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Introduction: Epilepsy is a prevalent chronic neurological disorder primarily 
diagnosed using electroencephalography (EEG). Traditional EEG interpretation relies 
on manual analysis, which suffers from high misdiagnosis rates and inefficiency.

Methods: This review systematically evaluates the integration of artificial 
intelligence (AI), particularly deep learning (DL) and machine learning (ML), into 
EEG analysis for epilepsy management. We focus on two dominant AI-EEG 
application models: supportive AI (augmenting clinical decisions) and predictive 
AI (anticipating seizures or outcomes).

Results: AI-based EEG analysis demonstrates significant potential in improving 
epilepsy detection, monitoring, and therapeutic evaluation. Key advancements 
include enhanced precision, efficiency, and capabilities for multimodal data fusion 
and personalized diagnosis. However, challenges persist, such as limited model 
interpretability, data quality constraints, and barriers to clinical translation. Crucially, 
AI outputs require clinician verification alongside multidimensional clinical data.

Discussion: Future research must prioritize algorithm optimization, data quality 
improvement, and enhanced AI transparency. Interdisciplinary collaboration is 
essential to bridge the gap between technical innovation and clinical implementation. 
This review highlights both the transformative potential and current limitations of 
AI-EEG in epilepsy care, providing a roadmap for future developments.
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1 Introduction

Epilepsy affects approximately 50 million individuals globally, including 10 million 
patients in China (1, 2), underscoring its status as one of the most prevalent chronic 
neurological disorders worldwide. The World Health Organization (WHO) estimates that 
nearly 70% of patients with epilepsy can achieve freedom from seizures with appropriate 
diagnosis and treatment (3). However, owing to diagnostic and therapeutic gaps, 
approximately two-thirds of epilepsy patients in China fail to receive adequate treatment 
(1). Electroencephalography (EEG) is the most critical auxiliary diagnostic tool for epilepsy, 
and plays a critical role in the diagnosis, classification, and localization of epileptogenic foci. 
Theoretically, all epileptic seizures can be associated with detectable epileptiform discharges 
on EEG (4), but the clinical application of this diagnostic tool is subject to several limitations. 
First, conventional extracranial EEG has relatively low spatial resolution, covering only 
approximately one-third of the scalp, which limits its ability to detect deep-seated 
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epileptogenic foci or abnormal activity in regions that are not 
covered (5). Second, technical inconsistencies, such as electrode 
placement errors or insufficient recording duration, may 
compromise data quality (6). Consequently, these factors yield 
detection rates of 40–50% for epileptiform discharges during initial 
routine EEG examinations. Even with 24-h prolonged EEG 
monitoring, the detection rate is only approximately 70–80% (4). 
Thus, an epilepsy diagnosis cannot be conclusively ruled out based 
on a normal EEG result (4). Furthermore, epileptiform discharges 
may also occur in other neurological conditions, such as autism 
spectrum disorder and Alzheimer’s disease (7, 8). Additionally, 
manual EEG interpretation is inherently subjective and inefficient, 
and the increasing volume of data exacerbates diagnostic variability 
(9). Traditional EEG systems also lack functionalities such as real-
time analysis, closed-loop feedback, and predictive warnings. 
Therefore, achieving precise EEG data acquisition and efficient 
interpretation has become a critical research priority in recent years.

The rapid advancement of artificial intelligence (AI) technology 
offers innovative solutions for addressing these challenges and 
overcoming the limitations of EEGs (10). Artificial intelligence-based 
electroencephalography (AI-EEG), which uses technologies such as 

machine learning (ML), deep learning (DL), and multimodal fusion, 
enables high-quality data acquisition, real-time analysis, and 
automated seizure detection (11). This technology can significantly 
reduce the workload of EEG interpreters and improve diagnosis and 
treatment efficiency. In epilepsy management, AI applications can 
be categorized into two distinct paradigms. Supportive AI is designed 
to assist doctors in efficiently performing detection, recognition, and 
localization tasks. Predictive AI is centred on identifying 
characteristic or subtle patterns that are imperceptible to humans, 
with the aim of forecasting seizures and predicting treatment efficacy. 
Several studies have revealed that AI-EEG systems can achieve high-
precision detection in specific tasks, such as the automatic 
identification of interictal epileptiform discharges. The performance 
of these methods is comparable to that of some individual experts 
and can even surpass that of other methods on standardized datasets 
(10). Concurrently, multimodal data integration and the application 
of wearable devices (12) have enabled a shift in epilepsy management 
from “postdiagnosis passive treatment” to “real-time prediction and 
proactive prevention,” which plays a crucial role in remote monitoring 
and predicting therapeutic outcomes. However, the development of 
AI-EEG faces challenges, such as limited model generalizability, data 
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standardization issues, and ethical and privacy concerns. Importantly, 
despite the great potential of AI, contradictory findings must 
be considered, as well as the necessity of human supervision.

In summary, numerous challenges remain in the diagnosis and 
treatment of epilepsy. Although EEG serves as a fundamental 
diagnostic tool with critical clinical importance, it also has inherent 
limitations. The continuous advancement of AI technologies has 
introduced new possibilities for epilepsy management through 
AI-EEG. Importantly, whether the technology in question is supportive 
AI or predictive AI, its core value lies in assisting rather than replacing 
human clinical decision-making. Despite demonstrating substantial 
potential, key challenges persist in overcoming technical and ethical 
barriers to promote its widespread clinical implementation. In this 
review, recent advancements in AI applications for EEG analysis are 
systematically examined; the current utilization of this technology in 

seizure detection, continuous monitoring, and therapeutic efficacy 
evaluation is explored; the capabilities and limitations of AI-EEG are 
critically assessed; and future research directions are proposed to 
address existing gaps in the field (Figure 1).

2 Literature search strategy

A comprehensive literature search was conducted in PubMed and 
Web of Science using the keywords “epilepsy,” 
“electroencephalography,” “EEG,” “artificial intelligence,” “AI,” “deep 
learning,” and “multimodal data fusion.” Priority was given to studies 
published in recent years, while those not directly relevant to the study 
topic or deviating from the core question were excluded. The focus 
remained on identifying high-quality, relevant research (Table 1).

Records identified from: 

PubMed (n=210) 

Web of science (n = 107) 

Total records(n=317) 

Additional records from other 

sources(n=0) 

Records removed before screening:   

Duplicate records removed (n = 28)   

Records marked as ineligible by 

automation tools (n = 0)   

Records removed for other reasons 

(n = 0)  

Records screened 

(n = 289) 

Records excluded 

(n =147) 

Reports sought for retrieval 

(n = 142) 
Reports not retrieved 

(n =0) 

Reports assessed for eligibility 

(n =142) 
Reports excluded (n = 66): 

Incomplete data (n = 25)  

Conference abstracts (n = 18)  

Non-AI methods (n = 23) 

Studies included in review 

(n = 76) 

Reports of included studies 

Identification of studies via databases and registers 
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FIGURE 1

PRISMA flow diagram for systematic review of AI applications in epileptic EEG analysis.
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TABLE 1  Technical specifications and performance metrics of intelligent epileptic EEG processing models.

