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Introduction: The correlation between serum homocysteine levels and post-
stroke cognitive impairment (PSCI) remains inconsistent. This study aimed to 
investigate whether serum homocysteine levels are independently associated 
with PSCI and to assess the effects of renal function on this relationship.

Methods: A retrospective analysis was conducted in 608 patients with ischemic 
stroke. Homocysteine levels were obtained from inpatient medical records, and 
global cognitive function status 1 month after discharge was assessed using the 
Mini-Mental State Examination (MMSE) and the Montreal Cognitive Assessment 
(MoCA). The relationship between homocysteine levels and PSCI was evaluated 
using univariate and multiple linear and logistic regression analyses.

Results: The mean age of the patients was 66.6 ± 4.1 years, with 48% being 
female. The median homocysteine level was 13.8 μmol/L (interquartile range 
[IQR], 11.3–17.3 μmol/L), and 39.3% of patients had total homocysteine levels 
above the cutoff of 15 μmol/L. After full adjustment, a stronger positive 
association between homocysteine levels and PSCI was observed in patients 
with low estimated glomerular filtration rate (eGFR), with significant interactions 
between eGFR and MMSE scores (P for interaction = 0.005) and between 
eGFR and MoCA scores (P for interaction = 0.001). Joint analyses indicated 
that the highest risk of PSCI was in patients with eGFR < 90 ml/min/1.73 m2 
and homocysteine levels ≥15 μmol/L (odds ratios [ORs] were 2.50 [95% CI: 1.49, 
4.18; p < 0.001] for MMSE and 13.53 [95% CI: 6.64, 27.56; p < 0.001] for MoCA in 
the fully adjusted model).

Conclusion: These findings highlight the additive value of hyperhomocysteinemia 
and lower eGFR in predicting incident PSCI risk.
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Introduction

Worldwide, PSCI is major sources of post-stroke morbidity and mortality (1) and is 
highly prevalent among stroke survivors in China (2). The risk of PSCI is a major concern 
for patients and their families. Therefore, understanding the mechanisms and modifiable 
determinants of PSCI is of clinical importance in developing preventive strategies and is 
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key to delivering equitable health care to the Chinese 
population (3, 4).

Homocysteine is a non-essential sulfur-containing amino acid 
that is produced in the metabolic cycle by demethylation of 
methionine. It plays a central role in the methionine and folate 
cycles, and its metabolism is dependent on folate, vitamins B12 and 
B6. To date, some studies have suggested that elevated homocysteine 
levels are modifiable risk factors for Alzheimer’s disease (AD) and 
vascular dementia (VaD) (5–7). For more than four decades, 
hyperhomocysteinemia, defined as elevated serum homocysteine 
levels, has been widely recognized as a risk factor for vascular 
disease and VaD, supported by extensive clinical evidence (8–15). 
Recently, an umbrella review found hyperhomocysteinemia to 
be  associated with cognitive impairment (16). An increasing 
number of reviews have shown that the plasma homocysteine level 
could be a potential biomarker for PSCI (17–19). A meta-analysis 
found higher homocysteine levels in individuals with AD and 
indicated that the homocysteine level can be used as an indicator to 
differentiate between AD and VaD (9). A new study suggests that 
high homocysteine levels are associated with the progression from 
mild cognitive impairment to dementia (20). One study 
demonstrated a correlation between elevated serum homocysteine 
levels and PSCI, with the former likely serving as a predictive factor 
for the latter (21). Another study found that elevated homocysteine 
levels were independently associated with cognitive impairment in 
a post-stroke population younger than 65 years (22).

The incidence of chronic kidney disease (CKD) is high among 
individuals with hyperhomocysteinemia, and hyperhomocysteinemia 
may be an independent risk factor for CKD as well as cardiovascular 
complications (23, 24). Recently, a study indicated that homocysteine 
is independently correlated with cognitive function in patients on 
maintenance hemodialysis (25). Studies have shown that 
hyperhomocysteinemia predicts an increased risk of inflammation 
and endothelial damage, which can lead to cardiovascular disease, 
stroke, and chronic kidney disease (26). Our prior investigation 
revealed that a decline in estimated glomerular filtration rate (eGFR) 
may serve as an effective indicator of cognitive impairment following 
a stroke (27).

