetal-like properties and may contribute to
physiological neuroimmune regulation in unknown ways.

The earliest major immune cell infiltration into the CNS
occurs around E9.5 in mice, when erythromyeloid progenitor-
derived primitive macrophages interact with fibronectin on
embryonic blood vessels via α5β1 integrin receptors, guiding their
migration into the developing brain through the pial surface and
leptomeninges (40, 41). Ablation of sodium-calcium exchanger
1 (NCX1) results in defective circulatory development and the
absence of primitive macrophages in the embryonic brain despite
normal yolk sac haematopoiesis (42), suggesting that physical
circulation is essential for their migration toward the CNS. Within
the embryonic brain, local sources of colony-stimulating factor
1 (CSF1) and interleukin 34 (IL-34) are necessary to activate
colony-stimulating factor 1 receptor (CSF1R) signaling in the
infiltrating macrophages, promoting their proliferation and long-
termmaintenance in the CNS (43–46). Additionally, the interaction
between C-X-C chemokine receptor 4(CXCR4) and its ligand
CXCL12 directs immature macrophages toward the subventricular
zone (SVZ) (47), where they engage with neural progenitors
to modulate neurogenesis (48) (Figure 1). Transforming growth
factor-β released by the neural precursors (NPC) further induces
the expression of microglial identity genes (Sall1, Hexb, P2RY12),
facilitating the differentiation of these primitive macrophages into
microglia (49, 50).

The acquisition of microglia properties seems to be a
largely context-specific phenomenon. Microglia retain several
characteristics of peripheral macrophage, including their sensitivity
toward cytokine and immune stimulus as well as their capacity to
initiate immune responses in reaction to dynamic environmental
conditions throughout life (51). The tightly regulated induction
of programmed cell death in neural precursors (NPC) and
newly generated neurons is essential for ensuring a quantitative
match between the functional requirements of neuronal circuits
and domains within the CNS (52, 53), and the elimination
of excess or aberrant cells stochastically produced during the
rapid process of neurogenesis (54). Microglia contribute to the
pruning of NPCs and neurons through the release of proapoptotic
factors that promote cell death via mechanisms independent of
classical apoptosis (55, 56), caspase activation (57), excitotoxicity
(58), or necroptosis (59). Damage-associated molecular patterns
(DAMP) signals recruit microglia to the vicinity of aberrant cells,
while additional molecular signals such as phosphatidylserine
(54, 55) and calreticulin (55) mediate the phagocytic removal of
damaged cells. Necroptotic microglia generated as a consequence
of excessive phagocytic activity may themselves be removed by
healthy microglia through C4b opsonization, thereby contributing
to the maintenance of normal brain (56, 57).

Moreover, the release of purines, chemoattractant, and
norepinephrine by neurons following changes in their activity
(58), facilitates the redistribution of microglia within the brain
parenchyma and supports microglia-dependent modulation of
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FIGURE 1

Microglia dynamics during brain development. Primitive macrophage, the precursors of microglia, originate from the yolk sac and enters the

developing brain at approximately E9.5 (top panel). These cells enter the developing brain primarily through the embryonic vasculature. The

chemokine CXCL12, secreted by neural stem cells, guides the migration of primitive macrophages toward the interphase between the blood

vasculature and the brain parenchyma. The lymphocyte function-associated antigen 1/Intercellular Adhesion Molecule-1 (LFA-1/ICAM-1) interaction

is also proposed to facilitate trans-endothelial migration of these microglia precursors (middle panel). As the BBB matures between E14 and E19,

tight junctions formed between endothelial cells, and astrocyte endfeet along with pericytes engage the vasculature, to reinforce barrier integrity.

This results in a selective permeable interface that restricts the entry of peripheral immune cells into the CNS (bottom panel). Figure created with

BioRender. Yeo, X. (2025) https://BioRender.com/uxni7uh.
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neuronal activity (59, 60). In a similar context, microglia play
a pivotal role in the pruning and remodeling of synaptic
contacts during neuronal circuit formation (61, 62). Disruption
in microglia-neuron signaling between microglia and neurons
that results in either excessive or insufficient synaptic pruning
can lead to neuron structural dysfunction, a hallmark of various
neurodevelopment and neurodegenerative disorders (63, 64).
Despite substantial evidence linking altered microglial function
to abnormal brain development (61, 65–67), a recent study
employing a CNS-specific microglia ablation model suggests that
certain microglia-dependent neurodevelopmental processes may
proceed in their absence (68). These findings underscore the need
to revisit and rigorously re-evaluate the established paradigm
regarding the role of microglia in neurodevelopment and neuronal
circuit formation.