Reference Model name Target 
application

Architecture Input 
features

Sampling 
frequency

Electrodes 
(Count, 
position)

Training 
dataset

Data 
source

Segment 
duration

Validation 
method

Key 
advantages

Major 
limitations

Best 
performance

Tveit et al. (11) SCORE-AI Automated 

Interpretation of 

Clinical EEG

CNN 19-channel raw 

EEG + 1-channel 

ECG + Patient 

age and sex

256 Hz 19 scalp (10–20 

system) + 1 ECG

30,493 records Multicenter 

clinical EEG 

databases

Full recordings 

(mean 33 min)

Multicenter test 

(n = 100); Single-

center test 

(n = 9,785); 

Benchmarking 

(n = 60)

Accessibility 

Enhancement; 

Clinical Safety 

Improvement; 

Expert-Level 

Diagnostic Accuracy; 

Workflow 

Optimization

Limited Patient 

Coverage; 

Dependency on 

Human Expert Labels

AUC:0.89–0.96

Specificity: 87.1%

Accuracy: 88.3%

Chen et al. (13) RF + CNN Automated 

detection and 

classification of 

epileptic EEG 

states

CNN Time-frequency; 

Nonlinear 

entropies

Bonn: 173.61 Hz

New Delhi: 

200 Hz

Bonn: Single-channel

New Delhi: 10–20 

system (count 

unspecified)

Bonn: 23.6 s 

per segment;

New Delhi: 

5.12 s per 

segment

Bonn EEG 

dataset; New 

Delhi EEG 

dataset

Bonn: 23.6 s 

per segment;

New Delhi: 

5.12 s per 

segment

Train-test split 

(3:1 ratio);

No cross-

validation 

mentioned

Unprecedented 

Accuracy; Effective 

Feature Fusion; 

Generalizability: 

High Computational 

Efficiency

Small Dataset; No 

Clinical 

Generalization; 

Unvalidated in 

Real-World Settings

Bonn Dataset:

Accuracy: 99.2%

Sensitivity: 99.42%

Specificity: 98.82%

Precision: 98.80%

New Delhi Dataset:

Accuracy: 100%

Sensitivity: 100%

Specificity: 100%

Precision: 100%

Liu et al. (14) Automatic Seizure 

Detection System

Epileptic seizure 

detection

S-transform + 

15-layer CNN

S-transform 

spectrograms 

(35 × 32 × 6) 

from 1 s EEG 

segments

256 Hz 6 intracranial (grid/

strip/depth)

5.5 h (21 

seizures)

Freiburg 

iEEG

1 s segments 10-fold cross-

validation

High temporal 

resolution

Limited to iEEG; 

Untested on scalp 

EEG; Patient-specific 

parameter tuning 

required

Segment-based:

Sensitivity: 97.01%

Specificity: 98.12%

Event-based:

Sensitivity: 95.45%

FDR: 0.36/h

Li et al. (15) FCNLSTM Epileptic seizure 

detection

FCN + NLSTM Raw EEG 

segments (1D 

time-series)

Bonn: 173.61 Hz

Freiburg, CHB-

MIT 256 Hz

Bonn Database: Not 

specified

Freiburg Database 

Freiburg: 6 channels 

per patient Grid (g), 

Strip (s), Depth (d)

CHB-MIT Database: 

22 scalp electrodes

Bonn: 400 

segments/class

Freiburg: 

564.03 h (87 

seizures)

CHB-MIT: 

846.23 h (198 

seizures)

Bonn, 

Freiburg, 

CHB-MIT 

databases

Freiburg, 

CHB-MIT:4 s 

Bonn:1024 

points

Bonn:10-fold CV

Freiburg/CHB-

MIT: Patient-

specific split

End-to-end; no 

manual feature 

engineering; captures 

temporal 

dependencies

Limited to patient-

specific models; 

computational cost 

for nesting

Bonn:

Accuracy: 98.44–100%

Freiburg:

Sensitivity: 97.47%

FDR: 0.487/h

CHB-MIT:

Sensitivity: 95.42%

FDR: 0.66/h

(Continued)
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TABLE 1  (Continued)

Reference Model name Target 
application

Architecture Input 
features

Sampling 
frequency

Electrodes 
(Count, 
position)

Training 
dataset

Data 
source

Segment 
duration

Validation 
method

Key 
advantages

Major 
limitations

Best 
performance

Shen et al. (16) STFT+GoogleNet 

CNN

Real-time Seizure 

Detection

GoogleNet CNN 

(29 layers)

STFT 

spectrograms 

(120 × 344 

matrix)

256 Hz 6 scalp channels:

frontal/temporal/

occipital

16 patients 

from CHB-

MIT

10-min pre-

seizure + 5-min 

post-seizure 

per patient

CHB-MIT 1.35-s sliding 

window

Leave-one-out 

cross-validation

+ 20% hold-out 

validation

Real-time processing 

(0.02 s/episode); low 

latency; high 

sensitivity

Cannot detect 

amplitude-depression 

seizures; limited to 

2 Hz frequency 

resolution; GPU 

constraints exclude 

complex CNNs

Accuracy: 97.74%

Sensitivity: 98.90%

FPR: 1.94%

Detection Delay: 9.85 s

Ansari et al. 

(19)

CNN-RF Neonatal seizure 

detection

23-layer CNN; 

classifier: RF

Raw multi-

channel EEG 

(0.5–15 Hz 

filtered)

256 Hz → 30 Hz 17, 13, or 9 electrodes 

(Fp1-2, F7-8, T3-4, 

T5-6, O1-2, F3-4, 

C3-4, P3-4, Cz)

26 neonates, 

4,344 segments 

(50% seizure), 

augmented to 

>30,000 

segments

NICU EEG 

recordings 

(Erasmus 

University 

Medical 

Center, 

2003–2012)

90 s segments 

(60 s overlap 

for test)

Independent test 

set (22 neonates)

Automatic feature 

optimization; Shift-

invariance; Faster 

recall than heuristic/

feature-based; 

Retrainable

Training 

computationally 

heavy; Requires large 

dataset; Black-box 

interpretation; 

Performance drops 

for unseen seizure 

patterns

Full Test Set (22 

neonates):

Sensitivity: 77%

False Alarm Rate: 0.9/h

AUC: 83%

After Excluding 7 

Neonates:

AUC: 88%

False Alarm Rate: 0.73/h

Shama et al. 

