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Multi-site neuroimaging studies have become increasingly common in order to 
generate larger samples of reproducible data to answer questions associated with 
smaller effect sizes. The data harmonization model NeuroCombat has been shown 
to remove site effects introduced by differences in site-related technical variance 
while maintaining group differences, yet its effect on improving statistical power in 
pre-clinical models of CNS disease is unclear. The present study examined fractional 
anisotropy data computed from diffusion weighted imaging data at 3 and 30 days 
post-controlled cortical impact injury from 184 adult rats across four sites as part 
of the Translational-Outcome-Project-in-Neurotrauma (TOP-NT) Consortium. 
Findings supported prior clinical reports that NeuroCombat fails to remove site 
effects in data containing a high proportion-of-outliers (>5%) and skewness, which 
introduced significant variation in non-outlier sites. After removal of one outlier 
site and harmonization using a pooled sham population, the data displayed an 
increase in effect size and group level effects (p < 0.01) in both univariate and voxel-
level volumes of pathology. This was characterized by movement toward similar 
distributions in voxel measurements (Kolmogorov–Smirnov p < <0.001 to >0.01) 
and statistical power increases within the ipsilateral cortex. Harmonization improved 
statistical power and frequency of significant differences in areas with existing group 
differences, thus improving the ability to detect regions affected by injury rather 
than by other confounds. These findings indicate the utility of NeuroCombat in 
reproducible data collection, where biological differences can be accurately revealed 
to allow for greater reliability in multi-site neuroimaging studies.
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Introduction

Diffusion-weighted imaging (DWI) is frequently used to study 
restricted water movement in brain tissue, and has been shown to 
be especially useful for investigating white matter pathology after 
traumatic brain injury (TBI) (1–3). Fitting DWI data to the tensor 
produces several metrics which describe the motion and direction of 
fluid, including the ratio of the primary eigenvalues–fractional 
anisotropy (FA) (4). Clinical multi-site studies using DWI are 
increasingly common, largely since the increased sample size results 
in improved statistical power (5, 6). New multi-center, preclinical 
studies are also beginning to be  published (7, 8) so that it will 
be  important to determine whether the application of tools and 
algorithms that are currently being used for clinical data 
harmonization can also be  used preclinically. An important 
component of such multi-center studies is that they afford greater 
sensitivity to detect group differences, allowing hypotheses to be tested 
that have smaller effect sizes. These effects would otherwise not 
be detected because no single laboratory could easily produce the large 
sample size required. However, an unwanted consequence of 
combining data from multiple sites is the technical or non-biological 
variation that is introduced as a result of differences in equipment, 
especially scanner vendor and protocol type, among other factors (9). 
This undesired variation is referred to as site effects and has been a key 
target to improve the reproducibility of multi-site neuroimaging  
studies.

The development of multi-site studies has also come with an 
enhanced need to ensure data access and reproducibility. Noted in the 
FAIR principles which promote findability, accessibility, 
interoperability, and reusability, data integration both within and 
outside of consortia is key to ensuring good stewardship and 
accessibility to information for all stakeholders of a project (10). The 
growing size of data collected presents a further challenge for multi-
site studies. Fluctuations in procedure, data analysis and collection, as 
well as instrumentation that result in site effects, can hinder 
replicability and the ability to compare data. When prospective 
alignment of procedures before data acquisition fails to enhance data 
harmonization, it becomes necessary to use retroactive methods to 
remove non-biological variation from data.

Numerous statistical methods have been created to harmonize 
neuroimaging data from multiple sites in order to remove site 
effects but preserve group differences (11). NeuroComBat was 
developed (12) as a modification of ComBat that allowed it to 
remove batch effects from neuroimaging, rather than genomic data 
sets (13). NeuroCombat (ComBat) has been shown to be able to 
consistently remove inter-site variation using an empirical Bayesian 
approach (12, 13). It has been employed to successfully remove site 
effects across several research locations and clinical protocols 
without obscuring biological variation (14, 15). It is notable, 
however, that in the absence of site effects, ComBat paradoxically 
reduced detectable biological variation among clinical data (16), 
indicating that some caution is required when applying 
this methodology.

While a large number of studies have demonstrated the 
effectiveness of ComBat in clinical populations, few have applied it to 
neuroimaging data from preclinical models of TBI. The Epilepsy 
Bioinformatics Study for Anti-epileptogenic Therapy (EpiBios4Rx) 
preclinical team previously demonstrated removal of magnetic field 
strength effects on FA values in the corpus callosum following ComBat 
harmonization, and this revealed significantly reduced FA in TBI rats 
(17). In that work, consistent areas of injury were demonstrated from 
data acquired across different scanners at the same site. Herein 
we  were able to corroborate this, both across the four different 
research sites that were included in the Translational Outcome Project 
in Neurotrauma (TOP-NT), as well as across scanners with different 
field strengths. Unlike in previous work where the injuries were 
consistent across scanners (17), the severity of injury used in the 
current study was purposely varied to test for the utility of FA and 
other tensor-derived dependent variables as potential biomarkers 
predictive of outcome. We therefore took injury severity into account 
when creating the ComBat model, using the degree of whole brain 
atrophy as a proxy. Additionally, previous studies have demonstrated 
increased statistical power as a result of harmonization but have not 
examined voxel-level change in order to determine the potential 
effects on a viable injury site versus more remote regions (5, 6). Thus, 
in addition to assessing whole-brain level univariate volumes of 
pathology across groups, we also assessed ComBat-related changes in 
statistical power, effect size and variability at the whole-brain level 
across individual voxels between groups (Figure 1). These measures, 
in conjunction with univariate harmonization, allowed us to 
investigate the ideal level at which ComBat harmonization could 
be applied to preclinical brain injury neuroimaging data, as well as to 
evaluate brain regional changes as a result of harmonization. Novel 
here is that we  also applied Combat-seq to harmonize univariate 
metrics derived from neuroimaging data. Although Combat-seq was 
originally designed to harmonize RNA sequencing data (18), 
univariate data derived from the number of voxels is a suitable input. 
This study is important for delineating how NeuroCombat affects 
statistical power to detect injury across the whole brain, as well as to 
quantify changes in effect size after harmonization. This will improve 
the scientific community’s understanding of NeuroCombat’s 
capabilities when applied to pre-clinical datasets. Additionally, it will 
allow for the characterization of brain areas which benefit from 
harmonization and to better develop appropriate use-cases 
for harmonization.