Given the established relationships among hyperhomocysteinemia, 
chronic kidney disease (CKD), and cognitive function following stroke, 
it is crucial to investigate the precise interactions between homocysteine 
levels, kidney function indicators, and PSCI. Furthermore, 
understanding whether renal function indicators influence the 
association between homocysteine levels and PSCI is essential for the 
effective prevention and management of cognitive impairment 
following stroke. Therefore, this study aimed to investigate whether 
homocysteine levels are independently associated with PSCI and to 
assess the effects of renal function on this relationship.

Materials and methods

Data source

In this retrospective study, 608 patients aged 60 to 80 years with 
acute ischemic stroke, admitted within 72 h of stroke onset between 
January 2016 and December 2020, were analyzed. Data were obtained 
from hospital records and the outpatient cognitive assessment 

database, collected 1 month after discharge. Data collection began on 
September 1, 2019. During or after data collection, investigators had 
access to information that could identify individual patients. None of 
the patients had a history of severe cognitive impairment prior to 
stroke, and all were able to complete the assessment.

The study was conducted at the Department of Neurology, the 
Second Hospital of Shanxi Medical University, Taiyuan, a tertiary 
hospital in Shanxi, China. This study was approved by the Ethics 
Committee of the Second Hospital of Shanxi Medical University (No. 
2019YX214) and was completed in accordance with the principles of 
the Declaration of Helsinki. Given the retrospective nature of the 
study and the anonymized data analysis, informed consent from the 
patients was not required.

Clinical and laboratory data

Clinical information obtained from hospital records included 
systolic and diastolic blood pressure at admission, self-reported 
demographic characteristics (age, sex, weight, height, education, 
smoking and drinking status, and history of hypertension and diabetes 
mellitus), and laboratory test results (homocysteine, blood lipids, 
fasting glucose, vitamin B12, folate, and creatinine levels). Fasting 
venous blood samples were collected on the morning following 
admission. Biochemical measurements were performed using 
automatic clinical analyzers (Beckman Coulter) at the core laboratory 
of the Second Hospital, Shanxi Medical University, Taiyuan, China. 
Serum homocysteine levels were measured using an enzymatic cycling 
method, and hyperhomocysteinemia was defined as a homocysteine 
concentration greater than 15 μmol/L. Serum vitamin B12 and folate 
levels were measured using a chemiluminescent immunoassay. Serum 
glucose levels were determined by the hexokinase method. The 
concentrations of serum creatinine and lipids were measured using 
enzymatic methods.

In addition, body mass index (BMI) was calculated as weight in 
kilograms divided by height in meters squared. Neurological function 
was assessed using the form of the National Institutes of Health Stroke 
Scale (NIHSS) score (28). The patients with acute ischemic stroke were 
diagnosed with large artery atherosclerosis, small artery occlusion, 
cardioembolism, other determined cause, or undetermined cause 
according to the Trial of Org 10,172  in acute stroke treatment 
(TOAST) classification (29). The estimated glomerular filtration rate 
(eGFR) was calculated using the Chronic Kidney Disease 
Epidemiology Collaboration (CKD-EPI) equation (30).

Cognitive function assessment

All cognitive function assessments were performed by two trained 
neuropsychological evaluators using the MMSE and MoCA, 1 month 
after discharge from the hospital. MMSE and MoCA scores range 
from 0 to 30, with higher scores indicating better cognitive function. 
The cognitive domains assessed include concentration, attention, 
language, orientation, immediate and short-term recall, and the ability 
to follow simple verbal and written commands. Based on previous 
studies and the cognitive scores of patients, moderate-to-severe 
cognitive impairment 1 month post-stroke was defined as an MMSE 
score ≤20 or a MoCA score <17 (31).
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Statistical analysis

Homocysteine levels were analyzed both as a continuous 
variable and as a categorical variable. Given the skewed distribution 
of serum homocysteine levels, a natural logarithmic transformation 
was applied prior to analysis. For normally distributed continuous 
data, mean ± SD values were used to describe the data, and 
independent-sample t-tests were employed to assess group 
differences. For skewed distributions, median values with 
interquartile ranges (IQR) were reported, and the Mann–Whitney 
U test was used to compare two groups. Categorical variables were 
presented as percentages, and differences between groups were 
assessed using the Chi-square test.