(33)

DeepSOZ Joint seizure 

detection and SOZ 

localization from 

scalp EEG

Transformer + 

LSTM + 

Attention-

weighted Pooling

Multichannel 

EEG (1 s 

windows), 

positional 

embeddings

200 Hz 19 channels, 10–20 

system

642 EEG 

recordings 

(10-min) from 

120 adult 

patients

Temple 

University 

Hospital 

(TUH) 

corpus

1-s windows 

(full 10-min 

recordings)

Bootstrapped 

5-fold nested CV

Robust multi-task 

performance, high-

resolution predictions

Robust multi-task 

performance, high-

resolution predictions

AU-ROC: 0.92

Sensitivity: 81%

FPR: 0.44 min/h

SOZ Accuracy: 74%

(patient-level)

Shafiezadeh 

et al. (48)

CNN Seizure 

forecasting

6-layer 

CNN + 2 dense 

layers 

(128/32 units), 

sigmoid output

Raw EEG 

signals

256 Hz →  

128 Hz 

(downsampled)

CHB-MIT: 22 

channels; 

Conegliano: 20 

channels (10–20 

system)

CHB-MIT 

(19 pts., 89 

sz) +  

Conegliano 

(22 pts., 77 

sz)

CHB-MIT, 

Conegliano 

(clinical 

EEG)

5 s windows RCV, LOO, 

Cal1 (1 

seizure), Cal2 

(2 seizures)

Patient-

independent 

calibration 

improves LOO 

performance by 

>20%; efficient 

fine-tuning (5–

10 min)

Requires at least 1 

seizure per patient 

for calibration

CHB-MIT:

Accuracy: 69.35%

Sensitivity: 69.74%

Specificity: 69.90%

Conegliano (Cal2):

Accuracy: 70.67%

Sensitivity: 75.37%

Specificity: 71.28%
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2.1 Database selection

A comprehensive literature search was conducted using the 
PubMed and Web of Science databases, known for their 
extensive coverage of medical, neuroscience, and engineering 
research. These databases were selected to ensure a thorough 
gathering of relevant studies on the intersection of AI and EEG 
in epilepsy.

2.2 Search time span

The search targeted literature published from 2012 to 2025, with 
a concentrated focus on the years 2020 to 2025. This timeframe was 
chosen due to the notable advancements and increased research 
activity surrounding AI technologies in the medical field, 
particularly in the application of EEG for epilepsy diagnosis 
and management.

2.3 Search keywords

A strategic combination of keywords was employed during the 
search process. The core keywords included:

	•	 “Epilepsy”
	•	 “Electroencephalogram”
	•	 “Artificial intelligence”
	•	 “Deep learning”
	•	 “Multimodal data fusion”
	•	 “Seizure prediction”
	•	 “Treatment outcome”
	•	 “Seizure detection”

To enhance the search breadth, specific machine learning 
algorithm names such as “convolutional neural networks,” 
“recurrent neural networks,” and “support vector machines” were 
also included. This approach aimed to capture diverse research 
addressing the application of various AI technologies in epilepsy 
EEG analysis.

2.4 Search strategy

Boolean operators (AND, OR, NOT) were utilized to create 
structured search expressions in each database. For instance, the 
search expression used in PubMed was:

(‘Artificial Intelligence’ OR ‘Machine Learning’ OR ‘Deep 
Learning’) AND (‘Electroencephalography’ OR ‘Epilepsy’ 
OR ‘Seizure Detection’) AND (‘EEG-based Epilepsy  
Care’)

This strategy was designed to optimize the precision and 
comprehensiveness of the search, allowing for effective identification 
of literature closely aligned with the review topic.

2.5 Literature screening process

2.5.1 Inclusion criteria
The following criteria were established for the inclusion of studies:

	•	 Research subjects must be  epilepsy patients, utilizing EEG 
technology for monitoring and analysis.

	•	 Studies must apply AI models or algorithms to process epilepsy 
EEG data, with objectives including seizure detection, focus 
localization, and disease prediction.

	•	 Eligible literature types include original research, clinical trials, 
simulation studies, and retrospective analyses.

	•	 Preference was given to studies featuring larger sample sizes, 
sound research designs, and credible findings.

2.5.2 Exclusion criteria
Studies were excluded based on the following conditions:

	•	 Absence of AI methods or models.
	•	 Lack of relevance to epilepsy EEG diagnostics, monitoring, 

or prediction.
	•	 Subjects not including epilepsy patients.
	•	 Non-original research such as conference abstracts and reviews.
	•	 Incomplete data or insufficient methodological detail.

2.6 Literature screening results

The implementation of the outlined search strategy resulted in the 
identification of 317 relevant articles. After an initial deduplication 
process, a preliminary screening was performed based on the 
established inclusion and exclusion criteria. This initial review 
involved examining titles and abstracts to filter out articles that did 
not meet the requirements. Following a thorough examination of the 
full texts of the remaining articles, a total of 76 articles were selected 
for inclusion in this review. These articles encompass a wide array of 
applications of various AI models in epilepsy EEG detection, 
monitoring, and therapeutic prediction, providing a robust data 
foundation for the review analysis.

3 Main text

3.1 Role of AI-EEG in epilepsy detection

The current research and application of AI-EEG technology in the 
field of epilepsy detection are primarily focused on the realm of 
supportive AI. This involves leveraging the robust computational and 
pattern recognition capabilities of AI to assist clinicians in more 
efficiently and accurately detecting, identifying, and localizing 
epileptic seizures, thereby providing a tool to increase diagnostic 
efficiency and detection standards.

3.1.1 Automated detection
Traditional epileptic seizure detection typically relies on manual 

feature extraction. In contrast, AI-EEG leverages ML and DL models, 
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such as convolutional neural networks (CNNs) and nested long short-
term memory (NLSTM) models, to achieve automated seizure 
detection. Studies have demonstrated that a multi-feature extraction, 
fusion, and selection-based method for automated identification of 
epileptic EEG signals achieves exceptional accuracy across diverse 
datasets. This method first decomposes EEG signals using Discrete 
Wavelet Transform (DWT) and extracts hybrid features from 
sub-bands, including Approximate Entropy (ApEn), Fuzzy Entropy 
(FuzzyEn), Sample Entropy (SampEn), and Standard Deviation 
(STD). Secondly, the random forest (RF) algorithm is used for feature 
selection. Finally, a CNN is used to classify epilepsy EEG signals. In 
the single-channel scalp EEG dataset provided by the University of 
Bonn, the sampling frequency is 173.61 hertz. It includes five 
categories of signals: signals from healthy individuals with eyes open 
and closed, interictal signals from the contralateral and ipsilateral 
sides of the epileptic focus, and ictal signals. The model achieved a 
classification accuracy of 99.9% for interictal and ictal signals, with 
sensitivity and specificity reaching 100 and 99.8%, respectively. In the 
dataset collected at the New Delhi Neurology and Sleep Center, the 
international 10–20 system electrode layout is used with a sampling 
frequency of 200 hertz. It comprises three categories of signals: 
preictal, interictal, and ictal. The model demonstrated even more 
remarkable performance in classifying interictal and ictal signals, with 
accuracy, sensitivity, and specificity all reaching 100%. This method, 
which integrates time-domain and nonlinear entropy features and 
optimizes feature selection through RF, has significantly enhanced 
classification performance, thereby providing a high-precision 
solution for the automatic detection of epileptic seizures in clinical 
settings (13). Compared with the pure CNN-based method, a study 
based on the Stockwell transform (S-transform) and a deep CNN 
model can perform long-term intracranial EEG (iEEG) recordings 
and automatically detect epileptic seizures. The study employed 
S-transform and a 15-layer deep CNN to process 6-channel iEEG with 
a sampling rate of 256 Hz. Under high-resolution analysis based on 
1-s segments, the system demonstrated excellent performance on 
720 h of test data: sensitivity of 97.01% and specificity of 98.12% based 
on segment evaluation; sensitivity of 95% and a false positive 
rate(FPR) of only 0.36 per hour based on event evaluation. However, 
its application is currently limited to iEEG, requiring patient-specific 
parameter adjustments, and it has not been validated on scalp 
EEG (14).