Methods

Experimental protocol

As part of the TOP-NT consortium project, there were four data 
acquisition sites: the University of California Los Angeles (UCLA), the 
University of Florida and Morehouse School of Medicine (UF/MSM), 
Georgetown University and Uniformed Services University (GU/USU), 
and John Hopkins University (JHU), and a data analytics 
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site—University of California San Francisco (UCSF). All study protocols 
used were in compliance with the Public Health Service Policy on 
Humane Care and Use of Laboratory Animals and approved by each 
site-specific Animal Research Committee, UCLA Approval #2021–082; 
UF/MSM Approval # 202010145; GU/USU Approval APG-21-044; JHU 
Approval #RA22M370. A total of 186 adult male and female, Sprague 
Dawley rats were used for this study and were randomly assigned to 
each group (UCLA: 33 TBI, 17 sham, JHU: 35 TBI, 14 sham, GU/USU: 
33 TBI, 16 sham, UF/MSM: 27 TBI, 11 sham). Diffusion imaging data 
were acquired at 3 and 30 days after either controlled cortical impact 
(CCI) injury or sham anesthetic controls in adult, male (Mean ± SD 
body weight 317 ± 43.7 g, 271.3 ± 20.3 g, 225 ± 14.8 g, 369 ± 16.1 g, at 
UCLA, GU/USU, JHU and UF/MSM, respectively) and female rats 
(body weight 254 ± 19.1 g, 239.3 ± 13.8 g, 183 ± 12.7 g, 256 ± 7.9 g, at 
UCLA, GU/USU, JHU and UF/MSM, respectively). A total of 343 scans 
were collected across the two post-injury times across all sites (25 
datasets were missing). Prior to data acquisition, the injury and imaging 
protocols were harmonized across the sites using standard operating 
procedures (7, 19). Post-acquisition data analysis, including all pre- and 
post-processing data steps were also harmonized using a BASH script 
that wrapped multiple commands which was shared across the sites. The 
detailed methods below document the cross-site harmonized methods 
and any differences across sites are noted. All data were acquired with 
adherence to the ARRIVE guidelines (20) including group assignment 
randomization, blinding by use of unique animal IDs across site with 

semi-automated analysis routines, as well as conforming to the other 
eight guidelines on protocol, analysis and reporting standards.

Controlled cortical impact

Rats were housed in pairs before and after the surgery in standard 
cages with ad libitum access to water and food. Rats were maintained 
on a 12:12 h light/dark cycle in the vivarium. Estrus cycle was assessed 
for female rats by vaginal lavage/swab at the time of surgery to 
determine the stage of the estrus cycle of the rat on the injury day. Two 
different levels of CCI were induced at each site by varying the 
deformation depth below the dura of the impactor using similar 
methods across the sites (Table 1). Rats were anesthetized with 5% 
isoflurane vaporized in 1 L/min O2 (2% isoflurane was used for 
maintenance of the anesthesia with adjustments between 1.5 and 2%), 
and then were head-fixed in a stereotactic frame and their body 
temperature was maintained at 37°c using a temperature-controlled 
heating-pad. After prophylactic administration of analgesics according 
to the site-specific animal protocol, aseptic technique was used to make 
a midline, longitudinal skin incision, followed by a 6 mm craniectomy 
(5 mm UF/MSM) centered at +3.5 mm anteroposterior and 3 mm 
lateral to the midline over the left hemisphere using a dental drill 
cooled under intermittent saline. CCI injury was conducted using a 
5 mm (4 mm UF/MSM) diameter, bevel-edge, metal impactor tip at an 

FIGURE 1

Flowchart showing the methodological overview that describes the major image processing methods used within and between sites in relation to the 
two harmonization techniques: univariate vs. voxel-level harmonization (blue boxes).
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angle parallel to the dural surface and at impact depth below dura, 
speeds and dwell times ranging from: 1.3–2.3 mm, 3.5-6 m/s and 
100-240 ms, using an electromagnetic impact system (Leica Biosystems, 
IL, United States). The craniectomy was closed with a non-toxic sealant 
(Kwik-Cast, WP instruments, United States) and the skin sutured.

Image acquisition

Data were acquired on Bruker Biospec consoles (Bruker, Billerica, 
MA, United States) connected to magnets from a variety of vendors 
and with different field strengths (Tesla, T) across the sites (7 T -UCLA 
and GU/USU, 11.7 T – JHU and 11.1 T—UF/MSM) with gradients of 
a varying peak strength and rise time resulting in different slew rates. 
Radiofrequency coils were similar across three sites (birdcage volume 
transmit coil decoupled from a receive-only 4-channel phased-array 
surface coil) and a transceive quadrature coil at UF/MSM. Rats were 
imaged prone under isoflurane sedation (1–1.5%) vaporized in 
medical air (0.5 L/min) positioned in a cradle with head stabilization 
using a 3-point head fixation. The diffusion data were acquired after a 
number of other scans within the same imaging session as part of a 
larger protocol, taking around 60 min prior to diffusion imaging. The 
prior scans for functional and structural imaging were conducted 
under a mixture of continuous dexmedetomidine sedation (0.05 mg/
kg/h, subcutaneously) and isoflurane (0.5%) prior to switching to 
isoflurane alone. Temperature was maintained at 37°C via 
homeothermic-controlled external air or water heating.

A 3-dimensional, single-shot, spin echo, echo planar imaging 
sequence was used to acquire diffusion-weighted images with 
directionally encoded, monopolar diffusion gradients applied along 88 
different, non-colinear directions, with b values of 0, 1,000 and 3,000 s/
mm2 (n = 4, 44 and 44, respectively), and no averaging. Four left–right, 
phase-reversed, b = 0 images were also acquired. Repetition and echo 
times varied slightly according to the supported gradient hardware 
(Table 2). Similarly, the diffusion gradient amplitude (big delta) was 
varied across site to arrive at similar b values while maintaining similar 
diffusion times, the time between application of the 

diffusion-sensitizing gradients (Table 2). The acquisition data matrix 
was constrained to a 72x49x96 matrix size, in the 1st phase-encoding, 
2nd phase-encoding and read-out directions, within a field of view 
(FOV) of 18×12.25x24mm, respectively in the dorsal-ventral, left–
right and antero-posterior planes, resulting in an isotropic resolution 
of 250 μm. Outer-volume signal suppression using multiple, 5-10 mm 
saturation slices were applied to reduce signal from outside the brain.

Whole brain anatomical data were acquired using a 3D-multi-
gradient echo sequence with a variable matrix size and field-of-view 
across site, resulting in the same isotropic resolution of 160 μm (Table 2). 
Eleven echoes were acquired from 2.8–51.8 ms with an echo spacing of 
4.9 ms, a repetition time of 45-125 ms and a 13–20 flip angle (Table 2).