The entry of peripheral immune cells into the CNS becomes
increasingly restricted from mid-gestation (E14-E19 in mice).
This transition is marked by a downregulation of microglia α5β1
integrin expression (40) and an upregulation of anti-migratory
protein p27 (69), both of which significantly reduce the motility
and the subsequent infiltration of microglia precursors into the
developing brain after E13.5. In addition, the tight junctions begin
to form between the claudin-5 and occludin molecules localized
to the apical membranes of endothelial cells (70). Alongside the
recruitment of pericytes and the extension of astrocyte endfeet,
these events lead to the establishment of the selectively permeable
blood-brain barrier that functionally isolates the CNS from
the peripheral immune system (71, 72). This barrier effectively
restricts further migration of peripheral immune cells into the
parenchyma and confines resident microglia within the CNS
(Figure 1). Inflammation events occurring before the complete
formation of the BBB is thought to “prime” primitive microglia
and other resident immune cells, inducing a persistent activation
state. The early priming may alter microglial immunophenotypes
and increase the population of residentmicroglia that is maintained
into adulthood (73–75). Notably, a reservoir of cranial bone
marrow-derived myeloid cell with immunoregulatory properties
has been identified within the meningeal membrane (76, 77).
These cells are situated adjacent to the glymphatic system, which
serves as a conduit for the trafficking and interaction of peripheral
immune cells with CNS-resident cell types (78). Intriguingly,
immunogenic signals present in the cerebrospinal fluid (CSF) can
be transmitted directly to the skull bonemarrow, where they initiate
local hematopoiesis before the activation of more distal sites such
as the tibial marrow (79). The functional implication of this non-
tibial immune cell source for the regulation and maintenance of
neurological function remains largely unexplored.

2.2 Role of the immune system in
peripheral nervous system (PNS) formation
and the reciprocal role of the PNS for the
CNS transmission of immune signals

The PNS provides an alternative pathway for neuroimmune
interactions as the CNS becomes increasingly restrictive to
peripheral immune cell infiltration. Neural crest cells (NCC), the

progenitors of neurons in the PNS (80), detach from the neural
plate and migrate outward along developing peripheral nerve tracts
following neural tube closure, a process regulated bytranscriptional
and epigenetic mechanisms (81) (Figure 2, top section). NCCs
differentiate into four functionally overlapping populations of cells
arrayed along the anteroposterior axis of the embryo, distinguished
by differentially HOX gene paralog expression that that determines
the fate and localization of NCC derivatives (82, 83). For example,
vagal NCC, located between somite 1 and 7, gives rise to the enteric
nervous system (84) and contribute to the development of the
heart (85, 86), thymus (87), and pancreatic ganglia (88). Conversely,
sympathetic neurons originate from trunk NCCs situated between
somite 6 and 17 along the spinal cord (82). The progressive radial
migration of NCCs, utlising existing neurons as scaffolds, coupled
with sequential fate-restriction influenced by environmental cues,
facilitates the establishment of CNS control over distant organs
such as the gastrointestinal tract (89).

Satellite glial cells derived from NCCs and residing in
sensory and peripheral ganglia, are believed to function as
resident immune-like cells, exhibiting macrophage-like properties
including phagocytosis of cellular debris and pathogens (90).
These cells express programmed death-ligand 1, which is critical
for modulating surrounding T cell activity (91). Neuronal factors
released by peripheral neurons modulate immune cell migration,
activation, and local immune responses (92). In turn, immune
cells proximal to the peripheral ganglia influence the development,
maturation, and function of cytokine receptor-expressing
peripheral neurons via cytokine signaling pathways (93, 94). An
extensive review by Dr. von Andrian and his teamconsolidates
current knowledge of the mechanisms underpinning peripheral
neuroimmune interactions (95).

Within the PNS, neuropeptides play an important role in the
modulation of tissue-resident immune cell function. Calcitonin
gene-related peptide (CGRP) secreted by sensory TRPV1+ neurons
upon detection of bacterial toxins, induces vasodilation, promotes
keratinocyte proliferation to facilitate wound healing, and shapes
immune responses by acting on Langerhans cells and dermal
dendritic cells (96, 97). During Candida albicans skin infection,
CGRPα stimulates IL-23 production by dermal dendritic cells,
which in turn triggers IL-17A release from γδ T cells, thereby
enhancing local antifungal immunity (98, 99). Simultaneously,
CGRP reduces macrophage TNF-alpha production, inhibiting
monocyte recruitment and preventing lymph node swelling
(97). In allergic conditions such as those triggered by house
dust mite exposure, peptidergic nociceptors release substance
P, activating mast cells through Mas-related G-protein coupled
receptor member B2 (MRGPRB2) signaling, and initiating allergic
skin inflammation (100). TAFA chemokine-like family member
4 (TAFA4) produced by nociceptors promotes macrophage IL-
10 secretion following ultraviolet-induced damage, supporting
inflammation resolution and tissue repair (101). Nociceptors also
regulate microfold (M) cell density and microbiota composition
in the intestine to prevent pathogen invasion, with CGRP acting
as a key modulator of these processes (102). Moreover, the
Neuromedin U receptor signaling axis integrates enteric neuronal
and innate immune responses to rapidly promote type 2 cytokine
production, supporting tissue-protective immunity at mucosal
surfaces (103, 104).
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FIGURE 2

Development of the PNS and immune system influence on its function. Embryonic development of the PNS, originating from neural crest cells that

migrate and di�erentiate intro diverse neuronal and glial populations along peripheral nerve tracts (Top). Peripheral immune cells play a critical role

in the regulation of PNS function and homeostasis. Although the contribution of immune cells to PNS development remains poorly understood, their

involvement in peripheral nerve repair and regeneration following injury or under pathological systems is well-established (Bottom). Created with

BioRender. Yeo, X. (2025) https://BioRender.com/uxni7uh.

