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Objective: Utilizing pathomics to analyze high-grade gliomas and provide 
prognostic insights.

Methods: Regions of Interest (ROIs) in tumor areas were identified in whole-
slide images (WSI). Tumor patches underwent cropping, white space removal, 
and normalization. A deep learning model trained on these patches aggregated 
predictions for WSIs. Pathological features were extracted using Pearson correlation, 
univariate Cox regression, and LASSO-Cox regression. Three models were developed: 
a Pathomics-based model, a clinical model, and a combined model integrating both.

Results: Pathological and Clinical Features were used to build two models, 
leading to a predictive model with a C-index of 0.847 (train) and 0.739 (test). 
High-risk patients had a median progression-free survival (PFS) of 10 months 
(p<0.001), while low-risk patients had not reached median PFS. Stratification by 
IDH status revealed significant PFS differences.

Conclusion: The combined model effectively predicts high-grade glioma 
prognosis.
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1 Introduction

According to a survey conducted by the Chinese Society of Oncology in 2022, the annual 
incidence rate of brain gliomas is approximately 6.4 per 100,000 individuals, establishing it as the 
leading primary malignant tumor in the central nervous system of adults (1). Of these, high-grade 
gliomas, classified as grades III–IV, make up the majority of malignant primary brain tumors in 
adults, representing about 62% (2). The mainstay treatment for high-grade gliomas involves a 
combination of maximal surgical resection and concurrent radiotherapy and chemotherapy 
utilizing temozolomide (3). Despite this, the 5-year overall survival rate for high-grade gliomas 
(grades 3 and 4) is still disappointingly low, between 6.6 and 30.9%, with a median survival time of 
1.25 to 3 years. Moreover, emerging research has consistently demonstrated that patients 
experiencing disease progression within the first year exhibit a considerably poorer prognosis (4, 
5). Consequently, there is an urgent imperative to actively identify prognostic markers prior to 
treatment initiation, as this could profoundly impact personalized clinical interventions and 
enhance patient survival rates.

Analyzing tissue slices histologically is crucial for diagnosing and planning tumor treatment, 
providing high-resolution images that reveal fundamental morphological characteristics. However, 
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histological examination offers limited information, and the heterogeneity 
of biopsy materials, along with variations in pathology expertise, can 
affect final results. In this context, digital pathology can provide more 
objective diagnostic results by converting pathological images into digital 
format (whole-slide images; WSI) and acquiring extensive data, including 
quantitative aspects like morphology, texture, and biology (6, 7). This 
facilitates the assessment of pathological diagnoses and molecular 
expression levels. Additionally, deep learning has demonstrated 
remarkable results in interpreting medical images, being used for cancer 
detection, differential diagnosis, quantitative analysis of morphological 
phenotypes, and predicting patient survival. Satisfactory results have been 
achieved in many tumors (7–9).

The combination of histopathology and deep learning has 
been proven to be  an accurate and practical method with 
predictive potential, widely used in identifying tumor types, 
distinguishing pathological grades, predicting treatment effects, 
and forecasting prognosis. It has been studied in various tumors, 
including bladder cancer, lung cancer and so on (8, 10). It is also 
widely used in gliomas (11, 12), however, there are limitations in 
the related research. Some studies focus on glioma patients with 
grades 2–4 (13), overlooking the significant heterogeneity present 
within these grades, which complicates the analysis of patient 
prognosis. Additionally, in clinical practice, high-grade gliomas 
exhibit greater invasiveness and malignancy, leading to poorer 
prognoses and shorter median survival times. Therefore, there is 
a greater clinical demand and value in studying high-grade 
gliomas therefore, studying high-grade gliomas is crucial. In 
addition, some studies have not compared multiple Deep 
Convolutional Neural Network Models to select the optimal one, 
which may affect the predictive results of the research (14, 15).

The main objective of this study is to establish a prognostic model 
for high-grade gliomas based on histopathology, which will evaluate 
patient prognosis and provide valuable insights to inform 
treatment decisions.