In addition, an end-to-end automatic epileptic seizure detection 
system based on DL and utilizing NLSTM has been developed. This 
system can effectively explore the inherent temporal dependencies 
hidden in EEG signals by processing one-dimensional EEG data 
directly, without converting them into two-dimensional data. This 
approach not only alleviates computational pressure to some extent 
but also automatically extracts the intrinsic feature information of 
epileptic seizures without human intervention. The method initially 
employs a fully convolutional network with three convolutional blocks 
to learn representative epileptic seizure features from EEG data, with 
sampling rates of 173.61 Hz for the Bonn dataset and 256 Hz for the 
Freiburg/CHB-MIT dataset. Subsequently, these robust EEG features 
associated with epileptic seizures are presented as input to the NLSTM 
to explore the inherent temporal dependencies in EEG signals. Finally, 
the high-level features obtained from the NLSTM are fed into the 
softmax layer to output the predicted labels. The average sensitivity is 
97.47%, specificity is 96.17%, and the false detection rate (FDR) is 

0.487 per hour (15). The aforementioned studies demonstrate that 
AI-EEG, within the framework of Supportive AI, plays a significant 
role in substantially enhancing the automatic detection rate of 
epilepsy. This, in turn, greatly reduces the waste of human effort and 
time, achieving efficient detection of epilepsy.

The studies mentioned above indicate that within the framework 
of supportive AI, AI-EEG offers an efficient tool for the automatic 
detection of epileptic seizures. Its computational speed and high-
precision performance in specific tasks hold promise for assisting 
physicians in reducing the human effort and time required to screen 
for epileptic seizure events in large amounts of EEG data. However, 
generalizing these models to broader and more complex clinical data 
still requires further validation, and the ultimate clinical confirmation 
will continue to rely on the professional judgement of physicians.

3.1.2 High-fidelity detection
Epileptiform discharges in EEG exhibit distinct time-frequency 

characteristics and spatial distribution patterns. AI-EEG technology 
facilitates rapid and precise identification of epileptic seizures by 
employing multimodal signal processing techniques to extract these 
pathological signatures. For example, a real-time epilepsy detection 
system based on short-time Fourier transform (STFT) time-
frequency analysis and a 29-layer GoogleNet CNN. The system 
directly processes 6-channel scalp EEG with a sampling rate of 
256 Hz. It converts EEG into time-frequency spectrograms (120 × 
344 matrices) via STFT as input, and utilizes the deep CNN to 
automatically extract frequency-domain features, thereby accurately 
detecting epileptic seizures. When evaluated on the CHB-MIT 
database, this method achieved an accuracy of 97.74%, sensitivity of 
98.90%, and a FPR of 1.94% (16). The Standardized Computer-based 
Organized Reporting of EEG–AI (SCORE-AI) system demonstrates 
the capability to discriminate between abnormal and normal EEG 
recordings. The system utilizes 19-channel EEG + 1-channel ECG + 
demographic data, with an input sampling rate of 256 Hz. It was 
trained on a Nordic multicenter dataset comprising 30,493 records, 
with an average duration of 33 min. The area under the curve (AUC) 
on three independent test sets ranged from 0.89 to 0.96. The study 
showed that the specificity of SCORE-AI (90%) was significantly 
higher than that of the consensus of three human experts (73.3%) and 
individual experts (3–63%). Its sensitivity (86.7%) was comparable to 
that of human experts (93.3%), and the overall accuracy (88.3%) was 
also similar to that of human experts (83.3%). The system has been 
clinically validated and integrated into the Natus platform, but 
neonates and critically ill patients were excluded (11). This study 
provides a direct quantitative comparison between AI and human 
experts in a specific task, demonstrating AI’s advantage in specificity 
while its sensitivity is comparable but slightly lower than the expert 
consensus. This highlights the potential of AI as an auxiliary tool, 
especially in improving the consistency of interpretation. Recent 
studies have shown that a dynamic graph neural network (DNN) 
incorporating attention mechanisms can be effectively employed for 
precise epileptic seizure detection using single-channel EEG signals. 
Researchers conducted 12 classification tasks using the Bonn Epilepsy 
EEG Dataset, with experimental results showing optimal classification 
performance achieved through 25 runs of 10-fold cross-validation. 
The proposed model attained exceptional metrics including an 
accuracy of 99.83%, specificity of 99.91%, and sensitivity of 
99.78% (17).
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While the aforementioned methodologies are predominantly 
implemented using DL architectures, it should be noted that EEG 
signals inherently constitute nonlinear time-series data. Consequently, 
strategies relying solely on CNNs or DNNs may have inherent 
limitations in capturing the temporal characteristics of neural 
oscillatory activity. Furthermore, signals recorded from individual 
EEG channels inherently are composite measurements of attenuated 
cortical activity originating from multiple neuroanatomical regions. 
These signals are also contaminated by various physiological artifacts, 
including cardiac pulsations, electromyographic(EMG) interference, 
and ocular movement artifacts. To address these challenges, 
researchers must enhance the signal-to-noise ratio (SNR) and isolate 
the overlapping activities via spatial filtering—that is, linearly 
combining the EEG signals at multiple channels such that the sources 
of interest are enhanced and the unwanted sources are suppressed. 
Consequently, probabilistic-Common spatial patterns (P-CSP) have 
emerged as an advanced analytical framework for multi-channel EEG 
data interpretation (18). In addition, Ansari’s team developed an 
automated neonatal seizure detection system based on a hybrid model 
of a 23-layer CNN and a RF for the neonatal intensive care unit 
(NICU) setting. The model processes raw multi-channel EEG (filtered 
at 0.5–15 Hz, downsampled from 256 Hz to 30 Hz) via adaptive 
bipolar montage. It employs the CNN for automatic feature 
optimization and the RF classifier for decision-making. The study was 
trained on 4,344 segments from 26 neonates (50% seizure segments, 
augmented to >30,000 segments) and validated on an independent 
test set (22 neonates). The results demonstrated that the system is a 
reliable and accurate automated detection tool for the NICU, with test 
set performance achieving Sensitivity = 77%, False Alarm Rate 
(FAR) = 0.9/h, and AUC = 83% (AUC increased to 88% and 
FAR = 0.73/h after excluding specific cases). The study benefits from 
automatic feature optimization and translation invariance but faces 
challenges such as heavy computational burden, the need for large 
datasets, black-box interpretability, and generalizability. It is 
considered an experimental study. The research proves that a reliable 
and accurate automated neonatal seizure detector for continuous 
multi-channel EEG is an extremely useful support tool, especially for 
neonatal intensive care units (19). Meanwhile, an end-to-end DL 
model integrating CNN and Bidirectional LSTM (BLSTM) networks 
enables automated seizure detection in multi-channel EEG recordings. 
This model achieved an average seizure detection sensitivity of 0.91 
across all patients (20). A novel hybrid 1D CNN-Bi LSTM model can 
be  used for multi-channel EEG feature fusion to enable precise 
detection of epileptic seizures. The approach is validated using 
benchmark CHB-MIT dataset and 5-fold cross validation resulting in 
an average accuracy of 95.90%, with precision 94.78%, F1 score 
95.95% (21).

