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Objective: In this study, we aim to identify the predictive variables for hemiplegic

shoulder pain (HSP) through machine learning algorithms, select the optimal

model and predict the occurrence of HSP.

Methods: Data of 332 stroke patients admitted to a tertiary hospital in Zhejiang

Province from January 2022 to January 2023 were collected. After screening

predictive variables by LASSO regression, three predictive models selected using

the LazyPredict package, namely logistic regression (LR), support vectormachine

(SVM) and random forest (RF), were established respectively. The performance

parameters (accuracy, precision, recall, and F1 score) of the models were

calculated, the receiver operating characteristic curve (ROC) and the decision

curve analysis (DCA) were plotted to compare the performance of the three

models. An explainability analysis (SHAP) was conducted on the optimal model.

Results: The RF model performed the best, with accuracy: 0.90, precision: 0.89,

recall: 0.88, F1 score: 0.86, AUC-ROC: 0.94, and the range of the threshold

probability in DCA: 7%−99%. Based on the SHAP analysis of the explainability

of the RF model, the contribution degrees of the early HSP predictive variables

from high to low are as follows: multiple injuries, shoulder joint flexion (p), biceps

tendon e�usion, sensory disorder, supraspinatus tendinopathy, subluxation,

diabetes, and age.

Conclusion: The RF prediction model has a good predictive e�ect on HSP and

has good clinical explainability. It can provide objective references for the early

warning and stratified management of HSP.
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1 Background

Hemiplegic shoulder pain (HSP) is one of the most common

complications after stroke, with an incidence rate as high as

30%−84% among hospitalized rehabilitation patients (1). HSP

not only delays the recovery of upper limb motor function

but is also closely related to psychological problems such as

sleep disorders, anxiety, and depression, seriously affecting the

rehabilitation process and quality of life of patients (2). The

etiology of HSP is relatively complex, involving mechanical injury,

neurogenic factors, metabolic abnormalities, iatrogenic injury, etc.

(3, 4). Currently, clinical interventions mainly focus passively on

pain management and rarely adopt proactive preventive strategies

(5, 6).

In clinical practice, we have found that there is usually a

time lag between the onset of hemiplegia and the occurrence of

shoulder pain (7). If an effective predictive model can be established

during this delay to identify high-risk individuals and implement

intervention measures early, it will be of great significance for

improving the incidence and prognosis of HSP.

In recent years, the application of machine learning

technologies in the field of rehabilitation has experienced

remarkable growth, particularly in areas such as stroke

rehabilitation, where it focuses on predicting motor function

recovery (8), developing personalized rehabilitation plans (9), and

forecasting long-term functional outcomes (10). In spinal cord

injury management, machine learning is utilized for predicting

motor or bladder function recovery and stratifying complication

risks (11). Additionally, in various neurological conditions,

its applications include predicting consciousness recovery

after traumatic brain injury (12), providing early warnings for

epileptic seizures (13), and monitoring disease progression in

neurodegenerative disorders such as Parkinson’s disease (14).

Although numerous studies have clarified the risk factors of HSP,

such as impaired motor function, diabetes, spasticity, subluxation,

and sensory disorders (2, 7, 15), most of them are limited to

retrospective analysis or single-factor association studies and lack

systematic modeling and prediction tool development.

This study is based on machine learning algorithms,

systematically integrating clinical characteristics, biomechanical

parameters, and ultrasound imaging results to construct an HSP

prediction model. By comparing the performance of three models:

logistic regression (LR), support vector machine (SVM), and

random forest (RF), the optimal model is selected to improve

the disease risk stratification ability and guide individualized

rehabilitation plans, thereby reducing the incidence of HSP and

optimizing the allocation of medical resources.

2 Materials and methods

2.1 Study design and subjects

We collected candidate variables from 332 inpatients at the

Rehabilitation Medicine Department of a tertiary hospital in

Zhejiang Province, China, from January 2022 to January 2023.

After data cleaning and predictor screening, we developed three

models using the candidate features. Model selection was based on

both parameter performance and clinical decision utility curves,

followed by SHAP-based explainability analysis of the optimal

model (Study design workflow showed in Figure 1).

2.2 Study population

2.2.1 Inclusion criteria
1) Compliance with the “Diagnostic Criteria for Cerebrovascular

Diseases” established at the 4th National Conference on

Cerebrovascular Diseases (1995).

2) Stroke diagnosis confirmed via Head CT or MRI.

3) Unilateral symptom onset with a disease duration ≤1 month.