2 Method

2.1 Datasets and workflow

Between June 2016 and June 2023, we prospectively recruited patients 
diagnosed with high-grade gliomas confirmed by pathology at our center. 
For this retrospective analysis, inclusion criteria required patients to have: 
(1) no prior treatment before the confirmed diagnosis of glioma, (2) 
possessing postoperative histopathological findings and histological 
slides, and (3) relevant clinical information. Exclusion criteria included 
patients with: (1) Without histopathological reports and microscopic 
sections in the patient’s record, (2) with WSI of insufficient resolution for 
diagnostic use, and (3) lack of post-treatment follow-up data.

About 3 months after treatment, patients were closely monitored 
before undergoing MRI and functional magnetic resonance imaging 
(fMRI). The evaluation of recurrence followed the RANO criteria and was 
conducted by a multidisciplinary team (MDT) comprising experts from 
the Radiotherapy, Neurosurgery, and Radiology departments. The MDT 
performed a detailed assessment of clinical manifestations, the extent of 
enhancement, and the timing of recurrence for each individual patient. 
All patients underwent MRI scans, and the need for additional functional 
MRI methods like magnetic resonance spectroscopy (MRS) and 

perfusion-weighted imaging (PWI) was evaluated to aid in diagnosis. 
Disease progression was defined according to the following criteria: (1) 
Target lesions: An increase of at least 20% in the total of the longest 
diameters of CNS target lesions compared to the smallest total recorded 
during the study, along with at least one lesion exhibiting an absolute 
increase of 5 mm or greater, in addition to the required 20% relative 
increase. (2) Non-target lesions: Clear evidence of advancement in current 
enhancing non-target CNS lesions, the appearance of new lesions (except 
during immunotherapy), or definite progression of existing tumor-related 
non-enhancing (T2/FLAIR) CNS lesions (16). The primary outcomes of 
the study include progression-free survival (PFS), characterized as the 
time span during which patients display no indications of disease 
progression during or following treatment, in addition to the time from 
the initiation of treatment until the patient’s death.

The analysis employed a retrospective cohort design to assess WSI 
data from a single institution, as shown in Figure 1. The initial phase 
involved image preprocessing techniques, including outlining the region 
of interest (ROI), cropping WSI into patches, removing white space, and 
normalization. Next, the cropped patches were trained using multiple 
architectures, and the trained deep models predicted labels for each 
patch, which were aggregated at the whole WSI level. Finally, pathological 
features were extracted through Pearson correlation analysis, univariate 
Cox regression, and LASSO-Cox regression analysis. The flowchart of 
patient selection and study framework is depicted in Figures 1, 2.

2.2 Treatment

Patients who met the eligibility criteria received a combination 
treatment approach. This involved radiotherapy delivered at a total 
dose of 60 Gy over a span of 6 weeks, divided into 30 fractions. 
Simultaneously, a daily dose of 75 mg/m2 of temozolomide was 
administered for 6 weeks, with a subsequent 4-week pause in 
treatment. Afterward, patients received maintenance therapy with 
temozolomide at a daily dose of 150–200 mg/m2 on days 1–5 of each 
28-day cycle, up to a maximum of 6 cycles.

2.3 Clinical data acquisition

Before treatment, clinical characteristics were carefully collected 
from our center’s health information system (HIS). These 
comprehensive attributes encompassed demographic parameters such 
as age, sex, height, and weight, as well as clinical variables including a 
history of chronic diseases, family medical history, glioma grade, body 
mass index (BMI), pathological type of glioma, multifocality status, 
tumor distribution orientation, crossing of the midline, IDH status, 
and the presence or absence of necrosis. Additionally, the tumor’s 
measurements, including volume, were ascertained by precisely 
defining the region of interest (ROI) with ITKSNAP software.