Multimodal fusion technology integrating EEG analysis, motion 
analysis, and physiological variations such as heart rate, oxygen 
saturation, perspiration, and blood pressure fluctuations also has 
significant clinical value and substantial developmental potential for 
precise epileptic seizure detection (22). For example, a study evaluated 
a semi-automated multimodal wearable seizure detection framework 
using binaural temporal EEG (bte-EEG) and electrocardiogram 
(ECG). The bte-EEG of this framework employs two electrodes: a 
transcranial channel and a contralateral channel located in the 
hemisphere where the seizure originates. It uses a high-pass filter at 
0.5 Hz and a low-pass filter at 35 Hz. The results showed that the 

average sensitivity was 59.1% when using only bte-EEG in visual 
analysis, but the average sensitivity increased to 62.2% after adding 
ECG, and the FAR decreased from 6.5 times per day to 2.4 times per 
day. However, the sensitivity of 62.2% and the preference for the 
temporal region suggest that lightweight devices still need to break 
through the limitations of spatial resolution (23).

Physiological artifacts including EMG, ocular movements, 
motion, ECG, pulse, and perspiration can interfere with epileptiform 
discharge detection, resulting in elevated FDR (24). Nevertheless, 
many novel deep learning frameworks are capable of maintaining high 
detection performance even in the presence of common EEG artifacts 
(25). Studies have shown that in the preprocessing of epilepsy EEG, 
independent component analysis (ICA) lays the foundation for 
subsequent precise analysis by separating the physiological artifact 
components from the EEG signals. The results indicated that the 
combination of ICA and Peak-to-Peak Amplitude Fluctuation (PPAF) 
achieved accuracy rates of 99, 98, and 95% for datasets with 3, 4, and 
5 epileptic seizures, respectively. This further demonstrates the 
effectiveness of advanced preprocessing techniques (26). In addition, 
a study aimed at optimizing the separation of cardiac-related artifact 
components and for the first time achieved automatic joint removal 
of ECC and pulse interferences in neonatal EEG. This method is based 
on band-pass filtering, signal normalization, SOBI-ICA 
decomposition, and automatic component classification and 
reconstruction. The study used neonatal EEG data with 19 channels 
and a sampling rate of 256 Hz. It included 40 segments of 5-min 
clinical data, containing both seizure and non-seizure segments. By 
combining analysis with real ECG signals, the automatic artifact 
component identification achieved extremely high precision with an 
accuracy of 0.99, a false omission rate of 0.01, and a sensitivity of 0.93. 
It also effectively preserved brain activity, with an artifact power 
suppression index (API) reaching 98.22%, outperforming existing 
methods. This further demonstrates the important role of ICA in 
eliminating physiological artifacts. However, the model still has 
limitations, such as its dependence on synchronous ECG recording 
and lack of validation in cases with fewer than 19 channels. Further 
examination is needed for practical application (27). GCTNet, a 
Generative Adversarial Networks (GAN) guided parallel CNN and 
transformer network, enhances EEG artifact removal by preserving 
global consistency between denoised signals and clean reference data. 
This approach effectively eliminates physiological interference while 
ensuring signal fidelity, significantly improving the quality of 
subsequent analysis. Extensive experimental results have demonstrated 
that GCTNet significantly outperforms state-of-the-art networks in 
various artifact removal tasks. For example, in the task of removing 
EMG artifacts, GCTNet achieved an 11.15% reduction in Relative 
Root Mean Square Error (RRMSE) and a 9.81% improvement in 
Signal-to-Noise Ratio (SNR) over other methods (28). These studies 
reveal the effectiveness of AI methods in reducing artefact interference 
and enhancing EEG signal quality, which is crucial for subsequent 
precise identification. However, assessing the extent to which these 
artefact removal methods improve clinicians’ accuracy in identifying 
epileptic events requires more direct clinical research evidence.

At the same time, biomarkers also play an important role in the 
detection of epilepsy. Research has shown that Lempel-Ziv Complexity 
(LZC) in the alpha band may serve as a biomarker for diagnosing 
temporal lobe epilepsy (TLE) combined with cognitive impairment 
(CI). The study calculated 76 LZC features for 19 leads across four 
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frequency bands (alpha, beta, delta, and theta). The study achieved a 
diagnostic efficacy of AUC 0.85 through an SVM model (29). In 
addition, studies have demonstrated that the alpha band PLVEEG and 
LZCEEG features can be further explored as potential biomarkers for 
anxiety disorders (AD) in patients with epilepsy (PWE). The 
K-Nearest-Neighbor (KNN) model has been shown to improve the 
AUC to 0.89 (30). At the same time, studies have constructed 
predictive models for identifying AD in PWE by combining clinical 
features with quantitative EEG (q EEG) features and using ML. The 
AUC of 0.96 effectively identified the presence of AD comorbidity in 
PWEs, complementing clinical diagnosis. This indicates that LZC 
features in the alpha band and Phase Locking Value (PLV) features in 
Fp2-O1 may be potential biomarkers for diagnosing AD in PWE (31).

3.1.3 Preoperative localization
Accurate preoperative localization is important in epilepsy 

surgery, as it not only enables surgeons to delineate precise resection 
margins to avoid excessive tissue removal and minimize neurological 
deficits, but also prevents inadequate resection, thereby reducing the 
risk of postoperative recurrence. Conventional visual interpretation 
of EEG is limited by inherent limitations such as high interobserver 
variability and insufficient sensitivity, which may contribute to 
inaccuracies in localizing the epileptogenic zone. AI-EEG facilitates 
automated tracking of ictal activities, localization of seizure onset 
zones (SOZ), and construction of functional connectivity networks, 
thereby precisely identifying pathological brain regions and assisting 
clinicians in focusing on critical epileptogenic foci. For example, 
SZTrack is the first end-to-end seizure tracking network using scalp 
EEG. The study trains SZTrack using the cross-entropy loss between 
the seizure-level prediction P(Y^t = 1|X^t) and the clinicians’ 
annotation of whether a seizure is not occurring at time window t. The 
results demonstrate that SZTrack can automatically learn the spatial 
patterns of seizure propagation and is consistent with the observations 
of clinicians. It is a significant advancement in epilepsy localization 
technology (32). Concurrently, DeepSOZ has emerged as an 
alternative robust framework for seizure detection and SOZ 
localization through multichannel scalp EEG. The model is based on 
a Transformer encoder that fuses multi-channel temporal features and 
employs a bidirectional LSTM branch for seizure detection, combined 
with an attention-based multiple instance learning mechanism for 
SOZ localization. It utilizes clinical scalp EEG data with 19 channels 
and a sampling rate of 200 Hz, including 642 segments of 10-min 
recordings from 120 adult patients sourced from the TUH database, 
analyzed with a 1-s window. The model demonstrates excellent 
performance in seizure detection (AUROC = 0.94, sensitivity = 0.81) 
and achieves patient-level accuracy of 0.744 ± 0.058 and seizure-level 
accuracy of 0.731 ± 0.061 for SOZ localization, significantly 
outperforming traditional methods. Its strengths lie in the end-to-end 
joint task architecture and the ability to quantify uncertainty. However, 
it has limitations in distinguishing between anterior and posterior 
brain regions and has only been validated in cases of focal 
epilepsy (33).

