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Purpose: This study aimed to investigate the diagnostic potential of neutrophil 
extracellular traps (NETs)-related genes in acute ischemic stroke (AIS) through 
comprehensive bioinformatics analysis.
Methods: Two GEO datasets (GSE37587 and GSE16561) were integrated to 
identify differentially expressed genes (DEGs) between AIS patients and healthy 
controls. Gene Set Enrichment Analysis (GSEA) was performed to explore 
functional pathways, while single-sample GSEA (ssGSEA) was used to evaluate 
immune cell infiltration patterns. NETs-related DEGs (NDEGs) were identified by 
intersecting the DEGs with previously reported NETS-related genes. Functional 
enrichment of NDEGs was performed using Gene ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analyses. Key genes were 
identified via machine learning algorithms, including least absolute shrinkage 
and selection operator (LASSO) and random forest (RF). A diagnostic model 
was constructed based on the identified hub genes and validated using an 
independent dataset (GSE58294). Potential regulatory miRNAs and candidate 
therapeutic compounds were predicted using the TargetScan and DSigDB 
databases, respectively.
Results: The discovery dataset included 73 AIS patients and 24 healthy controls, 
revealed 551 DEGs (225 upregulated, 326 downregulated). The analysis of 
ssGSEA revealed notable immune dysregulation in AIS patients, characterized 
by increased neutrophil infiltration and decreased level of Th17, Th1, and TFH 
cells. GSEA indicated that DEGs were enriched in neutrophil degranulation 
and innate immune system. NDEGs were significantly enriched in immune 
regulation and leukocyte apoptosis (GO) and NETs formation pathway (KEGG). 
Four hub genes—SRC, TLR8, FCAR, and HIF1A—were identified using LASSO and 
RF algorithms. A diagnostic model based on these genes yielded area under the 
curve (AUC) values of 0.880 in the training dataset and 0.936 in the validation 
dataset. Furthermore, three regulatory miRNAs (miR-146a-5p, miR-155-5p, and 
miR-21-5p) and 23 candidate therapeutic drugs were predicted.
Conclusion: To our knowledge, this represents the first comprehensive investigation 
of NETs-related gene signatures in AIS patients compared with healthy controls. 
These findings deepen our understanding of immune cell infiltration and the 
underlying molecular mechanisms involved in stroke, offering novel insights that 
may enhance diagnostic accuracy and therapeutic strategies for AIS.
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Introduction

Ischemic stroke (IS) is a neurological disorder characterized by an 
inadequate supply of blood and oxygen to brain tissue, resulting from 
the obstruction or narrowing of cerebral blood vessels (1). As a major 
global health burden, stroke affects approximately 26 million individuals 
annually, making it the second leading cause of mortality worldwide (2). 
Among the various types of cerebrovascular diseases, ischemic stroke 
is the most prevalent, accounting for nearly 67% of all stroke cases (3). 
Acute ischemic stroke (AIS) accounts for approximately 70% of all 
newly diagnosed stroke (4). Individuals with a history of stroke face a 
significantly elevated risk of recurrence, long-term disability, and 
mortality (5). At present, the diagnosis of IS relies primarily on clinical 
evaluation and neuroimaging techniques (6). However, the absence of 
reliable blood-based biomarkers remains a major challenge, particularly 
in cases with atypical symptoms or inconclusive imaging findings (7, 8).

Neutrophil extracellular traps (NETs) are web-like extracellular 
structures released by neutrophils in response to various stimuli, 
including bacteria, fungi, inflammatory factors, chemokines, and 
activated platelets (9). Emerging research suggests that NETs play a 
critical role in the pathophysiology of stroke by exacerbating blood-
brain barrier disruption, promoting thrombosis, inducing resistance to 
fibrinolytic agents, damaging vascular structures, and participating in 
revascularization processes (10). Furthermore, bioinformatics studies 
have identified the diagnostic potential of NETs-related genes (NRGs) 
in ischemia/reperfusion injury (11). Nevertheless, comprehensive 
investigations into the relationship between IS and NRGs remain limited.

To address this knowledge gap, we conducted a comprehensive 
bioinformatics analysis to elucidate the role of neutrophil extracellular 
traps (NETs) in ischemic stroke (IS), focusing on their associated genes 
and biological functions. Our study not only advances the understanding 
of the NETs-IS relationship but also investigates the mechanistic basis 
of IS pathogenesis. Furthermore, by identifying 4 key hub genes, 
we  developed a predictive model for IS and identified potential 
regulatory miRNAs and therapeutic agents targeting these genes. These 
findings provide a foundation for future mechanistic studies and offer 
promising translational applications for stroke management.