2.4 Data processing

Our dataset comprises 80 WSI, and regions of interest (ROI) were 
delineated independently by two experienced pathologists using 
QuPath software. In cases where discrepancies existed between their 
annotations, these were resolved by a senior pathologist with 20 years 
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of experience. Subsequently, we processed the digital whole-slide 
images (WSI) by segmenting them into 512 × 512-pixel tiles at 20× 
magnification for efficient management of their large size. During 
this process, we removed white backgrounds to eliminate tiles with 
sparse informative content, specifically those dominated by bright 
pixels. This selection resulted in over 12 million viable patches. All 
preprocessing tasks were conducted on the OnekeyAI Platform, using 
the OKT-crop_WSI2patch tool for cropping, OKT-patch2predict for 
background removal, and OKT-patch_normalize for color 
standardization. For more information, please consult 
Supplement A1.

2.5 Patch-level deep learning model training

Our deep learning pipeline features a dual-tier prediction 
framework that combines patch-level predictions with multi-instance 
learning to compile features from whole slide images (WSI). During 
training, we employed a weakly supervised learning approach, labeling 
patches based on the 1-year recurrence of the associated patient. 
We used the densenet121, inception_v3, and resnet101 architectures 
for training these patches. For a detailed description of the model 
structure and training parameters, please refer to Supplement A2.

2.6 Multi-instance learning for WSI fusion

Following the completion of our deep learning model’s 
training, we predicted labels and their corresponding probabilities 
for individual patches. The probabilities were subsequently 
merged using a classifier, resulting in predictions for the entire 

slide image (WSI). For more information, please consult 
Supplement A3.

2.7 Feature extraction & selection

In this study, we developed a pathological signature using a 
radiomics-like methodology, which combines patch-level 
predictions, probability histograms, and TF-IDF features. To 
remove redundant features, we  applied Pearson’s correlation 
analysis (17), selecting those features with a correlation coefficient 
below 0.9. We further refined feature selection using univariate 
Cox regression and ranked the features by their p-values. The final 
feature set was determined through LASSO-Cox regression, where 
the optimal regularization parameter λ was selected via 10-fold 
cross-validation. Irrelevant features were then eliminated by 
setting their coefficients to zero. Additional details are in 
Supplement A4.

2.8 Model building

2.8.1 Pathomics-based model
Following Lasso feature screening, Cox regression was employed 

to model the selected features and estimate the average expected 
survival time, resulting in the development of our 
pathological signature.

2.8.2 Clinical model
We incorporated clinical characteristics into a Cox model, this 

modeling approach allowed us to predict the average expected survival 
time and ultimately create our clinical signature.

FIGURE 1

The workflow of the glioma pathological signature assessment method used in this study.
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2.8.3 Combined model
To validate the efficacy of a multi-omics approach, we merged the 

clinical signature and pathological signature using a Cox model, 
resulting in a combined model.

2.9 Model performance evaluation and 
survival analysis

Our study applied advanced analytical techniques to address 
challenges in medical image analysis. We utilized Cox proportional 
hazards models with L2 regularization for survival analysis and 
employed X-tile software to determine the optimal cut-off 
thresholds. This stratification enabled us to categorize patients into 

high-risk and low-risk groups, which were subsequently analyzed 
with Kaplan–Meier survival curves. The samples were stratified 
according to predicted hazard ratios (HRs), and a multivariate 
log-rank test was used to assess the importance of group 
separation. This comprehensive approach ensures a thorough 
evaluation of the predictive models’ effectiveness in 
clinical settings.

To evaluate the prognostic model, we  use both micro and 
macro area under the curve (AUC) metrics, as well as the 
concordance index (C-index), to determine its effectiveness and 
select the best prognostic model based on their combined outcomes. 
In addition, we utilize the results of risk stratification combined 
with the patients’ molecular status to further refine the prognosis 
for patients.