Afferent vagal neurons serve as a crucial communication
pathway between peripheral immune cells and the brain,
enabling the central nervous system to detect and respond to

inflammatory signals. Broad vagal nerve stimulation has been
shown to modulate systemic tumor necrosis factor α (TNF-α)
levels following immune challenge (105, 106), suggesting the
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existence of an immunomodulatory network converging on
the vagus nerve. Watkins et al. (107) further demonstrated
that peripheral administration of the proinflammatory cytokine
interleukin-1β (IL-1β) induces fever via vagal afferent pathways,
highlighting the vagus nerve as a conduit for immune-to-brain
signaling. The complex neuroimmunological effect of peripheral-
derived cytokines, including their circulation, transport across
the blood–brain barrier, and activation of circumventricular
organs, requires careful consideration (108–110). A recently
described body-brain neural circuit encompasses immune-
stimulus-evoked cytokine productionand distinct vagal sensory
neuron populations that selectively respond discretely to
anti-inflammatory cytokines (TRPA1 expressing neurons) or
pro-inflammatory cytokines (CALCA expressing neurons). The
peripheral immune status can be adaptively regulated through
transcriptomic reprogramming of the sensory neurons (111) or
through acetylcholine-dependent suppression of proinflammatory
cytokine production by macrophages by efferent vagal fibers
(105). Moreover, these vagal neurons direct innervate dopamine
β-hydroxylase-expression neurons within the caudal nucleus of
the solitary tract in the brainstem, mediating peripheral-to-central
immune signaling and restoring of immune homeostasis after
immune activation (112). Furthermore, gut microbiota and their
metabolites, including bile acid derivatives (113), can differentially
influence vagal neuron activity (114, 115). Consequently, the
status of the peripheral immune system is intricately linked to
neurological function and underpins the neurobehavioral and
cognitive outcomes observed in health and disease.

2.3 Potential sensitivity of the immune
system to neurological modulation

The development of the CNS and PNS occurs in parallel with
early hematopoietic waves in the fetal yolk sac and liver, during
which precursors of key innate and adaptive immune cell lineages
including macrophages, NK cells, B cells, and T cells are generated.
These immune cells begin colonizing various organs early in
development but generally acquire full functional competence only
after birth. As gestation progressed toward term, the bone marrow
gradually assumes the role of the primary site for immune cell
production and replenishment.

Regardless of their anatomical origin or functional
maturity, developing immune cells express a diverse array of
neurotransmitter receptors, offering a mechanistic basis for
nervous system influence over immune system maturation and
function (see Table 1). However, due to on the predominant
reliance on adult models in immunological research, and the
fact that initial yolk sac and liver-derived primitive immune
populations are largely supplanted by bone marrow-derived
cells, our understanding of the specific neurotransmitter receptor
expression profiles in the earliest waves of immune cells remains
limited. Nevertheless, characterizing the receptor profiles and
functional responses of adult immune cells to neurotransmitters
can provide valuable insights into potential neural mechanisms for
immune regulation. Such regulation is likely to be organ and niche

specific. Mature immune cells are also capable of synthesizing and
releasing neurotransmitters (116, 117), adding further complexity
to the bidirectional communication between the nervous and
immune systems and underscoring the integrated nature of
neuroimmune regulation.

While the physiological regulation of immune cell activation
remains an area requiring further investigation, the influence of
injury and pathology on immune recruitment and response is
well-established. Peripheral nerve repair following injury involves
a finely orchestrated immune recruitment and response that is
essential for successful nerve regeneration (Figure 2, bottom).
Immediately after injury, damaged axons and Schwann cells release
DAMPs, which activate resident macrophages and Schwann cells
via TLRs, triggering the production of pro-inflammatory cytokines
and chemokines that facilitate immune cell recruitment (118, 119).
Circulating monocytes are rapidly recruited to the injury site
and differentiate into macrophages in response to local signals,
including colony-stimulating factor 1 (CSF1) (120). Neutrophils
also transiently infiltrate the injured nerve, contributing to
initial myelin clearance but are quickly replaced by longer-
lasting macrophages (121). These recruited macrophages undergo
a phenotypic transition from a pro-inflammatory M1 state to
an anti-inflammatory and pro-regenerative M2-like state, marked
by expression of IL-10, arginase-1, and growth factors such as
insulin-like growth factor-1 and vascular endothelial growth factor
(122). This phenotypic shift is critical for resolving inflammation
and facilitating regeneration. Peripheral inflammatory events can
alter CNS activity through the activation and sensitization of
nociceptors, which transmit signals to the spinal cord and higher
brain centers involved in pain and stress regulation (123, 124).
In response, descending modulatory pathways, particularly those
originating from the periaqueductal gray and rostral ventromedial
medulla, influence spinal nociceptive processing and autonomic
outflow. These descending circuits can indirectly modulate
peripheral immune function via sympathetic and parasympathetic
outputs, including the release of neurotransmitters such as
norepinephrine and acetylcholine, which act on immune cells to
regulate inflammation (125, 126).