High-frequency oscillations (HFOs) ranging from 80 to 500 Hz 
detected in EEG recordings have been identified as critical biomarkers 
of epileptogenic zones and can be utilized for preoperative localization 
of epileptogenic foci (34). However, the visual interpretation of HFO 
signals remains challenging owing to their sheer data volume, 
characterized by significant interrater variability, labor-intensive 

analysis processes, and heightened susceptibility to interpretive errors 
(35). To address this issue, researchers have developed an automatic 
HFO detection method based on a CNN. This method analyzes 
isolated peaks (“islands”) in time-frequency diagrams and can 
efficiently identify HFOs in long-term multi-channel iEEG data. The 
results showed that in the test of 7,940 samples, the precision was 
94.19% and the recall was 89.37% (F1 = 91.71%), with high robustness 
against false HFOs caused by filtering artifacts (specificity reaching 
94.19%). The detection of a single event took only 1–3 s, and the 
model training could be completed within 3 min (using a GTX 1080Ti 
GPU) (36). However, the invasive nature and substantial costs 
associated with iEEG-based localization present significant limitations 
on the clinical application of HFO detection in epilepsy management, 
highlighting the need for methodological refinements. Furthermore, 
recent advancements in noninvasive HFO localization techniques 
have shown promising outcomes. Emerging evidence indicates that 
scalp EEG and magnetoencephalography (MEG) can reliably capture 
HFOs in the 80–500 Hz range through non-invasive modalities (34, 
37). Preliminary studies have already demonstrated the feasibility of 
combining noninvasive HFOs with DL. However, most of these 
methods are still in the laboratory stage and require large-scale clinical 
trials to verify their reliability and universality.

3.2 Role of AI-EEG in epilepsy monitoring 
and early warning

AI-EEG technology has two main application patterns in the field 
of epilepsy monitoring and early warning: supportive AI is used to 
achieve more efficient and convenient long-term monitoring and real-
time seizure detection; predictive AI, on the other hand, is designed 
to utilize the powerful pattern recognition capabilities of AI to identify 
specific discharge patterns and subtle feature patterns in EEG signals 
that are difficult for humans to perceive, in order to predict future 
epileptic seizure events.

3.2.1 Long-term remote monitoring
The progress of AI-EEG in the remote long-term continuous 

monitoring of epilepsy primarily reflects the value of supportive AI, 
which assists in achieving the broader and more convenient 
monitoring of epilepsy status through technological innovation. 
Conventional epilepsy monitoring has traditionally relied on 
in-hospital EEG recordings using standardized full-scalp electrode 
arrays combined with video surveillance, which has inherent 
limitations including challenges in implementing remote continuous 
monitoring, inability to perform real-time data analysis, and lack of 
closed-loop feedback mechanisms (38). AI-EEG can facilitate long-
term remote monitoring of epilepsy through wearable EEG devices, 
DL models, and multimodal fusion technologies, supporting real-time 
or near-real-time seizure detection and promoting synchronized 
processing of targeted stimulation and data (39). Customized EEG 
wearable devices (waEEG) can enhance follow-up compliance 
compared to conventional ambulatory EEG (aEEG), providing a 
portable and effective solution for detecting interictal epileptiform 
activity in temporal lobe epilepsy (TLE) (40). Furthermore, an 
experimental system integrating a portable EEG recording device 
(ANT Neuro) with a non-invasive wrist-worn sensor (Fitbit Charge 3; 
Fitbit Inc.) and a smartphone application (Seer App; Seer Medical) has 
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allowed epilepsy patients to autonomously, continuously, and safely 
acquire noninvasive variables during home-based monitoring (41). 
Results showed that remote training and support enabled the 
successful implementation of novel non-invasive technologies for 
independent home use. However, ensuring long-term acceptability 
and usability requires systematic integration into patients’ daily 
routines with healthcare provider involvement, coupled with sustained 
support delivery and personalized feedback mechanisms (42). These 
devices show enhanced wearability while effectively mitigating 
psychological distress associated with conventional monitoring 
systems, eliminating the need for cumbersome head-mounted 
apparatus and reducing social stigma and self-perceived 
stigmatization. Furthermore, the integration of AI with telemedicine 
platforms not only addresses the care gap for epilepsy patients in 
resource-limited regions but also holds significant developmental 
potential for advancing remote long-term monitoring paradigms in 
epileptology (43). AI-EEG enables direct communication pathways 
between the human brain and external environments through brain-
computer interfaces (BCIs), enabling targeted neuromodulation and 
closed-loop feedback mechanisms (44). The findings showed that 
prolonged intracranial monitoring, when combined with responsive 
stimulation over months to years, is essential for understanding the 
dynamic nature of epilepsy circuits in vivo (45). However, current 
AI-based long-term remote EEG monitoring technologies still have 
many limitations and limited research results. The primary functions 
of these AI technologies remain focused on supporting real-time and 
near-real-time events, such as seizure detection and status monitoring, 
which are in the category of supportive AI. Further exploration in this 
area is still needed in the future.

The development of AI-EEG technologies is essentially aimed at 
providing clinicians with new supportive tools. Their core value lies in 
assisting doctors in more comprehensively assessing treatment 
responses through automated feature extraction, efficient data 
processing, and pattern recognition. These features contribute to 
optimizing individualized decision-making. Clearly, such technologies 
do not replace clinical judgement. The analysis results they generate 
must be  verified and interpreted by doctors in conjunction with 
multidimensional information on the patient’s medical history, 
physical examination findings, and imaging results. The ultimate 
diagnostic and therapeutic decisions must be led by the doctor, with 
AI serving only as an auxiliary support system to enhance the doctor’s 
decision-making capabilities.

3.2.2 Seizure prediction
Epileptic seizure prediction is a core application area of predictive 

AI in the field of epilepsy. Its core goal is to utilize AI algorithms, 
particularly DL, to analyze EEG signals and automatically identify and 
interpret subtle and complex feature patterns that are difficult for 
humans to recognize directly or understand. This enables early 
warnings to be communicated several minutes to several hours before 
an epileptic seizure occurs.

Seizure prediction represents a critical application of AI-EEG in 
clinical epilepsy monitoring. Conventional seizure prediction 
methods have limitations in accuracy, real-time performance, and 
generalizability. In contrast, AI-EEG leverages multimodal data fusion 
and DL techniques to automatically extract and analyze complex 
features within EEG signals, thereby improving warning sensitivity 
and specificity (46). A study has introduced LSTM networks into the 