FIGURE 2

Flow chat of patient selection.
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2.10 Statistical analysis

The Shapiro–Wilk test was used to assess the normality of clinical 
characteristics. t-tests were applied to continuous variables that were 
normally distributed, and the Mann–Whitney U test was employed 
for those that were not. Statistical significance for categorical variables 
was determined using chi-square (χ2) tests. Detailed information on 
patient characteristics is available in Table 1. The machine learning 
model was developed and statistical analyses were performed using 
Python (version 3.7.12), Onekey (version 3.3.5), and scikit-learn 
(version 1.0.2), with the training process aided by an NVIDIA 4090 
GPU, employing MONAI (version 0.8.1) and PyTorch (version 1.8.1) 
frameworks.

3 Result

3.1 Patient characteristics

From June 2015 to June 2023, our center initially enrolled 234 
patients with high-grade gliomas. After excluding 108 patients with 
missing histological slide, 41 patients with incomplete 
postoperative follow-up data, and five patients with blurry imaging 
data, the final analysis included a cohort of 80 patients (42 males 
and 38 females). Baseline characteristics such as age, sex, body 
mass index (BMI), pathological type, multifocality, and tumor 
volume were evaluated. Results of the between-group comparisons 
(p > 0.05) indicated that there were no significant differences 
between the two groups. The clinical data of the study are presented 
in Table 1.

3.2 Patch level efficiency

The AUC score analysis shows that DenseNet121 achieved the 
best test performance with an AUC of 0.682 (CI: 0.6761–0.6878). In 
comparison, ResNet101 and Inception V3 had AUCs of 0.639 and 
0.612, respectively. DenseNet121 also demonstrated higher sensitivity 
(0.771) and a negative predictive value (NPV) of 0.882, though it had 
lower specificity (0.530) and a positive predictive value (PPV) of 0.336.

Given its superior AUC and good balance between sensitivity and 
NPV, DenseNet121 is chosen for multiple instance learning in our 
study. This selection emphasizes the need for a predictive model that 
balances generalization and precision in real-world scenarios. 
Integrating DenseNet121 into our multi-instance learning framework 
is expected to enhance Pathological signature profiling. See Table 2 
and Figure 3 for details.

3.3 Grad-CAM visualization

We employed the gradient-weighted class activation mapping 
(Grad-CAM) method to visualize and assess the recognition 
capabilities of deep learning models on different samples, emphasizing 
the activations in the last convolutional layer that are pertinent to 
predicting cancer types. This helps in identifying image regions that 
significantly impact the model’s decision-making, offering insights 
into its interpretability. We also provide the prediction visualizations 

for some samples, and the related information can be  found in 
Supplementary Figures 1, 2.

3.4 Model construction and predictive 
performance

3.4.1 Model construction and signature 
comparison

In our study, pathomics-based, clinical, and combined models 
exhibited varying degrees of predictive accuracy. In the research 
related to PFS, the combined model had the highest C-index value in 
the training cohort, at 0.847, while the clinical model had the highest 
C-index value in the test cohort, at 0.746. This indicates that the 
integrated model achieved relatively stable performance after 
combining clinical information with pathological characteristics. For 
a comprehensive overview of the C-index values for each model, 
please refer to Table 3 in our publication.

3.4.2 Time-dependent ROC analysis and 
development of a nomogram

In the training queue, the pathomics-based model achieved the 
highest AUC of 1.000, outperforming the clinical model 
(AUC = 0.782) and the combined model (AUC = 0.959). Within the 
test cohort, the combined model achieved the highest AUC of 0.800, 
with the pathomics-based model following at 0.786, and the clinical 
model at 0.743. These results indicate that the combined model 
exhibits superior AUC scores, particularly in the test queue, indicating 
its robust performance and potential predictive ability. This highlights 
its robustness and potential applicability in a clinical setting. The 
relevant ROC curve is shown in Figure 4.

In addition, we  used time-dependent receiver operating 
characteristic (ROC) analysis to evaluate the predictive performance 
of the model, as detailed in Figure 5. “ClinicalPFS” refers to clinical 
features, and “PathPFS” refers to pathological features. “Points” refer 
to the numerical values assigned to each predictor based on its current 
value, while “Total points” is the sum of the points for all predictors, 
used to calculate the overall predictive result.