Adult hematopoietic homeostasis depends on the coordinated
self-renewal, differentiation, and mobilization of HSC within the
bone marrow microenvironment (127), and their recruitment to
peripheral sites in response to inflammatory cues (128, 129). The
sympathetic nervous system is the principal neural regulation
of bone physiology, including remodeling a hematopoietic
function. Direct sympathetic innervation originating from the
thoracolumbar spinal cord preganglionic neurons extends into
bone tissue (130). These nerve fibers are closely associated
with blood vessels and reside in the hematopoietic cavities
of the bone marrow, forming neurovascular units (131). This
anatomical arrangement suggests that peripheral nerve signals
influence bone and marrow-resident cells via diffusible chemical
mediators. Disruption of β adrenergic receptor signaling has
been shown to impair bone accrual (132), hinder hematopoietic
regeneration (133), and reduce mesenchymal stem cell motility
(134). In addition, circadian oscillations of adrenergic tone
regulate the proliferation and cyclic release of hematopoietic cells
(135, 136), largely through modulation of CXCL12 expression
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TABLE 1 The expression of neurotransmitter receptors and their potential role in the regulation of immune cell maturation and function.

Cell type Neurotransmitter receptors expressed Potential e�ects of the activation of the
neurotransmitter receptors

Basophil Nerve growth factor receptor, Trk (251) Drives mediator release and primes basophils for C5a response (251)

Acetylcholine receptor (aAChR) (252) Regulate cell activation (253)

Prostaglandin D receptor Affects cell lifespan (254)

Dopamine receptor (DRD5) Inhibition of cell migration (255)

Serotonin (5-HT) receptor (5-HT2B) Downregulation of basophil-derived IL-4 (256)

Adrenergic receptor (β2AR) Affect basophil functional activity (257)

GABAergic receptor Inhibit degranulation in basophil (258)

B cells Dopamine receptor (DRD1/DRD2-like) (259, 260) Regulate cell migration (261), activation (262), and differentiation (259)

Acetylcholine receptor (nAChR) (263) Inhibit cell proliferation and antibody production (264), regulating the production
of TNF-α, and decreasing B cell survival (265)

5-HT receptor (266) Increase mitogen-stimulated B-cell proliferation (267)

Adrenergic receptor (β2AR) (268) Activation enhance B cell receptor signaling, leading to the production of
higher-affinity antibodies (269)

GABA receptor (270) Promotes germinal center B cell differentiation (270)

Glutamatergic receptor (NMDAR) Regulation of B cell migration and proliferation (271)

Neuropeptide receptor Modulate B cell activity (272)

Dendritic cell 5-HT receptor (273) Inhibit proinflammatory cytokine and chemokine response (274), regulate
migratory properties (275)

Dopamine receptor D5 (DRD5) (276) Required for LPS-induced IL-23 and IL-12 production (276)

GABA receptor (277) Enhance cell migration under pathological condition (277)

Glutamatergic receptor Involved in tumor-type-1 conventional dendritic cell crosstalk required to activate
cytotoxic T cells (278)

Neuropeptide (NK2R) Activate dendritic cell-mediated type 1 immune responses (279)

Adrenergic receptor (α1bAR) Control cell migration (280)

Acetylcholine receptor (mAChR) Polarizes human dendritic cells toward a Th2-promoting profile (281)

Eosinophil 5-HT receptor (282) Mediates chemotaxis and migration (283)

Neuropeptide receptor (NK1R for Substance P) (284) Activate cell and enhance cytotoxic granule release (284)

GABA receptor (GABRA4) Modulation eosinophil migration (285)

Glutamatergic receptor (286) –

Adrenergic receptor (α1AR) Modulation of eosinophil responses (287)

Acetylcholine receptor (nAChR) Down-regulate eosinophil function in vitro (288)

Mast cell Acetylcholine receptor (nAChR) (252) Influence degranulation and cytokine release (289, 290)

Dopamine receptor (291) D1-like receptor promotes degranulation in skin allergy model (292), D3 receptor
suppress cell activation in rheumatoid arthritis (293)

5-HT receptor (294) Modulate chemotaxis (295)

Neuropeptide receptor (296) Activate cells, induce secretion of pro-inflammatory mediators (297)

GABA receptor (lack γ subunit) Suppress histamine release (258)

Glutamatergic receptor (GluK2) Involved in mast cell activation and degranulation (298)

Adrenergic receptor (β2AR) Inhibition of mast cell function (299)