4) Stable vital signs, ability to cooperate with

assessments/examinations, and absence of aphasia or

emotional disturbances.

5) Provision of informed consent and signed documentation.

2.2.2 Diagnostic criteria for shoulder pain in
hemiplegic patients

Presence of pain in the affected shoulder or upper limb within

48 h, including nocturnal pain, resting pain, and/or pain during

passive movement of the affected limb, with a visual analog scale

score ≥4.

2.2.3 Exclusion criteria
1) Pre-existing brain injury or neurological disorders (e.g., brain

tumors, spinal cord injury, and Parkinson’s disease).

2) History of shoulder pain on the hemiplegic side prior to stroke.

3) Unstable vital signs or severe cognitive impairment.

2.2.4 Data collection
A total of 332 patients were recruited. Following exclusions (n

= 25) and dropouts due to missing follow-up data (n= 4), the final

analysis included 303 patients.

2.3 Candidate variables

Candidate variables encompass four key aspects of patient

characteristics: demographic data, past medical history, disease

characteristics data, and shoulder joint ultrasound imaging

results. Demographics include age and gender. Past medical

history covers hypertension (HTN) and diabetes mellitus (DM).

Disease characteristics consist of stroke type (cerebral infarction

or intracerebral hemorrhage), hemiplegic side, Brunnstrom Stage

(assessing upper limb motor function), Fugl–Meyer Assessment

Score (FMA) for upper and hand function [FMA(U&H),

comprising FMA(U), and FMA(H)], activities of daily living

(ADL) via the Barthel Index, sensory disturbance (abnormal

sensory or proprioceptive functions in the affected upper limb),

passive shoulder flexion (maximum angle of passive flexion

measured without pain using a joint angle gauge in a standard

sitting position), spasticity (diagnosed when Modified Ashworth

Scale ≥1), and subluxation (diagnosed when the distance between
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FIGURE 1

Research design flowchart.

the glenoid process and humeral head exceeds one finger in a

sitting position with naturally hanging upper limbs). Ultrasound

imaging results include bicipital tendon effusion (bicipital TE,

identified as a moon-shaped anechoic area around the long

axis of the biceps long head, compressible and movable, with

aggregation at the tendon in long-axis sections), Subacromial-

subdeltoid bursa effusion (diagnosed when bursa effusion thickness

>2mm), joint effusion (diagnosed when the distance between

the infraspinatus muscle and the posterior labrum of the glenoid

>2mm), supraspinatus tendinopathy (including tears, tendinitis,

degeneration, calcification, etc.), subscapularis tendinopathy

(including tears, tendinitis, degeneration, calcification, etc.), and

multiple injuries (description of more than two lesion sites in

the affected shoulder’s soft tissue structure, such as the rotator

cuff, acromion, acromion-trochanteric bursa, long head of the

biceps tendon, glenohumeral joint, coracoid process, and greater

tuberosity of the humerus).

2.4 Data analysis

The statistical analysis was performed using Jupyter Notebook

(version 7.2.2) with Python to investigate differences in variables

between the HSP group and non-HSP group, aiming to

identify potential predictive factors. For continuous variables, data

conforming to normal distribution (Shapiro–Wilk test, P > 0.05)

were presented as mean ± standard deviation and compared

using independent t-tests to evaluate group differences in means.

Non-normally distributed data (Shapiro–Wilk test, P ≤ 0.05)

were expressed as median (P25, P75) and analyzed using the

Mann–Whitney U rank sum test to assess whether the groups

originated from identical continuous distributions. Categorical

variables were described as frequency percentages (%) and analyzed

using the chi-square test to compare proportional differences

between groups. The significance level was set at α = 0.05 for

all analyses.

2.5 Dataset division

The dataset of 303 patients will be randomly divided

into training, validation, and test sets at a ratio of 7:1.5:1.5

during the modeling process. The training set is used for

model training, the validation set serves for hyperparameter

optimization and model selection, while the entirely independent

test set is reserved exclusively for final evaluation. This
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TABLE 1 Baseline characteristics of the study cohort.