Multiple linear regression and logistic regression analyses were 
conducted to estimate the regression coefficients (β) and odds ratios 
(OR) for the association between homocysteine levels and post-stroke 
cognitive impairment. Patients were divided into two groups based on 
a cutoff of 15 μmol/L for homocysteine levels. Crude and 
multivariable-adjusted β and OR values with 95% confidence intervals 
(CIs) were calculated for cognitive scores and moderate-to-severe 
post-stroke cognitive impairment. These analyses were performed 
both categorically (using <15 μmol/L as the reference group) and 
continuously (per 1-unit increase in the homocysteine level, equivalent 
to a 2.7-fold increase).

Three models were constructed with progressively increased 
adjustments for potential confounding variables that could affect 
the association between homocysteine levels and cognitive 
function. The first model was Model 0 (unadjusted). Model 1 was 
adjusted for age, sex, BMI, education, history of diabetes and 
hypertension, stroke subtypes, NIHSS score, smoking and drinking 
status, systolic blood pressure, and serum levels of total cholesterol, 
triglycerides, vitamin B12, folate, and fasting glucose. Model 2 
included further adjustment for eGFR. A two-tailed p-value of 
<0.05 was considered statistically significant. All analyses were 
performed using EmpowerStats software1 and the statistical 
package R.2

Results

Population characteristics

The clinical and demographic characteristics of all 608 patients, 
grouped by homocysteine levels, are presented in Table 1. The mean 
age of patients was 66.6 ± 4.1 years, and 48% were female. The 
median homocysteine level was 13.8 μmol/L (interquartile range 
[IQR]: 11.3–17.3 μmol/L). A total of 239 patients (39.3%) had total 
homocysteine levels higher than the cutoff of 15 μmol/L. Patients 
with higher homocysteine levels were more likely to be older, male, 
former or current drinkers, and smokers. They were also more likely 
to have high diastolic blood pressure, low folate and vitamin B12 
levels, and low eGFR at admission, but less likely to have diabetes 
(Table 1).

1 www.EmpowerStats.com

2 www.r-project.org

Homocysteine levels and post-stroke 
cognitive impairment

Table 2 presents the results of analyses with unadjusted and adjusted 
models for continuous homocysteine levels and categorized homocysteine 
levels in relation to post-stroke cognitive impairment. When examined 
as a continuous variable (per 1-unit increase) in both the Model 0 and 
Model 1, the log-transformed increase in homocysteine level was 
significantly and negatively associated with MMSE and MoCA scores (for 
MMSE: β = −0.69, 95% CI: −1.16, −0.22, p = 0.004; for MoCA: β = −0.86, 
95% CI: −1.38, −0.34, p = 0.001 in Model 1). However, after the inclusion 
of eGFR in Model 2, the association between the log-transformed 
homocysteine level and post-stroke cognitive impairment was no longer 
significant (for MMSE: β = 0.26, 95% CI: −0.18, 0.69, p = 0.253; for 
MoCA: β = 0.42, 95% CI: −0.04, 0.87, p = 0.073 in Model 2).

In categorical analysis, a significant association was observed for 
patients with homocysteine levels ≥15 μmol/L compared with those 
with homocysteine levels <15 μmol/L in the Model 0 and Model 1 (for 
MMSE: β = −0.44, 95% CI: −0.78, −0.10, p = 0.011 in the Model 0; 
β = −0.42, 95% CI: −0.78, −0.06, p = 0.024 in Model 1; for MoCA: 
β = −0.62, 95% CI: −1.00, −0.25, p = 0.001 in the Model 0; β = −0.53, 
95% CI: −0.94, −0.13, p = 0.010 in Model 1). Similarly, the direction 
of the relationship between homocysteine levels and post-stroke 
cognitive impairment changed once eGFR was introduced into Model 
2 (for MMSE: β = 0.23, 95% CI: −0.10, 0.57, p = 0.177; for MoCA: 
β = 0.34, 95% CI: −0.04, 0.87, p = 0.056 in Model 2).