Cholinergic receptor Induce degranulation and subsequent histamine release (300)

Monocyte/
Macrophage

Dopamine receptor (DRD1/DRD2-like) (301, 302) Macrophage polarization (301, 303), phagocytosis (304, 305)

5-HT receptor (306) Suppressed IFN-γ-induced antigen-presenting capacity (307)

GABA receptor (308) Promote monocyte differentiation into anti-inflammatory macrophages (309)

Adrenergic receptors (α and β) (243) Modulation of effector function (310, 311)

(Continued)
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TABLE 1 (Continued)

Cell type Neurotransmitter receptors expressed Potential e�ects of the activation of the
neurotransmitter receptors

Glutamatergic receptor (mGluR5) Modulation of macrophage plasticity (312)

Cholinergic receptor (nAChRα7) Mediatiing macrophage recruitment to inflammaed sites (313)

Neuropeptide receptors Modulation of macrophage function (314)

Megakaryocytes
(Erythro-myeloid
progenitors,
immune-
modulatory)

Glutamate receptor (NMDAR) (315) Proplatelet formation and maturation (316)

Dopamine receptor (DRD1/DRD2-like) (317) Induction of platelet production (318)

Nicotinic acetylcholine receptor (nAChRα7) (319) Inhibit megakaryopoiesis (320)

5-HT receptor (317) Promote megakaryopoiesis (321)

GABA receptor (GABBR1) (322) Regulate hematopoietic stem cell (HSC) proliferation, which may affect MK
precursor production (323)

Adrenergic receptor (α1AR) (324) –

Neutrophils Cholinergic receptor (325, 326) nAChR inhibit TNF-α release and neutrophil recruitment during LPS-induced
inflammation (325), M3 mAChR promotes neutrophil extracellular trap formation
(326)

Dopamine receptor (255) Modulate cell function and apoptosis (255, 327)

Neuropeptide receptor (328) Modulate cell chemotaxis responses (329) and inflammatory status (330)

Glutamate receptor (mGluR5) Regulation of cell migration (331, 332)

GABA receptor (GABABR) Stimulation of neutrophil chemotaxis (333)

Adrenergic receptor (β2AR) Modulate neutrophil-specific effector functions (334)

5-HT7 receptor (335) –

NK cells Cholinergic receptor (nAChRα7) (336) Suppress pro-inflammatory cytokine release during autoimmune responses (336)

Dopamine receptor (337) Modulation of cellular cytotoxicity (337)

Neuropeptide receptor (338) Modulation of cell function (338)

Glutamate receptor (mGluR5) Modulation of IFN-γ production (339)

GABA receptor (GABAAR) Hampens NK cell cytotoxicity in vitro (340)

Adrenergic receptor (β2AR) Control adaptive NK cell response to viral infection (341), inhibit cell activity (342),
affect cell circulation and adhesion (343)

5-HT1A receptor Regulate interaction between NK cell and monocyte (344)

Erythrocyte
(Immune-
modulatory)

Adrenergic receptor-like receptor (345) Modulating the deformability of the cells (346)

Glutamate receptor (NMDAR, NR2D and NR3B
dominant) (347, 348)

Affect cell physical properties, oxidative state, and stability in circulation (348)

Acetylcholine receptor Affect membrane rigidity (349)

Adrenergic receptor (β2AR) (350) Modulate blood oxygen availability (351)

Acetylcholine receptor (349) Regulate self-renewal of early erythroid progenitors (352)

T cells Adrenergic receptor (β2AR) (268) Blocking β2-AR increases activation, proliferation, and cytokine release (353)

Dopamine receptor (354–357) Modulating the inflammatory status of CD4+ cells (356, 357), inhibit CD8+ cells
(358), regulation of Treg response against self-antigens (359)

Glutamate receptor (AMPAR) (360) Important for CD8+ T cell cytotoxic function (361)

5-HT receptor (362) Enhancement of cell activation (363)

Neuropeptide receptor (364, 365) Sustain activated T cell survival (364), modulation of inflammatory response (365)

Nicotinic acetylcholine receptor (nAChRα7) Induce an increase in intracellular Ca2+ concentration (366)

GABA receptor (GABAAR) Inhibition of T cell proliferation (367)

by stromal cells (137, 138). Sympathetic denervation dampens
CXCL12 expression and significantly impaired HSC mobilization
(139). Furthermore, the rhythmic and noradrenaline-dependent

expression of endothelial adhesion molecules (140) emphasizes the
role of adrenergic signaling and circadian timing in governing
HSC trafficking and localization within the bone marrow niche. In
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contrast, the parasympathetic nervous system contributes choline
acetyltransferase (ChAT)-positive fibers, likely originating from
skeletal nerves (141), that have been implicated in linking physical
activity to bone homeostasis. The precise role of parasympathetic
innervation in the regulation of hematopoiesis remains undefined.