Methods

Data selection and preparation

Gene expression profiles were retrieved from the GEO database1 
using the search term “ischemic stroke.” Candidate datasets were 
screened according to the following criteria: (1) expression data derived 
from microarray platforms; (2) inclusion of at least 20 IS patients per 
dataset; and (3) whole blood samples collected within 48 h of symptom 
onset. For individuals with multiple blood collection time points, only 
the most recent sample was included in the analysis. Based on these 
criteria, three datasets were selected: GSE37587 (34 IS patients), 
GSE16561 (39 IS patients and 24 healthy controls), and GSE58294 (23 
IS patients and 23 healthy controls). All subsequent bioinformatics 
analyses were conducted using R software (version 4.4.2).

1  http://www.ncbi.nlm.nih.gov/geo

The discovery dataset consisted of two gene expression datasets—
GSE37587 and GSE16561—which were merged based on their shared 
microarray platform (GPL6883). The third dataset, GSE58294, was 
used as an independent validation dataset. Raw data underwent 
preprocessing, including background correction, log2 transformation, 
and normalization using the “limma” package (10). To mitigate batch 
effects between the merged datasets, we  employed the ComBat 
algorithm from the “sva” package (11). Differentially expressed genes 
(DEGs) between IS patients and controls were identified using the 
“limma” package, with significance thresholds set at an adjusted 
p-value < 0.05 (Benjamini–Hochberg false discovery rate) and an 
absolute log2 fold change (|logFC|) > 0.05.

Immune cell infiltration analysis

Single-sample Gene Set Enrichment Analysis (ssGSEA) was 
conducted to quantify the relative abundance of 24 infiltrating 
immune cell types, using a signature set derived from published 
literature (12). The analysis was performed using the R package “gsva” 
(13). For comparisons of immune cell enrichment scores between 
groups, the Wilcoxon rank-sum test was applied. Differential patterns 
of immune cell infiltration between the stroke and control cohorts 
were visualized using the R packages “ggplot2” and “ComplexHeatmap.

NDEGs identification and functional 
enrichment analysis

NETs-related genes (NRGs) were obtained from a previously 
published study (14). To identify NETs-related differentially expressed 
genes (NDEGs), we  intersected the differentially expressed genes 
(DEGs) with the NRGs. The resulting NDEGs were visualized using 
Venn diagrams, volcano plots, and heatmaps, generated using the R 
packages “VennDiagram,” “ggplot2,” and “pheatmap,” respectively. To 
explore the biological roles of the NDEGs, functional enrichment 
analysis was conducted, focusing on biological processes (BP), cellular 
components (CC), molecular functions (MF), and associated pathways. 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analyses were performed using the R package 
“clusterProfiler,” with p < 0.05 considered statistically significant (15). 
In addition, gene set enrichment analysis (GSEA) was performed based 
on the MSigDB database using the “clusterProfiler” package.

Screening of key genes

To identify key genes among the NDEGs, machine learning 
approaches were applied. First, Least Absolute Shrinkage and Selection 
Operator (LASSO) regression was used to reduce dimensionality and 
select the most relevant genes (16). The LASSO model was optimized 
via a grid search with 10-fold cross-validation (CV) to identify the 
optimal regularization parameter, ensuring that the selected genes 
were strongly associated with the outcome while minimizing 
overfitting. Model performance was evaluated by calculating the mean 
squared error (MSE) across the cross-validation folds. Next, a Random 
Forest (RF) algorithm was applied to further refine gene selection 
based on importance scores (17). The RF model was optimized by 
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performing a grid search with 5-fold cross-validation. Overfitting was 
mitigated by evaluating model performance on an independent 
validation dataset and monitoring the out-of-bag (OOB) error rate. 
The final gene selection was based on the importance ranking derived 
from the RF model. Both LASSO and RF analyses were implemented 
using the R packages “glmnet” and “randomForest,” respectively.

Construction and validation of the 
diagnostic model

A diagnostic model for ischemic stroke was constructed using 
logistic regression based on the selected key genes, implemented via 
the R package “rms.” The model’s performance was assessed by receiver 
operating characteristic (ROC) curve analysis using the “pROC” 
package, with the area under the curve (AUC) calculated to evaluate 
diagnostic accuracy. Differential expression of the key genes and the 
diagnostic efficacy were further validated using the GSE58294 dataset.