Table  3 presents the incidence of moderate-to-severe cognitive 
impairment 1 month after stroke, stratified by different serum 
homocysteine levels. A total of 68 (56.7%) and 96 (42.7%) patients 
exhibited moderate-to-severe post-stroke cognitive impairment, based 
on MoCA and MMSE scores, respectively. In both the Model 0 model and 
Model 1, compared with patients in the homocysteine level < 15 μmol/L 
group, those with homocysteine levels ≥ 15 μmol/L had a higher risk of 
moderate-to-severe post-stroke cognitive impairment (unadjusted 
OR = 2.42, 95% CI: 1.62, 3.64; p < 0.001 for MoCA in Model 0; adjusted 
OR = 2.95, 95% CI: 1.81, 4.79; p < 0.001 for MoCA in Model 1). However, 
this association was not significant once eGFR was introduced into the 
model (OR = 1.19, 95% CI: 0.66, 2.15; p = 0.557 for MoCA in Model 2). 
Similar results were observed when homocysteine level was analyzed as 
a continuous variable. The log-transformed homocysteine level was not 
significantly associated with the risk of moderate-to-severe post-stroke 
cognitive impairment for MoCA scores in Model 2 (p = 0.955).

Stratified analyses by potential effect 
modifiers

The relationship between homocysteine levels (≥15 μmol/L vs. 
<15 μmol/L) and post-stroke cognitive performance was further 
evaluated using stratified analysis (Table  4). A fully multivariable-
adjusted significant negative association between elevated homocysteine 
levels and post-stroke cognitive performance was observed in patients 
with eGFR < 90 ml/min/1.73 m2, with significant interactions between 
eGFR and MMSE scores (P for interaction = 0.005) and MoCA scores 
(P for interaction = 0.001). In contrast, other variables, including sex, 
age, NIHSS score, systolic blood pressure, stroke subtypes, and blood 
glucose levels, did not significantly mediate the relationship between 
homocysteine levels and post-stroke cognitive impairment.
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Joint effects of homocysteine and eGFR 
levels on post-stroke cognitive impairment

Based on the data provided in Table 5, the joint analysis of serum 
homocysteine and eGFR levels on moderate to severe post-stroke 

cognitive impairment revealed significant insights into the risk factors 
associated with PSCI. The logistic regression analyses revealed that the 
highest risk of PSCI was in the group with eGFR < 90 ml/min/1.73 m2 
and homocysteine levels ≥15 μmol/L. After adjusting for pertinent 
confounders, the odds ratios (ORs) were 2.50 (95% CI: 1.49, 4.18; 

TABLE 1 Demographic and clinical characteristics of patients stratified by serum homocysteine.

Variables Overall Homocysteine (μmol/L) p value

<15 ≥15

n = 608 n = 369 n = 239

Age, y (mean ± SD) 66.6 ± 4.1 66.2 ± 4.1 67.2 ± 4.2 0.002

Male, n (%) 316 (52.0) 154 (41.7) 162 (67.8) <0.001

BMI,a kg/m2 (mean ± SD) 25.0 ± 3.6 25.0 ± 3.4 24.8 ± 3.8 0.430

Education (> 6 years), n (%) 200 (32.9) 104 (28.2) 96 (40.2) 0.002

Systolic blood pressure on admission, mmHg (mean ± SD) 171.9 ± 20.2 171.5 ± 19.6 172.5 ± 21.1 0.816

Diastolic blood pressure on admission, mmHg (mean ± SD) 92.9 ± 12.2 91.7 ± 12.3 94.8 ± 11.9 <0.001

Smoking, n (%) <0.001

 Never 355 (58.5) 250 (67.9) 105 (43.9)

 Former 64 (10.5) 35 (9.5) 29 (12.1)

 Current 188 (31.0) 83 (22.6) 105 (43.9)

Alcohol drinking, n (%) 0.003

 Never 389 (64.0) 256 (69.4) 133 (55.6)

 Former 52 (8.6) 27 (7.3) 25 (10.5)