Image preprocessing

Bruker raw data were converted to NIFTI (21), brain extracted 
(22), denoised (23), and corrected for Gibbs ringing (24), after which 
phase distortions were unwrapped with TOPUP (25, 26) and 
Eddycorrect (27), all of which were implemented under MRTRIX (28). 
Data were then fit to the tensor to derive scalar images- fractional 
anisotropy (FA), axial, radial and mean diffusivity (AD, RD, MD, 
respectively). FA data were then used to derive an unbiased mean 
deformation template (MDT) at each site using successive registrations 
of rigid, affine and non-linear alignment under ANTS (29). The 
resulting affine transformations and warp fields were applied to all 
scalar data to align them to the local site MDT. Voxel-wise sham mean 
and standard deviation (SD) maps were computed for each tensor 
indices, which were then used together with each co-registered brain 
volume scalar to calculate regions of high and low indices relative to 
local sham data at a corrected z-score threshold based on a distribution-
corrected z-score (30, 31) beginning with a desired z value of |z| > ±3.1 
(p < 0.001). This DisCo-Z correction is required to adjust for group-
wise bias originating for differences in sample size (30). The resulting 
corrected z values for thresholding the injury groups at each site at 
03d/30d was: 3.85/3.75, 3.99/3.85, 4.19/4.19 and 5.08/5.08, respectively 
at UCLA, GU/USU, JHU, UF/MSM. For the sham group the adjusted 

TABLE 1  Injury parameters across the sites.

Parameter UCLA GT/USU JHU UF/MSM

Craniectomy size (mm) 6 6 to 7 6 4

Antero-posterior position (mm) −3.5 −3.5 −3.5 −2.5

Medial-lateral position (mm) 3.5 3.0 3.0 3.0

Hemisphere left left left right

Tip diameter (mm) 5 5 5 4

Injury device Leica one Leica one Leica one Leica one

Tip material Metal Metal Metal Metal

Tip shape Flat Round Flat Flat

Angle of impactor (degrees) 13–18 12 5–10 0

Dwell time (ms) 200 200 200 200

Speed (m/s) 5 5 5 5

Depth below dura (mm) 1.7; 2.1 1.7; 2.1; 2.8 1.0; 1.2; 1.5; 1.7 1.7; 2.1

Angle to perpendicular (degrees) 10–15 5–10 5–10 0

Avg. time under anaesthesia (means ± 

STD; min) 39 ± 0.01 45.8 ± 12.7 25.1 ± 1.5 -
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z values at 03d/30d was: 2.67/2.72, 2.61/2.67, 2.52/2.52 and 2.38/2.38, 
respectively at UCLA, GU/USU, JHU, UF/MSM. The brain-wide 
volumes of tissue surviving these upper and lower z-score thresholds 
for each tensor scalar, herein designated ScalarLOW and ScalarHIGH 
volumes, were then quantified for each brain by counting the voxels 
that were greater or less than the z-score. For voxel-level harmonization, 
a multi-site MDT was calculated using the site-specific MDTs as input, 
and then each site-specific subject space data were transformed to the 
mean site MDT in a single step through application of the original 
warp and affine transformation together with those generated from site 
MDT to multi-site MDT space. Univariate harmonization statistics 
(e.g., corrected z-scores) were recalculated in the multi-site MDT space 
using the same method that had been applied at the site-specific level. 
Tensor-Based Deformation Analysis: Anatomical data were used to 
assess local tissue deformations to approximate tissue atrophy/
compression and swelling/expansion as we have before (32, 33). Briefly, 
a mean deformation brain template was constructed from all data using 
ANTS (34) and the Jacobian Determinant was calculated from the 
resulting warp transformation fields. Sham Jacobian data were used to 
calculate voxel-based mean and standard deviation maps which were 
then used to calculate z statistic maps for all injured data. The volume 
of tissue surviving a threshold of z ± 3.01 (p < 0.01, uncorrected) was 
determined for each injured brain and used to assess the region of local 
tissue contraction and referred to herein as tissue atrophy.

Harmonization and statistics

The R package NeuroCombat_1.0.13 was used for harmonization.1 
The covariates included in the model were day post-injury, atrophy, group, 
and sex (Figure 1). Site was used as the batch parameter. Given prior 
successes in applying NeuroCombat to cross-sectional data (scans less 
than 180 days apart) (16, 35) and its ability to adjust for covariates (36), all 
scans across days and groups were combined. By using large amounts of 
data in the model (samples >20), we hoped to replicate prior successes 
correcting for site effects in site-to-site traveling subject data (36). Atrophy 
was used as a proxy for the level of injury rather than the surgeon-
designated mild/moderate scale. This is because designated injury severity 
is still not well modelled. Using atrophy as a continuous variable also 
afforded greater sensitivity to differences compared to a binary choice of 
gross injury severity. Days post injury were defined as the number of days 
since anesthesia in shams, and this was treated as a continuous variable. 
Empirical Bayes was left enabled as per the default NeuroCombat settings. 
All statistical analyses were conducted in RStudio version 2023.6.0.421 
(Posit Team 2023). Cohen’s d was calculated as a measure of effect size by 
dividing the difference between the mean injured and mean sham animal 

1  https://github.com/Jfortin1/neuroCombat_Rpackage

TABLE 2  MRI parameters for DWI and MGE parameter sequences across the sites.

UCLA (7T) GU/USU (7T) JHU (11.7T) UF/MSM (11.1T)

Mode 3D-SE-EPI, SingleShot 3D-SE-EPI, SingleShot 3D-SE-EPI, SingleShot 3D-SE-EPI, SingleShot

DWI

FOV (mm) 24x18x12.25 24x18x12.25 24x18x12.25 24x18x12.25

Matrix Size (#voxels) 96x72x49 96x72x49 96x72x49 96x72x49

Resolution (um) 250 250 250 250

TR (ms) 1,000 1,000 1,000 1,000

TE (ms) 28.4 30 27.85 27.85

Flip angle (degrees) 90 90 90 90

BandWidth (KHz) 357 300 357 357

Big delta (ms) 12 12 12 12

LittleDelta (ms) 5.3 5 5.35 5.35

Bvalue1 (S/mm2) 1,000 1,000 1,000 1,000

Bvalue2 (S/mm2) 2,800 3,000 3,000 3,000

Mode 3D 3D 3D 3D

MGE

FOV (mm) 25.6×19.52×12.8 32x32x16 25.6×25.6×19.2 25.6×25.6×19.2

Matrix size (#voxels) 160x122x80 200x200x100 160x160x120 160x160x120

Resolution (um) 160 160 160 160

TR (ms) 125 45 45 45

TE range (ms) 2.8–51.8 2.5–26.5 2.5–26.5 2.5–26.5

Echo spacing (ms) 4.9 3 3 3

Number echoes 11 9 9 9

Flip angle (degrees) 20 13 13 13

BandWidth (KHz) 100 100 100 100

SE-EPI = spin echo, echo-planar imaging.
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by the pooled standard deviation. The False Discovery Rate (FDR) 
correction was applied to correct for multiple comparisons of all statistics.