Characteristics Classify HSP (n = 128) non-HSP (n = 175) P-value

Age 64.91± 9.97 65.55± 10.50 0.59

Sex Male 79 (61.7%) 101 (57.7%) 0.46

Female 49 (38.3%) 74 (42.3%)

Type CI 80 (62.5%) 123 (70.3%) 0.16

ICH 48 (37.5%) 52 (29.7%)

DM Yes 111 (86.7%) 122 (69.7%) <0.001

HTN Yes 104 (81.3%) 131 (74.9%) 0.22

Side L 68 (53.1%) 94 (53.7%) 0.92

R 60 (46.9%) 81 (46.3%)

Brunnstrom(U) 2.22± 0.98 2.67± 1.09 <0.001

Brunnstrom (H) 1.86± 1.13 2.18± 1.26 0.02

FMA(U) 8.86± 6.94 11.33± 8.45 0.01

FMA(H) 2.64± 4.30 3.84± 5.05 0.03

FMA (U&H) 11.50± 10.53 15.17± 12.56 0.01

ADL 25.73± 14.03 29.68± 18.20 0.03

Sensory disturbance Yes 72 (56.3%) 46 (26.3%) <0.001

Shoulder flexion (p) 118.03± 30.16 147.65± 22.53 <0.001

Spasticity Yes 51 (39.8%) 28 (16.0%) <0.001

Subluxation Yes 52 (40.6%) 19 (10.9%) <0.001

Bicipital TE (mm) 2.42± 1.66 1.07± 1.38 <0.001

SSB effusion (mm) 2.31± 2.45 0.40± 1.27 <0.001

Joint effusion (mm) 1.81± 4.94 0.74± 3.07 0.03

SS tendinopathy 0.41± 0.49 0.07± 0.26 <0.001

ST tendinopathy 0.05± 0.23 0.04± 0.20 0.56

Multiple injuries 0.90± 0.30 0.16± 0.37 <0.001

CI, cerebral infarction; ICH, intracerebral hemorrhage; DM, diabetes mellitus; HTN, hypertension; FMA, Fugl–Meyer Assessment Score; U, upper extremity; H, hand; TE, tendon effusion; SSB,

subacromial-subdeltoid bursa; SS, supraspinatus; ST, subscapularis.

allocation ultimately results in 213 samples in the training

set, 45 samples in the validation set, and 45 samples in the

test set.

2.6 Model construction and comparison

We used Jupyter Notebook (v7.2.2) with Python to develop,

validate, and compare predictive models. Only the variables in

the training set underwent z-score standardization before analysis.

Initial high-correlation variables were clinically pre-screened using

Matplotlib-generated heatmaps, followed by multicollinearity

assessment. Subsequently, the LASSO regression method from the

scikit-learn was employed to screen important predictive factors.

This method achieves this by incorporating L1 regularization

into the loss function of traditional regression. When the

regularization strength λ is sufficiently large, the coefficients of

insignificant features are forced to zero, effectively automating the

feature selection process. This simplifies the model and enhances

its robustness.

We utilized a benchmarking approach (via the LazyPredict

package) to rapidly compare the performance of 24 algorithms, and

selected the top six models (representing the top 25% ranked by

AUC scores) for further development and evaluation (16). These

models were analyzed from the perspectives of metric performance

and clinical interpretability to identify three representative models

for subsequent refinement and assessment.

We refined LR, SVM, and RF models using scikit-learn.

Hyperparameters were optimized via the scikit-learn class

GridSearchCV with repeated 10-fold cross-validation (10 repeats)

conducted on the training set. This procedure identified the

optimal parameter combinations (e.g., number of trees and

maximum depth for RF). The model’s performance was evaluated

on a test set using metrics such as accuracy, precision, recall, F1

score, and ROC-AUC. Accuracy measures the overall correctness

of the model’s predictions, that is, the proportion of correctly

predicted samples out of the total samples. Precision focuses on
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FIGURE 2

Correlation heatmap of characteristic variables.

the proportion of true positives among the samples predicted as

positive, reflecting the accuracy of the predictions. Recall measures

the proportion of actual positive samples that were correctly

predicted as positive, indicating the model’s ability to identify

positive instances. The F1 score, as the harmonic mean of precision

and recall, provides a comprehensive evaluation of the model’s

performance. ROC-AUC, represented by the area under the ROC

curve, assesses the model’s ability to distinguish between positive

and negative instances (17). Decision curve analysis (dcapy library)

further assessed clinical utility by visualizing net benefits across

decision thresholds. The core principle of DCA lies in comparing

the net benefits of different models against two extreme strategies

(assuming all patients receive interventions or none receive

interventions). By quantifying the differences in net benefits across

varying clinical decision thresholds, DCA assesses the practical

value of the models under diverse risk tolerance scenarios (18).

Finally, SHAP summary plots were generated to interpret feature

contributions to predictions.