The establishment of multiple neuroimmune interaction nodes
during development creates enduring sites for nervous system
influence on immune regulation. Given the close physical and
biochemical interactions between the immune cells and neurons,
and their shared capacity to produce and respond to a common
set of chemical messengers, age, and environmental-dependent
alterations to the microenvironment inevitably the functionality of
both systems. Therefore, the dynamic evolution of neural function
and pathology must be interpreted in tandem with the context-
dependent modulation of these neuroimmune interfaces.

3 Impact of aging on immune and
nervous system function

3.1 Immunosenescence and inflammaging:
mechanisms and consequences

The immune system undergoes a progressive functional decline
with age, independent of the nervous system, characterized by
both quantitative and qualitative shifts in innate and adaptive
immunity. This decline compromises the body’s ability to combat
pathogens (142, 143). While the number of innate immune cells
such as the macrophages (microglia in the CNS) and neutrophils
remains relatively stable with age (144–146), their chemotactic and
phagocytic capacity diminish (147) along with reduced cellular
turnover (148). These defects result in increased accumulation of
cellular debris (149) and impaired resolution of infections and
inflammatory conditions (150, 151).

Age-associated alterations in cytokine production (152), toll-
like receptor (TLR) signaling in response to pathogens (153), and
impaired recruitment and migration of immune cells (154) further
contribute to the state of persistent, low-grade immune activation
that reflects a failed attempt to resolve chronic inflammation
and infection. In parallel, thymic involution leads to marked
reduction, and eventual cessation of naïve T cell production (155).
Compounding this is the depletion of existing T cells due to
repeated infections (156) and their subsequent clonal expansion
and exhaustion, which attempts to compensate for impaired thymic
output (157, 158). These factors contribute to telomere attrition
and DNA damage, disrupting T cell homeostasis and survival
(159, 160).

HSC in the aging bone marrow exhibit a skewed differentiation
bias favoring myeloid over lymphoid lineages (161), coupled with
reduced expression of activation-induced cytidine deaminase, an
enzyme critical for antibody class switching (162). Consequently,
aged individuals produced higher numbers of immature naïve
B cells with diminished capacity to mount specific, long-term
responses against novel antigens. In contrast, the adult skull bone
marrow niche which is protected from systemic aging (163),
and exhibiting differential responses to pathology compared to
femoral bone marrow (164), may play a unique and as yet poorly

understood role in CNS immune aging. The cumulation of these
cellular and molecular changes in the peripheral immune system
leads to immune competence, accumulation of tissue damage,
increased risk of age-related complications, and elevated mortality.

Beyond impaired host defense, the aging immune system
actively drives systemic aging. Chronically activated immune
cells produce pro-inflammatory cytokines that damage tissues
across multiple systems–including the nervous, musculoskeletal,
and cardiovascular systems—via chronic inflammation of
“inflammaging” (165). In the CNS, senescent microglia are
implicated in neurodegeneration. These aged microglia display
impaired clearance of protein aggregates (166), reduced motility,
and compromised phagocytic activity, coinciding with a dystrophic
morphology (167), loss of homeostatic gene expression (168),
and metabolic shift toward fatty acid metabolism (169). The
accumulation of lipid droplets further impairs debris clearance,
including myelin remnants (170). Activated microglia induce a
A1 phenotype in astrocytes via interleukin 1α (IL-1α), TNFα,
and complement component (C1q) signaling (171), prompting
astrocytes to secrete chemokines such as CXCL10 that attract T cells
into the CNS through an increasingly permeable BBB (172, 173).
This cascade sustains local neuroinflammation, activates resident
glia, and promotes neuronal dysfunction and death.

In the musculoskeletal system, inflammaging disrupts the
regulatory balance between interleukin 6 (IL-6) and myostatin,
impairing the regenerative capacity of muscle satellite cells (174–
176). IL-6 activates catabolic signaling via the Janus kinase
(JAK)/signal transducer and activator of transcription 3 (STAT3)
signaling pathway, inhibiting satellite cell differentiation and
increasing myostatin expression (177), which in turn activates
small mothers against decapentaplegic 2/3 (Smad2/3) signaling and
induces cell cycle arrest (178). These changes reduce satellite cell
proliferation, exacerbating sarcopenia and chronic inflammation
(175, 179). In the adipose tissue, aging and metabolic dysfunction
promote NOD-, LRR-, and pyrin domain-containing protein 3
(NLRP3) inflammasome activation (180), while targeting sirtuin
2, deacetylase regulating NLRP3, has been shown to reverse
insulin resistance in aged mice (181). This highlights a tissue-
specific interplay between immune dysfunction and metabolic
disorders. Moreover, altered PNS function may modulate these
immune responses, contributing to organ-specific degeneration
and failure (182–184).