The number of brain voxels with FA greater or less than a 
statistical theory-derived distribution-corrected z-score 
(equivalent to p < 0.001 relative to site-specific sham data, 
Figure 2) are referred to as FAHigh and FALow whole-brain volumes 
of pathology, respectively. We have operationally defined “whole-
brain volume of pathology” based upon a voxel tensor scalar 
value being lower or greater than the z-score threshold, as before 
(31). It should be noted that variability among measurements in 
shams is not due to injury, but other likely sources of variance, 
such as between scanner effects and animal-to-animal differences. 
Relevant code to reproduce the analyses in this study can 
be  found at the following link: https://github.com/ngharris/
neurocombat_TBI.

Univariate Harmonization: The volume of brain regions 
significantly different from sham was derived from harmonization 
of univariate volume data derived from subject data co-registered 
to site-specific brain template space and is herein referred to as 
univariate-level harmonization (Figure 1). Ggplot2 was used for 
plotting violin plots for univariate data (37). Four-site data was 

visualized with residual plots of values predicted by a regression 
model generated from the harmonized data across each site to 
demonstrate the presence of unequal variance among sites post-
harmonization. As described above, NeuroCombat harmonization 
used atrophy, day post-injury, group and sex as covariates. Site 
was used as the batch parameter.

Since the data obtained from brain volumes used for univariate 
harmonization are count data derived from the number of voxels 
above or below a z-threshold, we also implemented Combat-seq. 
Combat-seq was originally designed for RNA sequencing count 
data, but can be natively applied to neuroimaging count data (18). 
We  used sex, atrophy, and day post injury as covariates and 
treatment as the group variable. Site was used as the batch 
parameter. Bayes shrinkage remained disabled. Due to 
non-normality in the data, univariate metrics were compared using 
Kruskal Wallis tests to test for effect of group and site, and were FDR 
corrected for multiple comparisons. The estimation stats package 
was used to visualize effect size (38). p-values less than 0.05 were 
considered statistically significant for univariate statistics. Group 
differences were also maintained after harmonizing AD, MD, and 
RD data.

FIGURE 2

Voxel overlap maps of regions of FA-related pathology prior to harmonization at each site at three and 30d post-injury. Individual FA volume data from 
each injured rat that survived below the FALow or above the FAHigh corrected zmap-threshold (red, blue colors respectively, p < 0.001) relative to local 
sham data are plotted as binary incidence maps for each site at day 3 and 30 post-injury. The voxel pseudocolors represent the overlap between the 
number of rats where FA survived threshold at each brain voxel location. Site 4 shows low overlap between rats.
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Voxel level harmonization
Whole-brain volume of pathology data were also obtained after 

harmonization of whole-brain scalar data at the brain voxel level. This 
was derived from data co-registered to a multi-site-derived template, 
and is herein referred to as voxel-level harmonization (Figure  1). 
Loading of NIFTI files and generation of whole-brain maps of changes 
in effect size, standard deviation and power were conducted with the 
oro.nifti and neurobase packages (39, 40). As described above, 
NeuroCombat harmonization used atrophy, day post-injury, group 
and sex as covariates. Site was used as the batch parameter. Data points 
for voxels exceeding the range of 1.5 times the interquartile range 
(IQR) from the first (Q1) or third (Q3) quartiles of the whole dataset 
were identified as outliers. FSLeyes was used to visualize effect size and 
power maps (41). Bland Altman plots were produced by plotting the 
difference of each paired voxel measurement against the two voxels’ 
average value for each combination of site. Kolmogorov–Smirnov 
analysis tested for site effects and demonstrated differences in 
distributions of voxel-wise data before and after harmonization. Voxel 
overlap maps were used to demonstrate the proportions of rats with 
measurements significantly different from sham after harmonization, 
which displayed areas of biological injury. Frequency maps were 
generated by finding the number of rats different from mean sham at 
each voxel using a modified z-test (the quantity of the test value minus 
the sham mean at that voxel divided by the standard deviation of 
shams). Power at each voxel was calculated with the R pwr library’s 
pwr.t2n.test function (42). No spatial smoothing or regularization was 
performed after harmonization. p values less than 0.01 were 
considered significant for voxel-level statistics.

Results

For clarity, we  limited the reporting of data harmonization to 
fractional anisotropy, but we have included data on the other tensor 
scalers MD, AD and RD within the Supplementary Figures S1–S15. 
These data were in general, qualitatively similar to the FA results 
described herein. Volume of atrophy was included as a covariate in 
harmonization to account for intentional variation in injury severity, 
but these volumes were not significantly different between sites 
(one-way ANOVA, p > 0.05).

Two harmonization methods were used. In the first, the volume 
of whole-brain pathology was derived from harmonization of 
univariate volume data derived from subject data co-registered to site-
specific brain template space, and is herein referred to as univariate-
level harmonization. In the second method, the volume of pathology 
was derived after harmonization of whole-brain FA data at the brain 
voxel level, derived from data coregistered to a multi-site-derived 
template, and is herein referred to as voxel-level harmonization.

Outlier sites lead to increased variance in 
non-outlier sites after univariate-level 
harmonization

Previous work (43) has shown that if the proportion of outliers is 
higher than 5% of the data, or if extreme outliers exist, this can 
severely distort the ability of NeuroCombat to remove site effects. In 
the current data, we found that the variance for both high and low FA 

values was significantly increased within Site 4 sham data as compared 
to all other sites for univariate data before harmonization (p < 0.001). 
This increased variance within site 4 data was maintained even after 
harmonization when compared to the other three sites (p < 0.001). 
Consistent with this data, the residuals of FA values for sham rats 
predicted by a regression model generated with harmonized sham 
data showed unequal distributions with the largest spread in site 4 
data. One potential cause of this heteroscedasticity could be attributed 
to the presence of outliers, which could lead to ineffective 
harmonization if all sites were included (Figure  3). However, log 
transformation of these data revealed similar results with a greater 
number of univariate outliers in site 4 compared to all and 
significantly increased variance. Removal of site 4 data resulted in an 
absence of site effects in the harmonized data (p > 0.05), further 
substantiating these findings. As a result, all further univariate 
analyses were conducted with data from only three sites in order to 
more accurately determine the utility of using NeuroCombat to 
harmonize preclinical imaging data from multiple sites. Additional 
analyses using data from all four sites can be  found in 
Supplementary Figures S16–S18.