3 Result

3.1 Baseline of clinical data

In our study, 303 individuals who met the inclusion criteria

were enrolled. This included 79 male patients with hereditary

spastic paraplegia (HSP) aged 45–87 years and 49 female HSP

patients aged 43–84 years, as well as 101 male non-HSP

patients aged 46–87 years and 74 female non-HSP patients

aged 45–88 years. All subjects underwent standardized clinical
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FIGURE 3

Variance inflation factor (VIF) for features.

FIGURE 4

LASSO coe�cient profile plot for feature variables.
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FIGURE 5

Feature importance sorted by lasso regression.

evaluations and shoulder joint ultrasonography at enrollment.

Clinical characteristics are fully detailed in Table 1.

3.2 Screening of characteristic variables

Spearman’s rank correlation analysis revealed a cluster of highly

correlated variables (Figure 2): Brunnstrom stages (U/H) and

FMA scores (U/H/U&H), reflecting inherent construct overlaps in

motor impairment evaluation. To mitigate multicollinearity, four

redundant variables were excluded, retaining Brunnstrom stages

(U) as the representative metric based on its maximal correlation

magnitude and clinical relevance.

Subsequently, variance inflation factor (VIF) analysis was

conducted to assess multicollinearity (Figure 3). The results showed

that the VIF of the remaining 18 variables was all <10, indicating

that their collinearity level was acceptable and suitable for inclusion

in the subsequent analysis (19). Considering the linear variables

among these variables, in order to further optimize the model

complexity and prevent overfitting, 10-fold cross-validation LASSO

regression was implemented (20). The optimal penalty coefficient λ

was determined to be 0.041 (Figure 4), and we finally obtained eight

variables (Figure 5), from high to low: multiple injuries, shoulder

flexion (p), sensory disturbance, DM, SS tendinopathy, bicipital TE,

age and subluxation.

3.3 Model selection, establishment, and
evaluation

We selected three representative models for further

optimization and evaluation using the LazyPredict package,

considering both rapid performance benchmarking and clinical

interpretability (Table 2): LR model was chosen as the most

interpretable representative, SVMmodel as the highest-performing

option, and RF model as a balanced choice combining clinical

interpretability with robust performance.

Subsequently, we conducted model refinement and evaluation

on these three selected models. The performance parameters of the

three models are compared as follows: the AUC-ROC values of the

three models are all >0.8 (Figure 6), indicating that they all have

good predictive performance. Based on the Delong test, the AUC-

ROC value of the RF model is superior to that of the SVM model

and the LR model, and the differences are statistically significant (P

< 0.05). There is no statistically significant difference in the AUC

values between the SVMmodel and the LR model.

Among other performance parameters, the models with the

highest accuracy, precision, recall rate and F1 score are all

RF models (Table 3). In the radar chart of core performance

metrics (Figure 7), an evaluation framework is established using

five key dimensions, where the area enclosed by the score

contours of each model directly reflects their comprehensive

performance. The comparative results demonstrate that both the

random forest (RF) and support vector machine (SVM) models

significantly outperform the traditional logistic regression (LR)

model, underscoring the superior performance of machine learning

algorithms over classical statistical models in complex problem

modeling scenarios.

Given that all three predictive models output continuous risk

probability values and the decision-making value of probabilistic

risk assessment is increasingly prominent in clinical machine

learning applications (21), we further compared their clinical

utility using decision curve analysis (DCA; Figure 8). In this

figure, the horizontal axis represents the threshold probability,

defined as the minimum probability threshold for initiating an
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TABLE 2 Benchmarking for initial screening and comparison of models.

Model AUC Accuracy F1 score Specificity Training time (s) Explainability∗

SVM 0.885 0.834 0.812 0.852 23.5 C

Random forest 0.868 0.821 0.809 0.837 18.7 B

XGBoost 0.829 0.829 0.801 0.841 12.4 C

LR 0.827 0.818 0.803 0.843 1.2 A

LightGBM 0.831 0.832 0.807 0.846 8.9 C

Naive Bayes 0.810 0.798 0.790 0.825 3.4 A

∗Provide an explainability rating by integrating model prediction principles.

A, Excellent; B, Good; and C, Fair.