interpretation of EEG, using temporal and frequency domain features 
between the inter-channel correlation of EEG and graph theory 
features to predict epileptic seizures. The results showed that this 
model achieved high sensitivity in predicting epileptic seizures and a 
low FPR of 0.11–0.02 times per hour. Compared with traditional ML 
techniques and convolutional CNNs, the LSTM-based method 
significantly improved the performance of epileptic seizure prediction 
(47). In addition, a study has proposed a CNN model based on EEG 
signal feature fusion and patient calibration, employing rigorous 
leave-one-patient-out validation. The model directly processes raw 
EEG signals, with a sampling rate downsampled from 256 Hz to 
128 Hz, using 22 or 20 channels of scalp EEG corresponding to the 
CHB-MIT and Conegliano datasets, respectively. A 5-s analysis 
window is used to define preictal and interictal states. The study 
innovatively introduces a two-stage calibration mechanism, Cal1 and 
Cal2. The findings indicate that on the CHB-MIT dataset, the leave-
one-patient-out validation baseline accuracy was 53.55%, which 
increased to 65.77% after single-seizure calibration (Cal1) and reached 
69.35% after dual calibration (Cal2). Sensitivity increased from 40.28 
to 62.75 and 69.74%, respectively. The Conegliano dataset showed a 
similar trend, with Cal2 increasing accuracy from 45.72 to 70.67%. 
However, the framework has limitations: calibration requires 
individual seizure records (≥1) and ≥4 h of preictal EEG, making it 
inapplicable to high-risk patients who have not had seizures. 
Performance gains also showed significant patient variability (ACC 
increased by 12–47%), and long-term stability was not verified. 
Despite these limitations, the study was the first to demonstrate that 
only 1 to 2 seizure events are needed for fine-tuning to significantly 
enhance cross-patient prediction performance, offering a new 
paradigm for clinical generalization. Future work needs to explore 
calibration strategies without seizures (48). Furthermore, the Long-
term Recurrent Convolutional Network (LRCN) has shown superior 
performance in early seizure prediction. This model achieved 93.40% 
accuracy, 91.88% sensitivity, and 86.13% specificity in segment-based 
evaluation (49). A tiny one-dimensional stacked CNN (1D-SCNN) 
based on STFT also has shown efficacy in seizure prediction. This 
architecture was evaluated on the test set of the American Epilepsy 
Society Seizure Prediction Challenge dataset, this architecture 
achieved an average sensitivity of 94.44%, average FPR of 0.011/h and 
average AUC of 0.979 (50).

These studies reveal that predictive AI models hold great potential 
for providing early warnings of epileptic seizures. Their core advantage 
lies in their ability to process vast amounts of EEG data and identify 
and learn subtle or complex feature patterns related to impending 
epileptic seizures that are too faint or intricate for human experts to 
discern. This advancement not only represents a technological 
breakthrough but also lays the foundation for the future exploration 
of the pathophysiological mechanisms of epileptic seizures and 
individualized predictive treatment responses.

3.3 Role of AI-EEG in epilepsy therapeutic 
efficacy evaluation

AI-EEG also plays an important role in the prediction and 
evaluation of epilepsy treatment efficacy, covering multiple dimensions 
such as drug efficacy prediction and surgical prognosis assessment. 
Efficacy prediction represents a core application area of predictive AI 
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in epilepsy management. Its goal is to use current data to prospectively 
predict patients’ future responses to specific treatments. Notably, 
accurate and efficient predictive modelling heavily depends on 
supportive AI technologies, including automated EEG feature 
extraction, signal preprocessing and artefact removal, as well as 
multimodal data fusion. These supportive AI technologies provide 
high-quality, information-rich input features for predictive models.

3.3.1 Drug efficacy evaluation
Predictive AI models utilize key EEG features extracted by 

supportive AI technologies alongside clinical data to predict drug 
responses. AI-EEG can assist in the prospective assessment of patients’ 
responses to antiseizure medications (ASMs), providing a reference 
for optimizing individualized treatment plans. For instance, a 
personalized prediction model integrating EEG complexity and 15 
clinical features has shown the ability to predict responses to 
oxcarbazepine (OXC) monotherapy in patients with focal epilepsy, 
thereby improving the precision of initial drug selection. The 
prediction models were gradient boosting decision tree-Kolmogorov 
complexity (GBDT-KC) and gradient boosting decision tree-
Lempel-Ziv complexity (GBDT-LZC). Results showed that the 
GBDT-LZC model had an average accuracy of 81% and a sensitivity 
of 91%. The GBDT-KC model had an average accuracy of 82% and a 
sensitivity of 83% (51). Another study showed that 19-channel EEG 
can be used to predict the response of patients with temporal lobe 
epilepsy (TLE) to levetiracetam (LEV) through ML methods (52). 
Meanwhile, an experiment used quantitative EEG(QEEG) features 
from children with absence epilepsy and ML to predict the therapeutic 
effect of valproic acid in this population. The results showed that 
K-nearest neighbor (KNN) classification using theta-band power in 
the temporal lobe yielded the best performance, with a sensitivity of 
92.31%, specificity of 76.92%, accuracy of 84.62%, and an AUC of 
88.46%. The study demonstrated good sensitivity, but the specificity of 
76.92% indicates that there is still a certain proportion of false-positive 
predictions, which may lead to unnecessary drug trials or concerns 
(53). Similarly, other studies have also pointed out that AI models may 
face the challenge of insufficient specificity in epilepsy-related 
predictions. For example, Brigo et al.’s study showed that ChatGPT 
performed well in diagnosing epilepsy syndromes (κ = 1.00) and 
structural etiologies (accuracy = 90.0%), but it performed poorly in 
ambiguous cases such as unknown seizure types (accuracy = 12.5%) 
and rare etiologies (54). Additionally, a study developed a ML model 
based on the XGBoost algorithm. Demographic characteristics, 
medical history, and features from auxiliary examinations such as EEG 
and magnetic resonance imaging (MRI) were selected to distinguish 
patients with different remission outcomes. This method accurately 
predicts the efficacy of ASMs in treating epilepsy patients, achieving 
optimal predictive performance for ASM treatment effects between 
patients with remission and those with no remission, with an F1 score 
of 0.947 and an AUC value of 0.979 (55). The development of these 
technologies helps provide each patient with more effective ASMs.

Although these results are encouraging, high AUC values do not 
always fully translate into high precision in clinical practice, and the 
generalizability of the models and their performance on unseen data 
still need to be  validated in larger-scale, multicenter prospective 
studies. More importantly, as demonstrated by the aforementioned 
studies on AI models, even large language models such as ChatGPT 
may experience reduced specificity and misclassification issues when 

it comes to complex clinical judgments, such as epilepsy diagnosis and 
classification. This highlights the necessity of human oversight and 
clinical integration (54).

The development of these AI-EEG technologies has demonstrated 
the great potential of AI in optimizing epilepsy drug treatment 
decisions. Their core value lies in providing objective data-driven 
information to support decision-making for the individualized 
selection of more effective antiepileptic drugs. However, current AI 
models still face challenges in predicting drug treatment responses, 
such as the limited interpretability of specific models, high dependence 
on data quality and feature selection, and the observed lack of 
specificity and potential risk of misclassification in some studies (54).

The development of these AI-EEG technologies has demonstrated 
the great potential of AI in optimizing epilepsy drug treatment 
decisions. Their core value lies in providing objective data-driven 
information to support decision-making for the individualized 
selection of more effective antiepileptic drugs. However, current AI 
models still face challenges in predicting drug treatment responses, 
such as the limited interpretability of specific models, high dependence 
on data quality and feature selection, and the observed lack of 
specificity and potential risk of misclassification in some studies (54). 
Therefore, AI-generated predictive results should be regarded as a 
powerful auxiliary tool that enhances the information basis for clinical 
decision-making. The final clinical application requires clinicians to 
integrate the insights provided by AI, individual patient circumstances, 
clinical experience, and other test results for comprehensive 
judgement. The human–computer collaboration model facilitated by 
AI provides efficient and objective analysis and prediction, whereas 
doctors are responsible for the final clinical judgement and decision-
making. This approach represents the cutting-edge use of AI-EEG to 
improve the precision and efficiency of epilepsy drug management.