Univariate-level harmonization with 
pooled but not site-specific shams leads to 
improved detection of injury

An important consideration when investigating differences in 
multi-site data is whether to pool shams from all sites, or whether to 
treat site-specific sham data independently for the calculation of 
univariate volume data. Pooled shams were used to generate the 
z-scored FALow and FAHigh values for each rodent prior to harmonization. 
To gauge how effectively differences between sham and TBI rats were 
detected when considering pooled sham data versus sham data specific 
to each site, we examined FALow and FAHigh distributions across the 
sites. Compared to unharmonized data, harmonization with pooled 
shams led to a 32% increase in the number of injured rats across all 
sites, where FALow volumes of pathology were more than two standard 
deviations larger than the mean sham animal across all sites (n = 21 vs. 
30 animals at day 3 and n = 19 vs. 23 at day 30, respectively). The 
number of injured rats with FAHigh volumes above the mean after 
harmonization were reduced or remained similar to unharmonized 
data (n = 9 vs. 8 at day 3, respectively and no change at day 30).

Harmonization with site-specific sham data afforded a lower 
improvement compared to the prior reported pooled sham 
harmonization; the number of injured animals with FALow volumes 
above sham mean data after harmonization increased by only 10% 
(n = 33 vs. 32 at day 3 and n = 52 vs. 45 at day 30, respectively). This 
aligns with previous suggestions that “mega-analyses,” in which pooling 
is done prior to statistical analyses, results in an improved ability to 
detect injury compared to meta-analyses that do not pool data (12). 
However, the number of injured rats with significantly different FAHigh 
volumes after harmonization increased by 17.6% (n = 11 vs. 9 at day 3 
and n = 9 vs. 8 at day 30, respectively). While univariate-level 
harmonization led to mixed results overall, the greatest improvement 
occurred in injured rat FALow volumes using pooled sham data. As a 
result, since NeuroCombat is intended for use on data pooled from 
multiple sites, pooled shams were used for all further univariate analyses. 
Pooled shams were also used for voxel-level analyses for consistency.
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Group differences after univariate data 
harmonization using pooled shams

Previous reports have demonstrated that removal of site-specific 
effects after harmonization would indicate that any remaining group 
differences could accurately be  attributed to a true difference in 
pathology, thus demonstrating successful harmonization (12). Within 
the original, unharmonized, univariate data, there were significant 
sham vs. TBI group effects for FALow volume day 3 data (Figure 4A, 
p < 0.001, FDR correction, Kruskal-Wallis test) and significant site 
effects for FAHigh volume at both time points (p < 0.001, Figures 4B,D). 
After univariate-level harmonization with Combat-seq, the group 
difference in FALow volume originally found at day 3 was retained, and 
a group difference at day 30 was introduced (p < 0.001, Figures 4A,C). 

Finally, univariate-level harmonization failed to correct for the site 
effects observed in FAHigh volumes at day 3 and 30 post-injury before 
harmonization (Figures  4B,D) where sham data from Site 1 had 
substantially higher volumes of pathology and were more variable 
than the other two sites (p < 0.001, Kruskal-Wallis test). This result 
was similarly found in the other measures, where group differences 
were maintained post-harmonization, but a significant effect of site 
was no longer found (Supplementary Figures S1, S6, S11).

Despite these unexpected effects, we calculated the effect size for 
each site in order to quantify any improvement in the ability to 
discriminate between experimental groups due to harmonization. 
Using the difference in univariate FA volume for injured versus pooled 
sham data at each timepoint, effect size changed in different directions 
for day 3 FALow data after harmonization at sites 1, 2 and 3 by −4.3, 

FIGURE 3

Impact of using four versus three site data for univariate-level harmonization on sham group data. The residuals of (A) FALow and (B) FAHigh predicted 
using a model generated from univariate 4-site data harmonized with Combat-seq demonstrates a larger spread of residuals in site 4 and with fewer 
points centered around 0 compared to the other 3 sites. The residuals of (C) FALow and (D) FAHigh predicted using a model generated from univariate 
3-site data harmonized with Combat-seq indicate fewer outlier points across all 3 sites compared to the 4 site data.
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1.35 and 2.1-fold, respectively. This was significantly different from 
zero (p < 0.05) for Sites 2 and 3 compared to pre-harmonization, when 
it was not previously different (Figure 5A). Similar but smaller effects 
were found for day 30 data at all sites (Figure  5B). Despite the 
introduction of group differences in the FAHigh data at day 3 through 
harmonization, the magnitude of the effect size decreased for site 3 
(p < 0.05 pre-harmonization, p > 0.05 after harmonization, Figure 5C) 
and it remained similar for other sites (p > 0.05).

Unexpectedly, neither Combat-seq or NeuroCombat were able to 
completely resolve the site effects in univariate FALow data on day 3, 
however, Combat-seq was able to uncover strong group effects at day 30 
(Figures 4A,C; data not shown for NeuroCombat). NeuroCombat was 
also less sensitive for detecting FALow injury compared to Combat-seq, 
but similar for FAHIGH (data not shown for NeuroCombat). This occurred 
at both the day 3 and day 30 timepoints for FALow, where Combat-Seq 
showed a more significant effect of group compared to NeuroCombat 
(p < <0.001 versus p < 0.05, respectively, Kruskal Wallis test). Group 
differences after harmonizing AD, MD, and RD data using Combat-seq 
were maintained with both NeuroCombat and Combat-seq.

Voxel-level harmonization leads to a 
common distribution of FA values and 
effect sizes across sites

By visual inspection of the group-level incidence maps of volumes 
of pathology described by FALow and FAHigh, we  found there were 
marked differences at site 4 compared to Sites 1–3 at both 3 and 

30 days after injury (Figure 2), in agreement with the prior outlier 
volume analysis above. We confirmed this quantitatively for FA values; 
of the four sites analyzed, 10.5% of the FA values from Site 4 were 
found to lie more than 1.5 interquartile ranges outside the interquartile 
range of FA values when compared to the other three sites at each 
voxel location. The outliers among Sites 1, 2 and 3 were smaller, 
containing only 4.6, 1.7 and 0.9% outliers, respectively, which was 
more than 2-fold less than Site 4. Additionally, Site 4 FA population 
data were found to have an excess kurtosis of 0.497, compared to 
−0.774, 0.159 and 0.274 in Sites 1, 2, and 3, respectively indicating a 
quite different distribution of FA volumes. These discrepancies were 
similar to the findings at the univariate volume level described in the 
prior sections. Harmonization of whole brain data resulted in large 
decreases in the standard deviation of Site 4 FA data and corresponding 
increases in variance in Sites 2 and 3, as well as to a lesser extent in Site 
1 (Figure 6A). Since the presence of an outlier site severely biased the 
performance of NeuroCombat, further analysis of whole brain data 
was done with only Sites 1, 2 and 3.