FIGURE 6

ROC curve comparison.

intervention in clinical decision-making. The vertical axis denotes

the model’s net benefit value. When the model’s net benefit

curve exceeds the baseline curves of “treat all” and “treat none”

strategies within a specific threshold range, it demonstrates that

the model possesses clinical utility and practical value within

that threshold interval. Additionally, a broader range of beneficial

threshold probabilities can accommodate clinical decision-making

preferences spanning from permissive (low threshold probabilities)

to stringent (high threshold probabilities), enabling applicability

across diverse risk stratification scenarios (18). All three models

demonstrated clinical value within specific threshold probability

ranges, the effective range of the SVM model was the narrowest

(8%−89%), while that of the LR model was broader (5%−96%).

The RF model had the widest range of clinical practicability across

different thresholds (7%−99%), indicating its stronger adaptability

in various clinical scenarios.

3.4 Explainability analysis

Through the testing of the model and the analysis of its clinical

practicability, we finally chose the RF model as the optimal model

for predicting the risk of HSP. Subsequently, we conducted SHAP

analysis on the RF model to analyze its explainability. Figure 9 is

a summary chart of SHAP explanations for eight feature variables.

Each point in the chart represents a sample. The x-axis represents

SHAP values, where the left side of the y-axis indicates negative

contributions and the right side denotes positive contributions,

while the y-axis lists the names of feature variables. Red dots

represent variables with larger SHAP values, and the darker the

color, the greater the impact on the model output. Blue dots

represent variables with smaller SHAP values, and the darker the

color, the smaller the impact on the model output.

We found that multiple injuries has the widest distribution,

indicating that this variable has the greatest impact on the output

results of the RF model. Moreover, the red dots are located on the

right side of the vertical axis, suggesting that it is proportional to

the SHAP value. This indicates that patients with multiple injuries

on the shoulder have a higher risk of developing HSP. Similarly,

conditions like Bicipital TE, sensory disturbance, SS tendinopathy,

subluxation, and DM all positively influence the risk of developing

HSP. Red dots predominantly on the left side of the vertical axis

for shoulder flexion (p) and age indicate that patients with greater

shoulder flexion (p) or older age tend to have a lower risk of HSP.

Figure 10 shows the ranking of the importance of the 8 variables

included in the RFmodel. The results indicate that multiple injuries

is the most important variable, followed by shoulder flexion (p),

bicipital TE, sensory disturbance, SS tendinopathy, subluxation,

DM, and age is the least important among all the variables.

4 Discussion

This study systematically compared the predictive performance

of three machine learning models (LR, SVM, and RF) in the risk

stratification of early HSP. Our research results indicated that

the machine learning prediction models based on disease feature

data and ultrasound imaging results could effectively predict the

risk of HSP in stroke patients. Among them, the RF model

had the best predictive performance and exhibited good clinical

utility and explainability. This is consistent with previous studies,

which emphasized that ensemble methods like RF have advantages

in handling the inherent complexity, non-linearity, and feature

interaction characteristics of clinical data (22, 23).

Given the “black-box effect” in machine learning, enhancing

model interpretability is crucial for establishing trust in the
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TABLE 3 Model performance comparison.

Model Optimized
hyperparameters

AUC
(95%CI)

Accuracy Precision Recall F1 score P value

RF C= 10 0.94 0.90 0.89 0.88 0.86 0.034∗

SVM C= 100, gamma= 0.001 0.92 0.87 0.83 0.87 0.85 0.823

LR n_estimators= 100,
max_depth= 10

0.92 0.81 0.83 0.81 0.81

∗Compared with the LR model, P < 0.05.

RF, random forest; SVM, support vector machine; LR, logistic regression.

FIGURE 7

Radar chart of model performance.

model and promoting its reproducibility and practical application

(24). In the SHAP analysis of the random forest (RF) model,

several key predictive factors were identified, including multiple

injuries, shoulder flexion (p), bicipital TE, sensory disturbance,

SS tendinopathy, subluxation, and DM. It is important to note

that while SHAP analysis effectively quantifies the marginal

contribution of each feature to predictive outcomes, there remains

a risk of feature weight allocation bias when features are

highly correlated or redundant (25). Therefore, we cautiously

interpreted these results in clinical context after rationally filtering

variables. Upon analysis, the aforementioned factors demonstrate

significant clinical relevance supported by existing biomechanical

and pathophysiological evidence.