3.4.3 Risk stratification and IDH status distinguish 
prognosis

In our research, the combined model outperformed other models in 
both the training and testing groups, establishing it as the best option for 
further analysis. Using this model, we stratified patients into high-risk 
and low-risk groups based on survival curves (p < 0.0001). The high-risk 
group had a median progression-free survival (PFS) of 10 months. In the 
IDH (−) population (p = 0.01), the high-risk group had a median PFS of 
10 months, while the low-risk group had a significantly longer median 
PFS of 30 months. In the IDH (+) population (p = 0.001), the high-risk 
group had a median PFS of 9 months. These findings indicate a strong 
stratification effect, effectively distinguishing high-risk and low-risk 
patients. The relevant survival curve is shown in Supplementary Figure 3.

4 Discussion

In our study, the histopathology of WSI data was used to develop 
a predictive model for the prognosis of high-grade gliomas. The 
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combined model demonstrated good prognostic value in both the 
training cohort (C-index = 0.847, AUC = 0.959) and the testing cohort 
(C-index = 0.739, AUC = 0.800), and was comprehensively evaluated 
as the optimal model. Furthermore, patient stratification based on the 
combined model, particularly focusing on the IDH status, improved 

survival prediction and provided additional information for 
prognostic stratification.

Pathomics seeks to investigate the microscopic patterns present in 
digital histopathology slides or whole slide images (WSI) using a high-
throughput approach (18). The tumor microenvironment (TME) can 

TABLE 1  Baseline clinical characteristics of patients.

Characteristics The entire cohort 
number = 80

The train cohort 
number = 56

The test cohort 
number = 24

p-value

Age 55.12 ± 12.23 55.62 ± 12.34 53.96 ± 12.16 0.58

Height 165.30 ± 7.87 164.89 ± 8.21 166.25 ± 7.08 0.528

Weight 64.94 ± 9.73 64.24 ± 8.93 66.58 ± 11.42 0.327

BMI 23.74 ± 3.02 23.65 ± 3.00 23.95 ± 3.12 0.683

Tumor volume 46.30 ± 37.04 40.52 ± 29.63 59.77 ± 48.39 0.076

Tumor area 1.96 ± 1.05 1.93 ± 1.06 2.04 ± 1.04 0.58

Sex 1.0

 � Male 42 (52.50) 29 (51.79) 13 (54.17)

 � Female 38 (47.50) 27 (48.21) 11 (45.83)

Chronic 0.493

 � No 43 (53.75) 32 (57.14) 11 (45.83)

 � Yes 37 (46.25) 24 (42.86) 13 (54.17)

Family disease 1.0

 � No 78 (97.50) 55 (98.21) 23 (95.83)

 � Yes 2 (2.50) 1 (1.79) 1 (4.17)

Level 0.035

 � 3 25 (31.25) 13 (23.21) 12 (50.00)

 � 4 55 (68.75) 43 (76.79) 12 (50.00)

Pathological type 0.015

 � Glioblastoma 53 (66.25) 42 (75.00) 11 (45.83)

 � Astrocytoma 10 (12.50) 5 (8.93) 5 (20.83)

 � Oligodendroglioma 11 (13.75) 4 (7.14) 7 (29.17)

 � Other 6 (7.50) 5 (8.93) 1 (4.17)

Multifocal 0.122

 � No 72 (90.00) 48 (85.71) 24 (100.00)

 � Yes 8 (10.00) 8 (14.29) Null

Tumor location 0.156

 � Left 35 (43.75) 21 (37.50) 14 (58.33)

 � Right 42 (52.50) 32 (57.14) 10 (41.67)

 � Multi-area 3 (3.75) 3 (5.36) Null

Beyond midline 0.367

 � No 49 (61.25) 32 (57.14) 17 (70.83)

 � Yes 31 (38.75) 24 (42.86) 7 (29.17)

IDH 0.45

 � No 50 (62.50) 37 (66.07) 13 (54.17)