Bland–Altman plots were used to quantify the effect of 
harmonization across the whole brain between sites at the voxel level 
across all subjects (Figures 6B,C). These graphs plot the mean value of 
the same voxel location from each pair of sites against their difference, 
and they were generated for each pair of sites before and after 
harmonization. In the original, unharmonized data, large differences 
were observed for all combinations of sites indicating site-related 
differences. After NeuroCombat harmonization, the difference 
between voxel measures between pairs of sites approached zero, 
indicating that FA values were more similar at the same brain location 

FIGURE 4

Effect of univariate and voxel-level harmonization on the burden of whole brain injury volume using pooled sham data. Brain volumes of pathology 
identified by (A,C) FALow and (B,D) FAHigh at 3d (A,B) and 30d (C,D) are plotted for each site before (“original”) and after univariate and voxel-level 
harmonization. ###/*** = a significant effect of site and group, respectively, p < 0.001, ##/** = p < 0.01, #/* = p < 0.05 (Kruskal-Wallis test). 
Harmonization for the univariate plots was performed with Combat-seq because the unharmonized data was count distributed.
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across sites after harmonization. This was supported by a Kolmogorov–
Smirnov analysis, which showed significantly different site effects 
before harmonization (p < 0.001) and a resolution of these site effects 
after harmonization on average between each combination of sites 
(p > 0.05, Figures 6B,C).

Crucially, all group level effects shown prior to harmonization 
through univariate volume analysis were maintained using voxel-level 
harmonization: group difference in FALow at 3- and 30-days post injury 
were maintained (p < 0.01), as well as site-specific differences in FAHigh 
at 3- and 30-days post injury (p < 0.01) (Figure 4).

Voxel-level harmonization improves 
group-level delineation of injured brain 
regions and leads to spatially specific 
statistical improvements

Since the application of NeuroCombat at the voxel level resulted in 
decreased cross-site differences, supporting prior work at the same site 
across different field strengths (17), we next investigated the statistical 
effect of harmonization within regions of primary injury as well as in 
less injured regions across the brain. Correct interpretation of statistical 
results requires consideration not only of statistical significance but 
effect size and statistical power. Improvements in power, the probability 
of detecting a result when it is present, can help to detect significant 
differences in datasets with small effect sizes. Given the simple statistical 
design of the current study, increases in sample size from combining 
data in this study should generally be expected to increase statistical 
power at a geometric rate through reduction in standard error. 

However, power is also affected by effect size and unexplained variances, 
among other factors. Technical/hardware variation and site related 
effects when measuring the injury present themselves as ideal sources 
of variance for NeuroCombat to capture. We aimed to understand how 
cross-site harmonization was able to resolve this variance, as well as 
how harmonization affected effect size and power across the brain. 
We hypothesized that harmonization would increase the probability of 
correctly detecting group-level differences, particularly within specific 
brain regions that may exhibit high variability at the single site level 
through increases in power and effect size.

To accomplish this, whole brain images of change in power and 
effect size due to harmonization were generated by voxel-based 
subtraction between the original, non-harmonized and the harmonized 
FA data for each site (Figure 7). The average effect from harmonization 
calculated over all three sites was an increase in power around the 
primary injury area of the ipsilateral corpus callosum but decreases in 
most other regions (Figure 7A). At the site level at day 3, power increased 
within the ipsilateral white matter and gray matter surrounding the 
primary injury area in all three site data, with the greatest improvement 
measured in Site 1 (Figure 7B). There were, however, decreases in power 
as a result of harmonization, globally within the grey matter across all 
sites and at both times post-injury. At day 30, the greatest increase in 
power was observed in data from Site 1, similar to day 3, while there 
were power decreases in the striatum and ventral areas of the brain in 
data from Sites 2 and 3. These same remote changes also generalized to 
the AD, MD and RD (Supplementary Figures S4, S9, S14).

Calculation of the corresponding voxel-wise change in effect size 
revealed an ipsilateral increase in the magnitude in the site-averaged 
data (Figure 8A) consistent with the prior power changes (Figure 7A). 

FIGURE 5

Effect sizes after univariate-level harmonization. Injury effect size measured by Cohen’s D for each site before and after univariate harmonization for 
(A,B) FALow volumes and (C,D) FAHigh volumes at (A,C) d03 and (B,D) d30 post-injury. The data demonstrates an increased effect size for all sites for FALow 
volumes, at 3 and 30d (A,B) but no change or a removal of significant effect size across sites for FAHigh volumes (C,D). *** = an effect size significantly 
greater than 0, p < 0.001, ** = p < 0.01, * = p < 0.05 (t-test).
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However, while power changes were decreased by harmonization 
throughout much of the brain, effect size increased over the majority 
of the brain remote from the primary injury site, with the exception 
of decreases within multiple clustered voxels that occurred at both 

post-injury times. Across site-averaged data, these trends persisted in 
AD, MD and RD (Supplementary Figures S4, S9, S14), but the drivers 
varied. For FA, the underlying data driving these site-wide effects were 
a decrease in effect size at site 1, but an increase at Sites 2 and 3 

FIGURE 6

Harmonization at voxel-level resolution. (A) Change in standard deviation due to harmonization (harmonized – non-harmonized), where orange and 
blue voxels indicate an increase and decrease in standard deviations due to harmonization, respectively. Site 4 shows a decrease in standard deviation 
across the brain, indicating a large variation in the original, non-harmonized sham distribution of FA values across the brain. Key: [L] = Left side of the 
brain, [R] = Right side of the brain. (B,C) Harmonization of FA values of each individual voxel across site pairs is demonstrated using Bland–Altman plots 
for (A) original, unharmonized values and (B) harmonized values. The difference between sites decreases due to harmonization.

FIGURE 7

Whole-brain maps of regional changes in power due to harmonization. (A) Difference in power across a pooled average of all three sites post-injury 
due to harmonization and (B) across site and post-injury day. The magnitude scale −30 and 30% indicates the percent difference in statistical power 
between pre and post voxel-level harmonization, where yellow/blue indicate power increases and decreases, respectively due to harmonization.
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(Figure 8B). The opposite trend was seen in MD and RD, where Site 1 
showed increases in effect size in the injury area, while Sites 2 and 3 
exhibited large decreases around the injury area (Supplementary  
Figures S9, S14). AD showed a different trend, with Site 2 driving 
much of the decreases and Sites 1 and 3 showing increased effect size 
at the injury area (Supplementary Figure S4). The heterogeneity in 
both effect size and power across the sites outside of the primary 
injury area may be  explained by the effect of NeuroCombat as it 
attempts to adjust for the variability introduced by site effects, 
ultimately converging at a common spatial pattern.