Prediction of pivotal miRNAs and candidate 
drugs

To explore the regulatory mechanisms of the identified key genes, 
pivotal miRNAs targeting these genes were predicted using the 
TargetScan database. In parallel, candidate drugs potentially capable 
of modulating the expression of these genes were identified using 
DSigDB database. Both analyses were conducted via the Enrichr 
platform.2 Candidate miRNAs and drugs were screened using a 
significance threshold of p < 0.05. All resulting networks were 
visualized using Cytoscape software (version 3.10.3).

Results

DRGs between stroke patients and healthy 
controls

The merged discovery dataset included 73 ischemic stroke patients 
and 24 healthy controls, identifying 225 upregulated genes and 326 
downregulated genes. Principal component analysis (PCA) 
demonstrated that the two original datasets, which were initially 
distributed in distinct clusters, were successfully integrated into a 
unified distribution following batch effect correction 
(Supplementary Figures S1A,B). Box plots further confirmed consistent 
normalization across datasets (Supplementary Figures S1C,D). Single-
sample Gene Set Enrichment Analysis (ssGSEA) was performed to 
assess immune cell infiltration, revealing a significant increase in 
neutrophil levels and a decrease in Th17, Th1, and T follicular helper 
(TFH) cells in stroke patients compared to healthy controls. Correlation 
analysis across 21 immune cell types demonstrated that neutrophils 
were positively associated with eosinophils and macrophages, but 
strongly negatively correlated with B cells, cytotoxic cells, T cells, and 
Th1 cells (Figure 1).

2  https://maayanlab.cloud/Enrichr/

Identification of NDEGs

NRGs were obtained from a previously published study, with 
details provided in Supplementary Table S1. Intersection of NRGs 
with DEGs yielded five NDEGs: SRC, TLR8, FCAR, HIF1A, and 
MAPK1. All these five genes were significantly upregulated in ischemic 
stroke patients compared to healthy controls, as illustrated in the 
volcano plot and heatmap (Figure 2).

Functional enrichment analysis

Gene Set Enrichment Analysis (GSEA) of the DEGs revealed 
significant enrichment in pathways related to neutrophil 
degranulation and the innate immune system (Figure  3A). After 
identifying the NDEGs, GO and KEGG enrichment analyses were 
conducted to explore their biological roles. GO results indicated that 
these NDEGs were primarily involved in immune response regulation 
and leukocyte apoptosis. KEGG pathway analysis further revealed 
that the NDEGs were significantly enriched in the pathway associated 
with NETs formation (Figure  3B). In conclusion, these findings 
highlight the pivotal role of inflammation and neutrophil-mediated 
immune responses—particularly NETs—in the pathogenesis of 
ischemic stroke.

Identification of key genes and 
construction of the diagnostic model

Using LASSO regression, the initial set of NDEGs was narrowed 
down to four diagnostic biomarkers: SRC, TLR8, FCAR, and HIF1A 
(Figure 4A). These genes were further validated using RF algorithms, 
which confirmed their importance based on feature rankings 
(Figure 4B). A nomogram incorporating the four key genes was then 
developed to predict the likelihood of ischemic stroke (Figure 5E). The 
model’s diagnostic performance was assessed using ROC curve 
analysis, resulting in an AUC of 0.880, indicating high predictive 
accuracy for ischemic stroke diagnosis (Figure 5F).

Validation of key genes

To confirm the reliability and generalizability of the diagnostic 
model, the expression levels of the four key genes were validated in 
the independent dataset GSE58294 (Figures  5A–D). All four 
biomarkers (SRC, TLR8, FCAR, and HIF1A) were significantly 
upregulated in ischemic stroke patients compared to healthy 
controls. The diagnostic model’s performance was further validated 
in this external cohort, achieving an AUC of 0.936 in ROC analysis, 
which demonstrates the model’s robust predictive capability 
(Figure 5G).

Identification of pivotal miRNAs and 
candidate drugs

Potential miRNAs targeting the four key genes were predicted 
using the TargetScan database, applying a significance threshold of 
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FIGURE 1

Differentially infiltrated immune cells in IS patients and healthy controls. (A) Heatmap of differential immune cells. (B) Correlation matrix of immune 
cells. (C) Histogram of differential immune cells.
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p < 0.05. The analysis revealed that SRC was targeted by 
three miRNAs: hsa-miR-4669, hsa-miR-3619-3P, and hsa-miR-
4537. FCAR was predicted to interact with hsa-miR-4669 and 
hsa-miR-4537, while TLR8 was associated solely with 
hsa-miR-3619-3P.