 � Yes 30 (37.50) 19 (33.93) 11 (45.83)

Necrosis 0.054

 � No 26 (32.50) 14 (25.00) 12 (50.00)

 � Yes 54 (67.50) 42 (75.00) 12 (50.00)
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be  thoroughly characterized by “subvisual” quantification of the 
presence and spatial arrangement of different cell types, such as 
immune cells, fibroblasts, and blood vessels, thereby successfully 
predicting the prognosis of high-grade gliomas and providing options 
for treatment plans (18, 19). Compared to radiomics, which focuses 
on the macroscopic level, pathomics has a significant advantage in 
spatial resolution (20, 21). In addition, research by Dia et al. (20) 
demonstrated that pathomics may have stronger predictive capabilities 
even in the presence of significant exceptions.

Previous studies have used histopathology models to predict the 
prognosis of high-grade gliomas. However, most of these studies did 
not employ deep learning techniques. Recent research has shown that 
deep analysis models possess better generalization capabilities and 
interpretability (22, 23). The strong generalization capability allows 
the model to accurately classify and predict patient prognosis (23), 
while interpretability offers enhanced transparency, enhancing human 
understanding of internal workings and decision-making, while 
supporting bias correction (22).

Our study differs from previous articles in key aspects. Rathore 
et  al. (24) included both low-grade and high-grade gliomas, 
introducing significant tumor heterogeneity that could impact the 
accuracy of prognosis prediction. He’s et al. (14) study did not conduct 
multi-model comparisons, as different models have their own 
advantages and disadvantages. By comparing the performance of 
different models, we can select the most suitable model to improve 
overall prediction accuracy and efficiency (25, 26). Additionally, 
Jiang’s et al. (15) deep learning study overlooked multiple instance 
learning, which can enhance model performance and improve the 
accuracy of outcome prediction, playing a crucial role in prognosis 
prediction (27, 28).

IDH status is an important molecular marker in gliomas. The IDH 
wild-type usually indicates a poor prognosis (29, 30). In recent years, 
an increasing number of studies have utilized pathomics to predict IDH 
status. In the study by Zhao et  al. (31), pathological features were 
effectively used to predict patients’ IDH status, with the model’s AUC 
value exceeding 0.9. There are also studies that have combined IDH 
status and pathological features to construct prognostic prediction 
models for gliomas and analyze the relationship between them. In the 
study by Chunduru et al. (32), whole-slide images (WSIs) of low-grade 
and high-grade gliomas were collected. After feature extraction, they 
were integrated into risk score features (SDL risk score). Further 
research confirmed that this score has a strong correlation with IDH 
status in genetic subtypes, and the combination of both is equally 
effective in predicting patient survival. This study, based on pathomics, 
constructs a prediction model for the progression of high-grade 

TABLE 2  WSI level accuracy and AUC of each model.

Model name Acc AUC (95% CI) Sensitivity Specificity PPV NPV Cohort

densenet121 0.954 0.992 (0.9915–0.9923) 0.952 0.957 0.954 0.955 Train

densenet121 0.586 0.682 (0.6761–0.6878) 0.771 0.530 0.336 0.882 Test

resnet101 0.974 0.997 (0.9968–0.9972) 0.974 0.974 0.972 0.975 Train

resnet101 0.502 0.639 (0.6332–0.6451) 0.843 0.397 0.302 0.891 Test

inception_v3 0.978 0.998 (0.9978–0.9981) 0.981 0.976 0.974 0.982 Train

inception_v3 0.542 0.612 (0.6057–0.6183) 0.681 0.499 0.296 0.835 Test

FIGURE 3

Showcases the ROC curves for each model’s performance on the train cohort (A) and the test cohort (B).

TABLE 3  C-index in prediction PFS.