Recent studies have also highlighted the gut–immune–brain
axis as a key player in immunosenescence and inflammaging
(185–187). Aging-associated gut dysbiosis compromises intestinal
immune homeostasis and increases gut permeability, facilitating
the translocation of microbial products such as lipopolysaccharides
(LPS) into systemic circulation (188, 189). Conversely, peripheral
neuron activity may shape gut microbiota composition (190).
These microbial-derived inflammatory cues perpatuate immune
dysregulation. Interventions with probiotic and prebiotic aimed
at restoring gut microbiota balance may mitigate this systemic
inflammation (191). Collectively, these findings underscore
the intricate interplay between immunosenescence, chronic
inflammation, and systemic aging. They highlight the need for
therapeutic strategies targeting immune rejuvenation to delay or
prevent age-related diseases.
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3.2 Impact of age-dependent systemic
changes on neurological decline and
neuropathology development

Endothelial cell senescence is a key contributor to age-
associated BBB dysfunction. This process disrupts the formation
of the endothelial glycocalyx (192) and downregulates the
expression of tight junction proteins (193), leading to increased
BBB permeability. The extent of BBB leakage is strongly
correlated with changes in tight junction protein expression (194).
Notably, the overexpression or pharmacological activation of
silent information regulator 1 (Sirt1) has been shown to preserve
BBB integrity in aging models, likely through attenuation of
reactive oxygen species production and preservation of endothelial
cell dysfunction (195, 196). Additional pathological changes,
such as the accumulation of CNS-derived protein aggregates
in pericytic (197), the loss of pericyte-astrocyte interactions
(198, 199), impaired glymphatic waste clearance (200, 201),
and sustained systemic inflammation (202). This disruption
permits the infiltration of dysfunctional and pro-inflammatory
peripheral immune cells into the CNS (203) (Figure 3). In
synergy with chronically activated aged microglia and astrocytes,
these infiltrating immune cells exacerbate neuroinflammation,
compromise neuronal function, impair synapse maintenance, and
potentiate the neurotoxic effects of abnormal protein aggregates,
thereby accelerating neuropathological progression (139).

Cognitive decline in aging is further linked to persistent,
low-grade neuroinflammation arising from complex bidirectional
interactions between the CNS and the gut microbiota. Monocyte-
driven gastrointesinal inflammation can increase gut permeability,
enabling translocation of microbial products into circulation,
which subsequently impacts the CNS (204). Aged mice
exhibit elevated levels of circulating and brain-associated
lipopolysaccharide (LPS), along with increased expression of
Toll-like receptor 4 (TLR4), myeloid differentiation protein-88
(MyD88), and nuclear translocation of NF-κB in both intestinal
and brain tissues (205). Moreover, Microbiome gut microbiota-
derived short-chain fatty acids and metabolites such as 3-indoxyl
sulfate can stimulate vagal nerve and NST activity (206), potentially
modulating systemic and central inflammation via vagal pathways.
The exacerbation of motor deficits in α-synuclein-expressing mice
following fecal microbiota transplantation from Parkinson’s disease
(PD) patients suggests a potent gene-environment interaction in
neurodegenerative disease pathogenesis (207).

Systemic metabolic and hormonal alterations further
compromise neural function with age. Immune-metabolic
crosstalk and cytokine-mediated interference in metabolic
regulation contribute to the development of insulin resistance
(208), ectopic lipid deposition (209, 210), and hypertension
(211). Each of these factors independently heightens the risk for
neuronal death and cognitive impairment (212–214). The decline
in hormone levels with age further exacerbates deficits in glucose
metabolism and sensing (215, 216) and inflammaging worsens
existing defects in glucose metabolism and sensing (217). Of the
earliest detactable changes in this cascade is the downregulation of
glucose transporter type 4 (Glut4) expression in insulin-sensitive
neurons (218, 219), which compromises synaptic energy supply

(220) leading to cognitive dysfunction. Chronic hyperglycaemia
also promotes tau hyperphosphorylation, a hallmark of Alzheimer’s
disease (221). In comparison, hypertension and dyslipidemia
impair cerebral blood flow, increasing the risk of hypoperfusion-
induced microinfarcts (222). Comprehensive investigation of the
interplay between immune dysregulation, metabolic dysfunction,
and neural decline is essential to delineate the mechanisms driving
age-related neuropathology.

4 Modulation of the neuroimmune
axis holds promise for the
management and treatment of
neurological pathology

Targeting the neuroimmune axis presents a promising
approach for the treatment of neurological disorders. One
such strategy involves the clearance of senescent immune cells
using senolytic agents, which has demonstrated neuroprotective
effects. The elimination of senescent immune cells with the
use of senolytics has been shown to mitigate neurological
decline by enhancing neuronal survival toward physical insults
(223), reducing proinflammatory cytokine production (224)
and abnormal protein aggregation (225) in the presence of
neuroinflammation. As brain penetrant and non-penetrant
senolytics are equally effective in reducing Ad pathology, the
locus and mechanism of effect are unclear (226). Yet, care is
required for the use of senolytics in the management of immune-
related conditions with their potential for off-target toxicity
(227). The heterogeneity of cellular senescence (228, 229) and
specificity of senolytics to survival pathways also meant that
there is no universal senolytic to clear all senescence cells and
the potential unwanted removal of senescent, non-replaceable
neurons may exert more harm to neurological function and
neurocognitive outcomes.