In our study, we observed that 80.7% of hemiplegic patients

exhibited abnormal ultrasound images in the early stages of

shoulder pathology, a proportion similar to the previously reported

range of 60.5%−85% (26, 27), with the number of abnormalities

mostly ranging from one to three. Previous studies have revealed

that multiple injuries to the shoulder soft tissues detected by

ultrasound may play a significant role in the pathogenesis of

HSP. For instance, Idowu et al. (28) found through ultrasound

examinations of chronic hemiplegic shoulders thatmost hemiplegic

shoulders exhibited more than three abnormal ultrasound images,

with some having as many as six. The aforementioned research

findings indicate that the affected shoulder of hemiplegic patients

already exhibits a certain degree of pathology in the early stages

and may sustain further damage during subsequent daily life and

rehabilitation processes (29). Therefore, early placement of the

healthy limb and strengthening protection of the affected side of

the shoulder during daily activities are of vital importance. This can

prevent further injuries or aggravation of existing injuries.

Multiple studies have confirmed that limited shoulder joint

range of motion (including flexion, abduction, and internal

rotation) in the early stages of hemiplegia is closely associated

with the occurrence of HSP. Li et al. (7) proposed that early

monitoring of shoulder joint range of motion could serve as

an effective tool for predicting HSP. We believe that reduced

shoulder joint range of motion directly leads to adhesion in the soft

tissues surrounding the joint, triggering inflammatory responses

and pain (30). Meanwhile, due to the damage of upper motor

neurons in hemiplegic patients, the shoulder muscles suffer from

either atonic paralysis or spasticity, causing the humeral head

to lose its normal support and prone to downward subluxation.

This structural change will pull the joint capsule, ligaments and

surrounding nerves, such as the axillary nerve, directly triggering

pain (31, 32).

Additionally, bicipital tendon effusion and SS Tendinopathy,

two common ultrasound findings in hemiplegic shoulder pain,

have also been identified as important predictive factors by SHAP

analysis. Their high prevalence (3) and strong correlation with pain

scores (33) suggest that it may directly contribute to the onset of

pain through inflammatory responses and mechanical imbalances.

Post-stroke sensory disturbance are common in hemiplegic

patients, including tactile, temperature sensation and

proprioception, etc. They may intensify pain perception through

central sensitization mechanisms (34). Meanwhile, proprioceptive

disorders can also lead to decreased stability of the shoulder joint,

increase the risk of soft tissue injury, and subsequently trigger

pain (35, 36). Furthermore, DM is an independent risk factor for

stroke (37). After stroke, diabetic patients are prone to more severe

neurological deficits. This adverse prognosis may indirectly affect

the occurrence and development of HSP through mechanisms

such as chronic inflammation, accumulation of advanced glycation

end products (AGEs), and oxidative stress (38).

From a clinical perspective, the explainability of the RF model,

as revealed through SHAP analysis, significantly enhances its

practical utility in guiding targeted interventions. For instance, in

hemiplegic patients withmultiple soft tissue injuries in the shoulder
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FIGURE 8

Comparison of DCA curves for the models.

FIGURE 9

SHAP summary plot for the RF model.

joint identified via ultrasonography, special attention should be

paid to avoiding isolated shoulder exercises during rehabilitation.

Instead, whole-body coordinated movements, such as balance

training and core muscle activation, should be prioritized to

mitigate excessive shoulder compensation, thereby reducing the

risk of developing HSP.

While the current study has achieved certain progress, its

limitations must be carefully considered. Although the sample

size of 303 cases generally meets the statistical requirements of

the predefined analytical framework, the single-center clinical

data collection approach may still constrain the model’s external

validity. To address this limitation, recent research could prioritize

Frontiers inNeurology 10 frontiersin.org

https://doi.org/10.3389/fneur.2025.1612222
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Wu et al. 10.3389/fneur.2025.1612222

FIGURE 10

Feature importance in SHAP analysis.

exploring clinically plausible synthetic data generation methods

(such as those employing data balancing and generative AI

techniques) to produce virtual samples that closely match the

distribution of real-world data. This approach would help meet the

sample size requirements for achieving predefined statistical power.

By enhancing the internal variability coefficient of the dataset

without relying on costly multicenter collaborations, this method

could improve the model’s generalization capability. The efficacy of

such approaches has already been validated in numerous machine

learning predictive modeling studies (39, 40).

Looking ahead, we hope to continuously refine the predictive

model through multicenter external validation, integration of

dynamic biomechanical parameters (e.g., electromyography, gait

analysis), and longitudinal follow-up evaluations in future research.

In summary, the RF-based predictive model provides a

clinically interpretable tool for early risk stratification of HSP,

facilitating personalized rehabilitation strategies and resource

allocation. By integrating biomechanical, imaging, and clinical

data, we hope that this approach will promote proactive

management of HSP, ultimately improving patient outcomes and

reducing healthcare burdens.
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