Additionally, candidate drugs modulating the expression 
of the key genes were identified using the DSigDB database. 
The top  10 drug candidates for each gene were selected 
based on a significance threshold of p < 0.05. Notably, SRC 
and HIF1A shared the same top  10 candidate compounds, 

FIGURE 2

Identification of NDEGs. (A) Venn diagram of the intersection of NETS and DEGs. (B) Volcano plots of DE-GS distribution. (C) Heatmap of NDEGs 
distribution.
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among which “172889-27-9 TTD 00000391” had the highest 
combined score (17891). For FCAR, actinomycin D 
(CTD 00005748) yielded the highest score (794). In contrast, only 
three drug candidates (Arsenenous acid CTD 00000922, 

IMIQUIMOD BOSS and QUINOLINE CTD 00001749) were 
identified for TLR8. These findings offer novel insights into the 
post-transcriptional regulation and therapeutic targeting of 
ischemic stroke (Figure 6).

FIGURE 4

Screening for potential diagnostic biomarkers by machine learning. (A) LASSO. (B) Random forest.

FIGURE 3

Functional enrichment analysis. (A) GSEA analysis of DEGs between stroke patients and healthy controls. (B) GO/KEGG analysis of differential 
NDEGs.
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Discussion

To our knowledge, this represents the first comprehensive 
investigation of NETs-related gene signatures in AIS patients 
compared with healthy controls. Our findings demonstrated that 
NETs-related genes are involved in the immune response processes 
underlying AIS. Using machine learning approaches, we identified 

four key genes—SRC, TLR8, FCAR, and HIF1A—that exhibit strong 
diagnostic potential. A diagnostic model based on these genes 
showed high predictive accuracy, and subsequent analyses identified 
putative miRNAs and candidate drugs targeting these genes. 
Collectively, these findings provide novel insights that may 
contribute to the advancement of diagnostic and therapeutic 
strategies for AIS.

FIGURE 5

Diagnostic model construction and validation. (A–D) HIFIA, FCAR, SRC and TLR8 expression levels in validation dataset. (E) Construction of a 
nomogram model with 4 feature genes. (F,G) ROC curve for evaluating and validating the diagnostic model’s performance.
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FIGURE 6

(A) Potential miRNAs targeting 4 key genes. (B–E) candidate drugs targeting 4 key genes.
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Following stroke onset, neutrophils are the earliest immune cells to 
become activated and infiltrate ischemic brain tissue, with their 
numbers increasing markedly within hours (18). Activated neutrophils 
undergo morphological changes, including chromatin condensation, 
nuclear membrane fragmentation, and the fusion of nucleoplasm with 
chromatin. Eventually, the cells condense into a spherical shape, and the 
cell membrane ruptures, releasing intracellular components and 
forming fibrous structures known as NETs (19). In 2015, Perez-de-Puig 
et  al. first reported histone citrullination in neutrophils of stroke 
patients, accompanied by extracellular release of DNA and histones 
(20). Two years later, Laridan et al. further confirmed the critical role of 
NETs in thrombus formation in patients with stroke (21). In the same 
year, Valles et al. identified significantly elevated plasma levels of NETs 
markers—including citrullinated histone 3 (CitH3), cell-free DNA 
(cfDNA), and nucleosomes—in stroke patients, with increases of 72, 33, 
and 39%, respectively, compared to healthy controls (22). NETs levels 
begin to rise within 24 h of stroke onset, peaking around 2–3 days, and 
remaining elevated for up to 7 days. Accumulating evidence suggests 
that NETs contribute to the stroke pathology through multiple 
mechanisms: (1) accelerating blood–brain barrier disruption; (2) 
promoting thrombus formation; (3) inducing resistance to tissue 
plasminogen activator (t-PA); and (4) impairing vascular integrity and 
inhibiting remodeling (10). These findings underscore the central role 
of NETs in the progression of AIS and support the relevance of NETs-
related genes as potential diagnostic and therapeutic targets.

In this study, we  identified 551 DEGs from a combined dataset 
comprising 73 ischemic stroke patients and 24 healthy controls. Immune 
cell infiltration analysis revealed a notable trend: a significant increase in 
neutrophil infiltration accompanied by a reduction in lymphocyte 
populations, including both T cells and B cells. Although neutrophils and 
lymphocytes are both integral components of the immune response, they 
displayed markedly divergent patterns in stroke patients. This imbalance 
may be attributed to the massive infiltration of neutrophils into ischemic 
brain tissue, which disrupts neuroimmune homeostasis and induces a 
shift in the peripheral immune system toward a suppressed state (23). 
This immune suppression is characterized by reduced lymphocyte 
counts and impaired lymphocyte function (24–26), and increases 
susceptibility to systemic infections, supporting our earlier hypothesis 
that neutrophil levels are positively correlated with infection risk in 
stroke patients (27). By intersecting DEGs with previously reported 
NETs-related genes, we identified five key genes: SRC, TLR8, FCAR, 
MAPK1 and HIF1A. Functional enrichment analysis revealed that these 
genes are significantly involved in immune regulatory pathways and 
leukocyte apoptosis, reinforcing their connection to NETs-mediated 
immune dysregulation in stroke. These findings underscore the central 
role of NETs-related genes in the pathophysiology of stroke and suggest 
that they may serve as promising diagnostic and therapeutic targets.