Alternatively, anti-inflammatory therapies targeting
neuroinflammation, a key driver of neurodegeneration can
be achieved by modulating microglia activation (230), reducing
prostaglandin-mediated inflammation (231), and inhibiting the
complement system (232). The long-term use of non-steroidal
anti-inflammatory drugs (NSAID) that target cyclooxygenases
(COX) and the production of prostaglandin (233) is associated
with a significant decrease in the risk of developing AD (234).
Consistent with the observation, COX-2 inhibition prevents
progressive degeneration of dopaminergic neurons in a preclinical
model of Parkinson’s disease (PD) (235). The inhibition of
NLRP3 inflammasome with mefenamic acid and the complement
pathway with anti-complement drugs have ameliorated amyloid
beta deposition, synapse loss, and neuronal loss, and improved
neurocognitive outcomes of genetic models of neurodegenerative
disease (236, 237). The chronic use of NSAID risks gastrointestinal
and renal toxicity (238, 239) while general inhibition of
inflammation is likely effective only pre-symptomatically.

Glucagon-like peptide 1 (GLP1) agonist exerts a pleiotropic
effect in the CNS to reduce inflammation and abnormal
protein aggregation. Liraglutide treatment significantly reduced
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FIGURE 3

Age-related changes in immune cells and the development of chronic inflammation in the CNS. Increased permeability of the BBB due to endothelial

cell, pericyte, and astrocyte senescence and demise and an increase in the number of activated astrocytes and microglia leads to the recruitment of

peripheral immune cells into the brain parenchyma. The altered immune cell (from periphery or resident to the brain) function and status with age

results in the accumulation of senescent cells, cellular debris, and abnormally aggregated proteins, triggering further inflammatory responses within

the brain. As such, the persistent inflammatory status and increasingly abundant cellular byproducts result in a positive feedback loop that damages

and triggers death pathways in neurons (neurodegeneration). Created in BioRender. Yeo, X. (2025) https://BioRender.com/dwabb60.

inflammation in the cortex of the APP/PS1 mouse model of AD
(240) while Exenatide reduced TNFα expression and hippocampal
neuron loss in a streptozotocin model of AD (241). On the other
hand, GLP1 agonists may enhance autophagy and Aβ plaque
clearance (242), improve brain insulin sensitivity and availability
of glucose to neurons (243), and boost brain-derived neurotrophic
factor (BDNF) signaling (244) to increase the chance for neuron
survival in the presence of neuroinflammation and toxic protein
aggregates. The time and dose of GLP1 administered is important
for the greatest efficacy in the management of neurological
conditions and the co-administration with anti-amyloid drugs
may enhance the neuroprotective effect of GLP1 agonists in
neurodegenerative diseases.

Given the absence of a modifying treatment for
neurodegenerative diseases, lifestyle factors are an appealing
strategy to manage progressive neurocognitive decline. Lifestyle
changes have been linked to better cognitive functions in older
individuals (245). Despite the difference in targets, common
dietary interventions that limit saturated fats and processed food
consumption (Mediterranean diet), induce ketosis (ketogenic diet),

and restrict energy consumption (caloric restriction or intermittent
fasting) aimed to increase the availability of the precursors
essential for cellular recovery, reduce factors inflicted in cellular
death in neurodegenerative conditions, and enhance autophagy
to promote the clearance of protein aggregates (246, 247).
Optimal diets vary greatly depending on the underlying genetics
and disease stage of an individual and long-term adherence
to a restrictive diet is challenging. The adoption of physical
activity in various modalities is capable of slowing cognitive
decline in patients with mild cognitive impairment and AD
(248) through the expression of BDNF (249) and alleviation of
neuroinflammation (250).

5 Conclusion

Modulating neuroimmune interactions offers a compelling
strategy for the treatment of diverse neurological pathologies
through the alteration of disease trajectories, alleviation of
symptoms, and improving quality of life. Nonetheless, the
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heterogeneity of neuroimmune responses and disease status
across individuals complicates treatment development. General
immunosuppression carries risks of infection and malignancy
while CNS-targeted therapies need to cross the BBB, and a
delicate tuning of immune suppression is essential to maintain
key immune functions while alleviating neurological defects. The
development of reliable biomarkers to stratify patients, monitor
neuroimmune activity, and assess therapeutic response is essential
to the implementation of precisionmedicine approaches. Advances
in nanotechnology and drug delivery systems may also enhance
the precision and safety of neuroimmune-targeting interventions.
Ultimately, the successful translation of neuroimmune modulation
into clinical practice will depend on sustained interdisciplinary
research. Collaborative efforts integrating immunology,
neuroscience, metabolism, pharmacology, and systems biology
are essential to unravel the complex interplay between systemic
aging and neurological decline. By deepening our understanding
of the neuroimmune axis, it may be possible to identify novel
therapeutic targets and intervention windows that can halt or
even reverse the progression of neurodegenerative diseases,
offering hope for effective and individualized treatments in the
aging population.
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