 Current 167 (27.5) 86 (23.3) 81 (33.9)

Stroke subtypes, n (%) 0.640

Large artery 281 (46.2) 170 (46.1) 111 (46.4)

Small vessel occlusion 309 (50.8) 189 (51.2) 120 (50.2)

Cardioembolism 13 (2.1) 6 (1.6) 7 (2.9)

Other determined etiology 3 (0.5) 2 (0.5) 1 (0.4)

Undetermined etiology 2 (0.3) 2 (0.5) 0 (0.0)

Diabetes mellitus,b n (%) 50 (8.2) 38 (10.3) 12 (5.0) 0.021

Hypertension, n (%) 361 (59.4) 220 (59.6) 141 (59.0) 0.878

Laboratory results

Total cholesterol, mmol/L (mean ± SD) 5.7 ± 1.2 5.7 ± 1.2 5.8 ± 1.2 0.454

Triglyceride, mmol/L (median, IQR) 1.4 (1.0–2.0) 1.4 (1.0–1.9) 1.4 (1.0–2.0) 0.579

Folate, ng/mL (mean ± SD) 7.5 ± 3.3 8.1 ± 3.2 6.5 ± 3.3 <0.001

Vitamin B12, pmol/L (mean ± SD) 399.5 ± 165.5 429.6 ± 178.7 353.4 ± 130.3 <0.001

Hcy, μmol/L (median, IQR) 13.8 (11.3–17.3) 11.7 (10.5–13.4) 18.3 (16.4–24.7) <0.001

Fasting glucose, mmol/L (mean ± SD) 6.1 ± 1.8 6.2 ± 1.9 6.0 ± 1.6 0.295

Estimated glomerular filtration rate, ml/min/1.73m2 (median, IQR) 91.7 (18.5–148.1) 92.7 (88.3–96.4) 89.5 (73.1–94.5) <0.001

Neural function assessment, mean (SD)

MMSE score at 1 month, mean ± SD (range 0–30) 21.4 ± 2.1 21.6 ± 1.8 21.2 ± 2.5 0.129

MoCA score at 1 month, mean ± SD (range 0–30) 17.9 ± 2.3 18.2 ± 1.9 17.6 ± 2.8 0.029

NIHSS score at admission, mean ± SD (range 0–42) 5.0 ± 2.2 5.0 ± 2.2 5.1 ± 2.3 0.576

Hcy, Homocysteine; BMI, body mass index; MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive Assessment; NIHSS, National Institutes of Health Stroke Scale. Values are 
presented as mean ±SD or median (interquartile range, IQR) for continuous variables and n (%) for categorical variables.
aBMI was calculated as weight in kilograms divided by height in meters squared.
bDiabetes mellitus was defined as self-reported physician diagnosed diabetes.
cHypertension was defined as self-reported physician diagnosed hypertension.
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p < 0.001) for MMSE and 13.53 (95% CI: 6.64, 27.56; p < 0.001) 
for MoCA.

Discussion

This study highlight the complex interplay between homocysteine 
levels and kidney function, as indicated by eGFR, on cognitive 
impairment post-stroke. Higher levels of homocysteine and reduced 
eGFR are significantly associated with an increased risk of PSCI, as 
observed in both the MMSE and MoCA assessments. These findings 
underscore the importance of managing plasma homocysteine levels 
and monitoring kidney function in stroke patients to mitigate the risk 
of cognitive decline (25, 32, 33).

To date, considerable data on homocysteine levels and PSCI have 
been published. However, the available data are controversial (34, 35) 
and the relationship with renal function remains to be elucidated. A 
systematic review study found a positive association between cognitive 
decline and elevated plasma homocysteine levels in the general 
population and patients with cognitive dysfunction. However, 
treatment with vitamin supplementation failed to show improved 
cognitive decline (14). A recent Chinese cohort of minor stroke/TIA 
patients (NIHSS 1.49 ± 1.31) reported that elevated baseline 