We sought to determine whether the improved power and effect 
size was underpinned by the detection of pathologically low or high 
FA when compared to the sham group. FA voxel overlap maps showing 
the proportion of rats with FA values significantly different from sham 
after harmonization versus before, revealed an increased number, and 
overlap of rats after harmonization when compared to the original 
data (Figure 9). These increases were especially prevalent within, and 
adjacent to, the primary, ipsilateral injury area. All differences detected 
were related to decreases in FA; no data was underpinned by increased 
areas of FAHigh when compared to shams. These results indicate that 
cross-site data harmonization can improve the reliability of group 
differences in the areas surrounding the primary injury area at the cost 
of lower power in regions more remote from the primary injury site. 
For other scalar measures, results were markedly different. Generally, 
the proportion of rats significantly different from mean sham was 
lower. In the AD dataset, most areas of difference were found in the 
ipsilateral cortex, frontal pole and cerebellum. The only location to 
produce an increase in the number of rats was a small portion of the 
corpus callosum. In other areas, harmonization decreased the number 
of voxels with significant differences, suggesting an initially weak effect 
at both day 3 and 30 (Supplementary Figure S5). Similarly, the MD 
data at day 3 showed large portions of the cortex with a small number 
of rats being significantly different from sham, but this area decreased 
after harmonization. At day 30, the number of voxels increased around 
pre-existing areas of difference in the cerebellum and parts of the 

ipsilateral cortex (Supplementary Figure S10). In the RD dataset, areas 
of pre-existing cortical differences decreased after harmonization at 
day 3 and day 30, except for minor increases in coverage in the 
contralateral cerebellum (Supplementary Figure S15).

Discussion

This study demonstrates that NeuroCombat harmonization 
improved the detection of injury after univariate-level harmonization, 
although this effect was greater using pooled rather than site-specific 
shams. Despite increases in effect size due to harmonization, group 
differences were both gained and lost dependent on scalar volume, 
directional difference compared to sham, and post-injury time. On the 
other hand, voxel-level harmonization retained group differences 
present within the original data and led to increases in statistical power 
and effect size to detect group differences within the primary injured 
area. These voxel locations displayed a higher frequency of decreased 
FA in injured rats, but at the potential cost of decreased reliability to 
detect group differences within regions remote from the injury site.

We found that NeuroCombat harmonization does decrease site-
specific effect in univariate and voxel-wise measures of FA, thus better 
delineating biological differences as a result of injury. Analysis further 
displayed improved harmonization with the use of a pooled sham 
population and removal of significant outliers.

Site outliers severely bias NeuroCombat

A significant challenge to NeuroCombat harmonization is the 
presence of outliers. These findings are consistent with prior reports 
(43) that the presence of outliers can severely bias the ability of 
NeuroCombat to remove site effects. That prior work identified 
outliers as measurements outside 3 interquartile ranges (IQRs) of Q1 
or Q3, and determined that if more than 5% of values at a particular 

FIGURE 8

Whole-brain maps of regional changes in effect size due to harmonization. (A) Difference in effect size across a pooled average of all three sites post-
injury due to harmonization and (B) across sites and post-injury day. The magnitude scale −1 and +1 Cohen’s d indicates the difference in effect size/
voxel between pre and post voxel-level harmonization, where yellow/blue indicate increases and decreases, respectively due to harmonization.
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site were outliers, then the ability for NeuroCombat to harmonize data 
was hindered, and this was associated with reduced variability within 
the outlier site data (43). Site 4 in the current study exhibited these 
characteristics with an outlier proportion of >10% when outliers were 
measured as 1.5 IQRs outside of Q1 and Q3. Difference in scanner 
field strength is unlikely to be the source of variation since another site 
that operated at the same field strength (Site 3) showed no such 
variation. One major difference in hardware between Site 4 and all 
other sites was the use of different radiofrequency coil hardware that 
resulted in a reduced brain coverage that may have accounted for the 
increased variation (Figure 2). A second major difference was the 
lower number of rats included from Site 4  in both experimental 
groups, making the statistical correction to the z-scored volume data 
larger and thus less sensitive to the detection of abnormal diffusion 
scalar-related values. This suggests that a more conservative approach 
during pre-acquisition harmonization is necessary when selecting if 
site data can be grouped together for harmonization. This may relate 
to both MRI hardware and injury severity level.

Choice of site-specific versus pooled 
shams is important

Use of pooled sham data from across all three sites, rather than a 
site-specific approach, produced a greater percentage of TBI rats 

where the volume of pathology indicated by FALow or FAHigh was 
greater than in sham rats. This was counter to expectations, where our 
initial hypothesis was that site-specific sham data would encode site-
specific technical, scanner-related effects that would be  negated 
through within-site identification of TBI volumes of pathology, 
leading to more uniform cross-site data. This premise was based on 
the current lack of available preclinical phantoms that could be used 
for correcting for site-specific effects, leaving us to make use of local 
sham data to fill this gap. However, despite the greater success of using 
pooled shams, it was only the use of site-specific shams that retained 
group differences in univariate-level harmonized FALow volumes. 
Although Combat-seq was unable to completely resolve site effects in 
some univariate data, it did maintain or enhance the strong group 
differences. Because a similar group effect was found through voxel 
harmonization, it may indicate that Combat-seq is able to improve 
injury detection within univariate data. This may suggest that it is 
more suitable compared to NeuroCombat for harmonizing univariate, 
count-distributed neuroimaging data. This is the first study that the 
authors are aware of that has applied Combat-seq to univariate 
statistics derived from neuroimaging data. Combat-seq was previously 
only applied to RNA sequencing data. Because the voxel-level 
harmonization data did possess site effects, harmonization was able to 
preserve true biological variation, which prevented the loss of signal. 
Despite this finding, voxel-level harmonization maintained all group 
differences present within the original data. It is possible that the lower 

FIGURE 9

Multi-Site Voxel overlap maps delineating larger regions of common pathology due to data harmonization. (A) Sham and (B) Injured voxel overlap 
maps derived from whole-brain data with all three sites showing the incidence of the number of rats at each voxel location where FA values differ 
significantly from pooled sham data before (label-Original) and after harmonization (label-Harmonized). Images show voxels where there was a lower 
(Pink) and higher (Blue/Red) proportion of CCI rats in which the FA value was significantly different from pooled shams due to data harmonization 
(p < 0.01, FDR corrected).
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sample size at the single-site level could lead to effects that may either 
overestimate or underestimate true effects, where pooling data can 
increase sensitivity to true effects (44). It could also be that the whole-
brain data used to generate voxel-level harmonization metrics was 
continuous, which enabled more successful harmonization with 
NeuroCombat. It therefore remains crucial to study the effect of how 
sham data are used when determining the effects of cross-
site harmonization.