Model Train cohort Test cohort

C-index p C-index p

Pathomics-based model 0.844 <0.05 0.710 <0.05

Clinical model 0.744 0.0006 0.746 0.0651

Combined model 0.847 <0.05 0.739 <0.05
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gliomas. The model is also applied to groups with different IDH statuses 
for stratification and survival analysis. This model can identify high-
risk progression populations within the IDH-mutated group, enabling 
clinicians to better manage patients and adjust treatment strategies.

In practical applications, we  can utilize a combined model to 
stratify patients for risk assessment, thereby assisting the work of 
clinical practitioners. Firstly, clinicians can leverage the risk stratification 
information provided by the model to customize treatment plans, 
selecting appropriate therapeutic strategies based on the predicted 

outcomes. Our research findings indicate that the model is effective in 
identifying high-risk patients. For these high-risk patients, clinicians 
may consider the following measures in their treatment decision-
making: (1) Whether to adjust the radiation dose and irradiation range 
during the concurrent radiotherapy combined with TMZ. (2) Whether 
to consider combining electric field therapy or anti-angiogenic therapy 
during the concurrent radiotherapy phase and the 6-cycle oral TMZ 
phase (33, 34). (3) Consider extending the duration of maintenance 
therapy to achieve a better prognosis. (4) Attempt to administer 

FIGURE 4

The ROC curves of deep learning algorithms for combined model in the train and test cohorts (A,B).

FIGURE 5

The corresponding nomogram showing the contribution of different factors. “ClinicalPFS” refers to the clinical features, “PathPFS” refers to the 
pathological features, “Points” refers to the numerical value assigned to each predictor variable based on its current value, and “Total points” refers to 
the sum of the points for all predictor variables.
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medication preoperatively to obtain better surgical conditions and 
improve the quality of life after treatment. (5) Conducting relevant 
clinical trials targeting this population. (6) For patients with a poorer 
prognosis, more frequent follow-ups can help detect changes in their 
condition earlier, allowing for timely treatment. For low-risk patients, 
the following measures can be considered: (1) Consider appropriately 
reducing the radiotherapy dose to lower the side effects experienced by 
the patient during radiotherapy. (2) Appropriate extension of patient 
follow-up intervals can reduce their economic burden. In future clinical 
practice, we hope to conduct non-inferiority clinical trials and other 
studies to further verify the feasibility of these measures. Additionally, 
by referencing the predictive outcomes from the model, clinicians can 
engage in more candid and informed discussions with patients, 
collaboratively exploring treatment options. Ultimately, the ability of 
the stratification model to accurately predict outcomes can help 
healthcare institutions better allocate resources, such as in radiotherapy 
planning and subsequent care management. By focusing on high-risk 
patients, healthcare providers can optimize scheduling and resource 
utilization, thereby enhancing overall healthcare efficiency.

This is a single-center study lacking external validation. Due to its 
interdisciplinary nature and issues related to the management of 
pathological slides, pathological slides for some patients could not 
be obtained. This ultimately limited the sample size included in the 
study, consequently affecting the generalization ability of the research 
model to some extent. Moreover, in the design of this study’s analysis, 
we only utilized IDH status for subgroup analysis and did not analyze 
other molecular markers, such as MGMT methylation and 1p/19q 
deletion status. Furthermore, we did not investigate the correlation 
between IDH status and pathological features, which resulted in a lack 
of analysis regarding the biological interpretability of pathomics. 
Finally, this study only predicted progression-free survival (PFS) and 
did not include the important overall survival (OS) indicator. In the 
future, we plan to expand the sample size and conduct multi-center 
collaborations, while incorporating more molecular features and 
further exploring their relationships with pathological features. 
Moreover, we will utilize the model to further predict patients’ survival 
outcomes to provide insights for selecting clinical treatment options.

Our study established a prediction model based on WSI to forecast 
the prognosis of high-grade gliomas. The combined model, integrating 
clinical data and pathological features, outperformed other models in 
terms of predictive performance. Furthermore, the model’s ability to 
classify patient survival based on the IDH status enhanced its predictive 
capacity. This study provides valuable insights for improving personalized 
treatment strategies and prognostic assessment of high-grade gliomas.
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