homocysteine (≥ 15 μmol/L) predicted PSCI at 12 months, but not at 
3 months (MoCA < 22), in women (35). In contrast, our patients 
exhibited more severe neurological deficits (NIHSS 5.0 ± 2.2) and 
pronounced early cognitive impairment (MoCA < 17; MMSE < 20 at 
1 month). Similarly, another Chinese study demonstrated that acute-
phase hyperhomocysteinaemia (≥ 12 μmol/L) was independently 
associated with PSCI at 1 month in patients with baseline NIHSS 1 
(IQR 0–3) and MMSE < 24 as the diagnostic threshold (22). Collectively, 
the discrepant findings across studies can be attributed to differences in 
initial stroke severity, cognitive assessment tools and diagnostic criteria, 
and the interval between stroke onset and evaluation. One study found 
that higher serum homocysteine levels and an increased vascular 
burden were negative related to executive function in patients with 
CKD (36). The Randomized FAVORIT Assisted Cognitive Trial found 
cognitive benefit in kidney transplant recipients with elevated baseline 
homocysteine levels with high doses of vitamin B supplementation (32). 
Our study revealed that patients with elevated homocysteine levels and 
lower eGFR exhibited a significant association with PSCI. These 
findings clearly showed the additive value of hyperhomocysteinemia 
and lower eGFR in predicting incident PSCI risk.

The exact pathophysiologic mechanisms that underlie the link 
between homocysteine levels, eGFR, and PSCI are not fully 
established and require further elucidation. Hyperhomocysteinemia 

TABLE 2 Linear regression analysis of the association between serum homocysteine levels and post-stroke cognitive measures.

Hcy level 
(μmol/L)

No. of 
patients (%)

Model 0 Model 1 Model 2

ß (95%CI) p ß (95%CI) p ß (95%CI) p

MMSE

<15 369 (60.7) 0 0 0

≥15 239 (39.3) −0.44 (−0.78, −0.10) 0.011 −0.42 (−0.78, −0.06) 0.024 0.23 (−0.10, 0.57) 0.177

Log Hcy per 1-unit 

increase
608 (100) −0.57 (−0.99, −0.15) 0.008 −0.69 (−1.16, −0.22) 0.004 0.26 (−0.18, 0.69) 0.253

MoCA

<15 369 (60.7) 0 0 0

≥15 239 (39.3) −0.62 (−1.00, −0.25) 0.001 −0.53 (−0.94, −0.13) 0.010 0.34 (−0.01, 0.69) 0.056

Log Hcy per 1-unit 

increase
608 (100) −0.85 (−1.31, −0.38) <0.001 −0.86 (−1.38, −0.34) 0.001 0.42 (−0.04, 0.87) 0.073

TABLE 3 Logistic regression analysis of the association between Hcy levels and moderate to severe post-stroke cognitive impairment.

Hcy level 
(μmol/L)

No. of 
patients (%)

No. of 
PSCI (%)

Model 0 Model 1 Model 2

OR (95%CI) p OR (95%CI) p OR (95%CI) p

MMSE

<15 369 (60.7) 129 (35.0) 1 1 1

≥15 239 (39.3) 96 (40.2) 1.25 (0.89, 1.75) 0.194 1.28 (0.86, 1.89) 0.226 0.82 (0.53, 1.27) 0.247

Log Hcy per 1-unit 

increase
608 (100) 225 (37.0) 1.42 (0.94, 2.14) 0.097 1.65 (0.99, 2.75) 0.056 0.88 (0.49, 1.57) 0.668

MoCA

<15 369 (60.7) 52 (14.1) 1 1 1

≥15 239 (39.3) 68 (28.5) 2.42 (1.62, 3.64) <0.001 2.95 (1.81, 4.79) <0.001 1.19 (0.66, 2.15) 0.557

Log Hcy per 1-unit 

increase
608 (100) 120 (19.7) 2.57 (1.61, 4.11) <0.001 3.55 (1.97, 6.42) <0.001 0.98 (0.45, 2.11) 0.955
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TABLE 5 Joint analysis of the serum homocysteine (<15 vs. ≥15) and eGFR (<90 vs. ≥90) levels on moderate to severe post-stroke cognitive impairment.

eGFR level (ml/
min/1.73m2)

Hcy level 
(μmol/L)

No. of 
patients (%)

No. of 
PSCI (%)