Based on the four key genes identified through the machine 
learning, we constructed a diagnostic nomogram, which demonstrated 
high predictive performance, with AUC values of 0.880 in the training 
dataset and 0.936 in the validation dataset. Most of the key genes has 
been implicated in stroke-related pathogenesis. SRC, a non-receptor 
protein tyrosine kinase encoded by SRC proto-oncogene, exhibits 
rapid activation within hours following stroke onset, with expression 
levels progressively increasing in infarcted regions for up to 24 h (28). 
It exacerbates stroke damage by promoting M1 microglial polarization, 
enhancing inflammation, and inducing neuronal apoptosis (29). Toll-
like receptor (TLR) are transmembrane pattern recognition receptors 

encoded by TLR genes, which initiate intracellular signaling cascades 
upon recognition of pathogen-associated molecular patterns (PAMPs) 
(30). In AIS, TLR8 exacerbates neuronal damage by promoting 
apoptosis, mediating T cell-driven inflammation, and has been 
proposed as a biomarker of poor prognosis (31, 32). HIF1A, a master 
regulator of cellular oxygen homeostasis, modulates the expression of 
genes involved in hypoxic adaptation (33). In the context of AIS, it 
contributes to inflammasome activation, mitochondrial dysfunction, 
and cell death under severe hypoxia (34).

Finally, we predicted miRNAs and candidate drugs that may regulate 
the identified key genes. Among them, miR-4669 and miR-4537 were 
found to simultaneously target FCAR and SRC, while miR-3619-3P was 
predicted to regulate TLR8 and SRC. Although the roles of these miRNAs 
in AIS remain unclear, studies in other disease contexts provide 
preliminary insights. miR-4669 has been reported to enhance tumor 
invasiveness and contribute to an immunosuppressive tumor 
microenvironment (35). miR-4537 inhibits tumor cell proliferation, 
promotes apoptosis, and increases cellular radiosensitivity (36). In 
contrast, miR-3619-3P facilitates tumor cell migration and invasion (37). 
These findings suggest that these miRNAs may participate in the 
regulation of immune and inflammatory pathways in AIS, but their 
specific functions in stroke pathogenesis warrant further investigation.

PP2, a reversible ATP-competitive inhibitor of the Src family 
kinases (SFKs), demonstrates dual-targeting activity against both SRC 
and HIF1A. In the context of stroke, PP2 has been shown to attenuate 
blood–brain barrier (BBB) disruption by suppressing Src kinase 
phosphorylation (38). Similarly, Purvalanol A, a selective cyclin-
dependent kinase (CDK) inhibitor, was predicted to target both SRC 
and HIF1A, with a binding affinity score slightly lower than that of 
PP2 (14,316 vs. 17,891). Emerging evidence suggests that Purvalanol 
A reduces ischemia/reperfusion-induced Golgi fragmentation and 
apoptosis through CDK inhibition (39). Nevertheless, the precise 
molecular mechanisms and therapeutic efficacy of Purvalanol A in 
stroke remain to be elucidated through further experimental studies.

The pathological progression of stroke is modulated by multiple 
regulatory systems, including the autonomic nervous system, 
hypothalamic–pituitary–adrenal (HPA) axis, and the immune system 
(40). We hypothesize that NETs may play a pivotal role in this process 
and directly contribute to stroke pathogenesis. However, the precise 
regulatory mechanisms underlying this involvement require further 
investigation. While our findings offer valuable insights, we acknowledge 
that the study is based entirely on in silico analyses, without experimental 
validation of the key findings. Moreover, the relatively small sample size 
and the absence of in vivo or in vitro validation of the predicted miRNAs 
and therapeutic candidates limit the generalizability and translational 
potential of our results. Future studies, including experimental validation 
(e.g., qPCR, Western blot, luciferase reporter assays), along with larger, 
well-characterized cohorts, are crucial for deepening our understanding 
of the relationship between these biomarkers and acute ischemic stroke. 
This will facilitate the development of more accurate diagnostic 
approaches and therapeutic interventions for stroke management.
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