Harmonization improves power and effect 
size in areas with existing biological 
differences

Consistent with prior literature (12), voxel-level harmonization 
effectively removed site effects in whole-brain data. As shown in the 
Bland–Altman plots (Figures 6B,C), across all combinations of sites 
and mean FA value of voxel pairs, the difference between each pair of 
voxels was reduced after harmonization. This reduction in variability 
across sites after harmonization corresponds with results seen in both 
the preclinical and clinical spaces (12, 17, 45). These changes suggest 
that harmonization improves the ability to detect group differences in 
areas of pre-existing biological variation. In areas where no significant 
differences between sham and injury were initially found, power 
decreased. Univariate measures of pathology showed similar results, 
with mild effect size increases between injured and sham groups after 
harmonization. This could explain some of the detrimental effects of 
harmonization, which has been shown to obscure biological variation 
in data without site effects, such as in regions unaffected by injury or 
site (16). The current finding that the proportion of rats which were 
significantly different from shams did not increase substantially 
outside of brain regions where group differences were detected before 
harmonization suggests that NeuroCombat does not introduce 
erroneous biological variation (14, 15). Voxel-level harmonization 
appears to only be able to improve detection of group differences 
across data where group differences already exist, rather than revealing 
differences obscured by noise or systematic error.

In areas of the brain where group differences were already present, 
NeuroCombat successfully improved delineation of injury among FA 
datasets, but not MD, RD or AD. Improvements in power and effect 
size were seen in areas of the ipsilateral white matter and cortex, which 
generally corresponds to areas of existing group differences in the FA 
data. This was further seen by improvements in the proportion of rats 
that exhibited group differences at these voxels at day 3 and day 30. 
The use of NeuroCombat on data with site effects may help to improve 
reproducibility in this respect, as improved power, effect size and 
more frequent detection of injury can help to reduce erroneous 
conclusions. An increase in power indicates a benefit for pooling data 
across sites, allowing for smaller samples from each of multiple sites 
to support observed effects. The decrease in power observed in 
non-injured areas could have been related to a lack of biological effect 
in those areas prior to harmonization, where harmonization increased 
power in areas of existing difference at the expense of whole-brain 
differences. An alternative reason could be related to a decrease in 
inaccurate effect sizes within non-injured regions, which would cause 
power to decrease in those areas and reflect areas of true biological 
difference. Similar findings have been reported in clinical FA data: 
harmonization with NeuroCombat was able to increase the number 

of voxels associated with age in a clinical multi-site and multi-scanner 
study of DTI measures’ relationship with age (12), as well as improve 
power in the detection of differences among individuals with 
schizophrenia in T1 derived metrics of cortical thickness, surface area 
and subcortical volumes (5). The present study builds upon these 
initial findings by validating NeuroCombat’s efficacy in preclinical 
data, as well as by demonstrating that these improvements in the 
detection of group differences are confined within areas of existing 
biological variation.

There was a relative lack of success by harmonization to improve 
injury detection among AD, MD and RD datasets compared to FA, 
despite varying degrees of power and effect size improvements. 
Reasons for this are not clear, but it may relate to site differences in 
measurement of absolute diffusivities compared to a more equitable 
comparison of FA which is a normalized ratio of these diffusivities, 
and thus less likely to differ in absolute values across site. Further 
examination into whether normalization of unbounded metrics helps 
to improve the efficacy of NeuroCombat may be warranted to better 
understand this phenomenon. Other methods of ComBat that have 
been used in imaging data include generalized additive models 
(gamCombat) which accounts for non-linear covariates, longCombat 
which can be used to detect changes over time, and gaussian mixture 
model-combat that removes variation due to unidentified covariates 
(16, 46). NeuroCombat has been shown to be  preferable when 
conducting cross-sectional data harmonization compared to 
longCombat (16). While in the present study we were focused on 
group-level comparisons at each timepoint, the use of longCombat 
may well be useful to capture differences in injury trajectories across 
site in future work.

Limitations

Inherent in the preprocessing of image data are the potential 
errors associated with the requirement to conduct spatial 
transformations to ensure correct registration to a common 3D space. 
Multiple transformations could have impacted the quality and 
precision of the resulting measures of pathology. The heterogeneous 
nature of injury may also play a role in the decrease in power in 
non-significantly different brain areas. Due to potential minor 
differences in delivery of trauma, brain areas of some rats may have 
been more injured compared to similar areas in other rats. This may 
lead to less consistent measurements and interfere with NeuroCombat’s 
abilities to resolve site effects.

Univariate level volume analysis was conducted after identifying 
regions of ScalarLow and ScalarHigh through a statistical-based 
z-corrected threshold (30, 31). However, there is no agreed upon 
statistical correction required for the analysis of voxel-based data. It is 
possible that the strict threshold used here (p < 0.001) reduced the 
ability to accurately judge pathologic tissue within injured versus 
sham rats, as indicated by the low overlap between rats in site 4 
(Figure 2). More work is required to determine the impact of statistical 
correction threshold on determining group differences after TBI.

The biological basis for FAHIGH regions after TBI is uncertain, 
although it has been found before in the same spatially discrete 
patterns from FALOW regions (3). Noteworthy here though is that the 
benefit provided by multi-site harmonization was afforded by FALOW, 
and from which the biological underpinnings is far more certain.
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Conclusion

NeuroCombat harmonization demonstrates utility in reducing 
site effects in rodent imaging across multiple sites and scanner field 
strengths. By increasing the statistical power and effect size to detect 
areas of injury, post-acquisition, cross-site data harmonization 
improves the ability to discriminate between sham and injured rats. 
This should enable improved efficiency for preclinical study 
completion by collecting data at multiple sites.

Significance statement

This project demonstrates the utility of NeuroCombat in 
reducing site effects in multi-site rodent imaging. We  also 
demonstrate that harmonization improves the ability to distinguish 
between sham and injured rats at the voxel level and increase 
statistical power and effect size in areas of injury. Multi-center 
studies are becoming more common to allow for increased 
efficiency in data collection, and with conservative approaches and 
analysis into the datasets, NeuroCombat can be utilized to improve 
study reliability and reproducibility.
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