Unadjusted Multivariable adjusted*

OR (95%CI) p OR (95%CI) p

MMSE

≥90
<15 256 (42.1) 74 (28.9) 1 1

≥15 115 (18.9) 30 (26.1) 0.87 (0.53, 1.43) 0.576 1.00 (0.58, 1.75) 0.986

<90
<15 113 (18.6) 55 (48.7) 2.33 (1.48, 3.68) <0.001 2.16 (1.30, 3.61) 0.003

≥15 124 (20.4) 66 (53.2) 2.80 (1.79, 4.36) <0.001 2.50 (1.49, 4.18) <0.001

MoCA

≥90
<15 256 (42.1) 21 (8.2) 1 1

≥15 115 (18.9) 11 (9.6) 1.18 (0.55, 2.54) 0.666 1.68 (0.71, 3.96) 0.239

<90
<15 113 (18.6) 31 (27.4) 4.23 (2.30, 7.77) <0.001 5.38 (2.64, 10.95) <0.001

≥15 124 (20.4) 57 (46.0) 9.52 (5.39, 16.82) <0.001 13.53 (6.64, 27.56) <0.001

ß: standardized regression coefficient; CI: confidence interval; Hcy, Homocysteine; eGFR: estimated glomerular filtration rate; NIHSS: National Institutes of Health Stroke Scale. PSCI: post-
stroke cognitive impairment.
*Adjusted for age, gender, BMI, systolic blood pressure, education, diabetes and hypertension history, stroke subtypes, NIHSS scores, smoking and alcohol drinking status, serum total 
cholesterol, triglyceride, vitamin B12, folate and fasting glucose.

induces oxidative stress and antagonizes the vasodilator properties of 
NO though the formation of S-nitrosohomocysteine, leading to 
endothelial dysfunction (37). Similarly, hyperhomocysteinemia 
causes vascular hypertrophy and remodeling, impairs the basic 

characteristics of blood vessels, and increases the stiffness of arteries 
(38). Furthermore, homocysteine has been shown to promote the 
proliferation of smooth muscle cells, leading to interactions with 
platelets, clotting factors, and lipids (39). Chronic elevated serum 

TABLE 4 Multivariable adjusted* linear regression of MMSE/MoCA scores with serum homocysteine within subgroups.

Subgroups MMSE P for 
interaction

MoCA P for 
interaction

<15 μmol/L ≥15 μmol/L <15 μmol/L ≥15 μmol/L

ß (95%CI) P ß (95%CI) P

Gender 0.384 0.175

 Male 0 0.45 (0.01, 0.89) 0.046 0 0.62 (0.17, 1.07) 0.007

 Female 0 −0.09 (−0.65, 0.47) 0.751 0 −0.09 (−0.68, 0.50) 0.762

Age dichotomous 0.149 0.807

 Lower<67 years 0 0.09 (−0.42, 0.59) 0.739 0 0.24 (−0.31, 0.79) 0.392

 Higher≥67 years 0 0.31 (−0.16, 0.78) 0.202 0 0.44 (−0.03, 0.90) 0.065

Systolic blood pressrue dichotomous 0.750 0.653

 Lower<171.9 mmHg 0 0.18 (−0.31, 0.68) 0.468 0 0.32 (−0.20, 0.83) 0.228

 Higher≥171.9 mmHg 0 0.29 (−0.18, 0.76) 0.224 0 0.37 (−0.12, 0.86) 0.142

NIHSS score dichtomous 0.681 0.550

 Lower<5 0 0.31 (−0.21, 0.84) 0.242 0 0.47 (−0.07, 1.01) 0.088

 Higher≥5 0 0.26 (−0.19, 0.71) 0.263 0 0.27 (−0.20, 0.75) 0.258

Stroke subtypes 0.450 0.804

 Large artery 0 0.21 (−0.33, 0.75) 0.443 0 0.26 (−0.29, 0.82) 0.348

 Small vessel occlusion 0 0.26 (−0.19, 0.70) 0.266 0 0.40 (−0.08, 0.88) 0.102

eGFR categoriess 0.005 0.001

 <90 ml/min/1.73m2 0 0.24 (−0.22, 0.70) 0.301 0 0.41 (−0.07, 0.90) 0.094

 ≥90 ml/min/1.73m2 0 −0.72 (−1.35, −0.08) 0.028 0 −0.88 (−1.58, −0.19) 0.013

Blood glucose dichotomous 0.692 0.788

 Lower <6.1 mmol/L 0 0.17 (−0.29, 0.63) 0.472 0 0.31 (−0.19, 0.80) 0.231

 Higher ≥6.1 mmol/L 0 0.32 (−0.18, 0.82) 0.206 0 0.45 (−0.05, 0.96) 0.082
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homocysteine alters functions of the vascular endothelial cells, and 
based on important pathobiochemical modifications, activates 
thiolation and homocysteinylation of plasma proteins and enzymes 
with a deleterious impact on cerebrovascular permeability and 
eventually on brain parenchyma (15).

The association between eGFR and homocysteine levels has 
been documented in numerous studies (24). Evidence have 
consistently shown a highly significant negative correlation between 
eGFR and homocysteine levels. This provides compelling indirect 
evidence that elevated homocysteine levels in patients with renal 
disease are closely linked to impaired kidney function (23). In our 
cohort, higher homocysteine levels were associated with lower 
eGFR. After adjustment for eGFR (Model 2), the β-coefficients for 
log-transformed homocysteine shifted from negative in Model 1 
(MMSE: β = −0.69; MoCA: β = −0.86) to positive (MMSE: β = 0.26; 
MoCA: β = 0.42), and the association between homocysteine and 
PSCI became non-significant. These observations suggest that eGFR 
may mediate the relationship, although the underlying 
pathophysiological mechanisms remain to be elucidated. Organs 
such as the kidney, liver, gut, and pancreas contain the enzymes 
needed for homocysteine metabolism. The kidney plays an 
important role in clearing homocysteine from circulation. Patients 
with CKD and those who are predisposed to high blood Hcy have 
a markedly lower serum Hcy clearance (40). Moreover, CKD 
heightens the risk of elevated blood Hcy levels, which has been 
linked to a decrease in cognition (41). In addition, it is important 
to emphasize that decreased GFR is a well-known risk factor for 
cognitive impairment (42). The coexistence of low eGFR and 
hyperhomocysteinemia may also contribute to the accumulation of 
uremic toxins owing to the deterioration of the renal clearance 
function, causing direct neurotoxicity, or be  accompanied by 
systemic hemodynamic impairment, both of which lead to the 
development of vascular cognitive impairment (26, 43). The 
additional detrimental effects of these markers on brain function 
remain unclear, warranting further research.

The strengths of this study include the assessment of cognitive 
function with both MoCA and MMSE, thus providing clinical 
accuracy to the analyses. In addition, we were able to control for 
many potential confounders including demographic and clinical 
indicators to reduce confounding effects. However, there were several 
limitations in our study. First, the homocysteine level was measured 
once, and thus possible intra-individual fluctuations were ignored. 
Second, we  did not analyze impairment in specific cognitive 
domains, but only compared overall cognitive domains. Third, 
we  lacked data on diet or post-diagnosis B-vitamin 
supplementation—both of which can alter homocysteine levels and 
bias the observed association. These variables will be collected in 
subsequent follow-up. Finally, cognitive assessment was assessed 
1 month after discharge, and the incidence of PSCI was the highest 
3 months after stroke (44). Further long-term follow-up should 
be performed.

Conclusion

Our findings indicates that the patients with hyperhomocysteinemia 
and low eGFR levels exhibited a significant association with 
PSCI. These results clearly showed the additive value of 

hyperhomocysteinemia and lower eGFR in predicting incident PSCI 
risk. These findings have important clinical implications. These 
findings underscore the importance of managing plasma homocysteine 
levels and monitoring kidney function in stroke patients to mitigate the 
risk of cognitive decline. Further investigation into the mechanisms 
behind elevated homocysteine and impaired kidney function could 
provide essential insights into prevention strategies for PSCI in post-
stroke patients. Implementing interventions that target these 
modifiable risk factors could enhance cognitive outcomes following 
a stroke.
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