3.3.2 Surgical outcome assessment
Surgical outcome prediction similarly relies on Supportive AI 

technologies for the accurate identification and quantification of key 
biomarkers, such as HFOs. AI-EEG has significant value in surgical 
prognosis evaluation. For instance, high-sensitivity detection of HFOs 
can effectively improve postoperative outcome assessment in epilepsy 
surgery. This study used short-term energy (STE) and the Montreal 
Neurological Institute (MNI) detector to assess HFOs. By combining 
spike association and time-frequency plot characteristics, and 
employing DL techniques to purify pathological HFOs, it significantly 
improved the accuracy of predicting postoperative seizure outcomes 
(56). These findings indicate that AI has unique advantages in 
identifying key biomarkers. Automating the identification and 
purification of pathological HFOs remains a complex task, with 
varying performance among different algorithms. The universal 
predictive value of HFOs requires further validation across different 
centres and patient populations.

In addition, multimodal fusion technologies have also been 
explored for postoperative efficacy evaluation. For example, a study 
combined multimodal neuroimaging with video-EEG(v-EEG) to 
predict postoperative outcomes in patients with refractory epilepsy and 
explore prognostic predictors for these patients. This study collected 
data on demographics, clinical characteristics, v-EEG, neuroimaging, 
surgical details, and regular follow-up seizure outcomes. Multivariate 
analysis found that the multidisciplinary approach was an independent 
predictor of post-surgical outcomes in patients with intractable epilepsy 
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(hazard ratio = 11.400, 95% confidence interval = 2.249–57.787, 
p = 0.003). This finding shows that the approach can provide 
independent prognostic information for patients with surgically 
refractory epilepsy. The result showed a statistically significant 
association. However, the very wide confidence interval (2.249–57.787) 
suggests considerable uncertainty in the estimate, which needs to 
be validated in studies with larger samples (57).

Furthermore, deep brain stimulation (DBS) is a neuromodulation 
technique that delivers adjustable electrical impulses to targeted 
cerebral nuclei, thereby offering a reversible, titratable, and non-lesional 
therapeutic strategy for patients with drug-resistant epilepsy (58).

Overall, AI-EEG technology, as a predictive AI tool, is gradually 
enhancing the ability to predict epilepsy treatment outcomes. Its 
effectiveness relies on a strong foundation of supportive AI, which is 
responsible for efficiently and accurately processing raw EEG signals, 
extracting information-rich features, and integrating multimodal 
data to provide reliable input for the final predictive modelling. 
However, the formulation of optimal postoperative management and 
follow-up strategies still requires clinicians to integrate the 
quantitative predictive information provided by AI, comprehensive 
preoperative assessments, specific surgical details, and individual 
patient factors for comprehensive judgement and decision-making. 
This human–computer collaboration model, where “AI provides 
in-depth analysis and where doctors lead clinical decision-making,” 
is an effective approach for optimizing epilepsy surgical 
treatment outcomes.

4 Challenges and future perspectives

4.1 Data limitations and generalization 
challenges

The efficacy of AI-EEG is highly dependent on high-quality training 
data. However, epilepsy research frequently encounters issues of data 
scarcity, limited sample sizes, and class imbalance. These constraints not 
only compromising the training performance of DL models but may 
also introduce classification bias toward majority classes, ultimately 
reducing the precision of AI-EEG in epilepsy diagnosis and treatment. 
For instance, one study analyzed extended EEG data (90-min 
recordings) from nine post-operative seizure-free patients, yet failed to 
encompass complete EEG monitoring. Incorporating more patients and 
expanding the EEG data scope could significantly improve the 
performance and reliability of DL algorithms (59).

Furthermore, many AI-EEG studies develop models using 
specific datasets, which can limit their performance when applied to 
different data populations. For example, one study used only EEG 
data from non-rapid eye movement (NREM) sleep stages for HFO 
detection. However, EEG recordings during wakefulness are 
influenced by multiple confounding factors—including subject 
movement, age, and vigilance states—which were not evaluated in 
this experimental design, ultimately compromising the model’s 
generalizability (56). Similarly, SCORE-AI has inherent constraints 
as it was exclusively developed and validated using routine EEG data, 
omitting neonatal and critically ill patient populations. Although 
routine EEG remains one of the most widely used recording 
modalities in clinical practice, this demographic limitation can 
significantly limit its applicability to specialized patient cohorts (11).

Another factor affecting generalization ability is inter-individual 
patient variability and dynamic changes in EEG signals. Electrical 
brain activity in different patients or in the same patient at different 
times dynamically changes with factors such as age and disease 
progression, rendering it challenging for generalized models to adapt 
to all individuals. For example, data from a study derived from 
pediatric patients at the same institution showed that as the age range 
expands and epileptic pathologies diversify, the morphology of HFOs 
may also change, thereby affecting the adaptability of algorithms (59). 
Additionally, research has indicated that long-term EEG monitoring 
data recorded during hospitalization may differ from EEG signals in 
patients’ daily living environments, potentially impacting the 
detection performance of wearable EEG devices (60).

4.2 Signal noise and interference issues

Although AI-EEG can reduce interference to some extent and 
improve detection accuracy, EEG signals remain susceptible to 
environmental noise such as power line interference and physiological 
artifacts like ocular movements and EMG, which can reduce 
detection accuracy. Studies have shown that approximately 21% of 
epileptic seizures are difficult to detect via bte-EEG, with main causes 
including unclear ictal EEG patterns, too short seizure duration, and 
seizures confined to the temporal lobe or limited by artifacts from 
postauricular electrode interference (61). Experimental studies have 
indicated that multi-device signals acquired from the left wrist, right 
wrist, or ankle may exhibit variations in signal quality and 
characteristics due to distinct physiological properties across different 
body regions, potentially compromising signal consistency (60). 
Seizures of unknown origin “are often accompanied by motor 
activities and noise artifacts, which can significantly interfere with 
EEG signal stability and complicate localization efforts (61).

In addition to environmental noise and physiological artifacts, the 
parameter limitations of signal acquisition itself, especially insufficient 
sampling frequency, is another important factor affecting the 
performance of AI-EEG. For example, studies have shown that a high 
sampling frequency with at least a sampling rate (FS) of ⩾2 kHz and 
an anti-aliasing filter (AAF) of ⩾500 Hz is a prerequisite for accurately 
capturing and identifying HFOs, which are important biomarkers of 
epileptogenic foci (62). However, many portable and wearable EEG 
devices are limited by power consumption, storage, and cost, with 
sampling frequencies typically in the range of 128–256 Hz. At this 
sampling rate, HFO signals cannot be fully captured, resulting in the 
loss of this valuable biological information. Even for the detection of 
low-frequency epileptiform discharges, a lower sampling rate may 
reduce the resolution of waveform details and increase the risk of 
misjudgment (23). Therefore, when evaluating the performance of 
AI-EEG systems, especially those involving HFO analysis or using 
portable devices, it is essential to fully consider whether the sampling 
frequency meets the frequency band requirements of the target signal.

4.3 Hardware limitations and 
computational resource bottlenecks

The practical application of many AI-EEG models is limited 
by insufficient hardware resources, leading to direct deployment 

https://doi.org/10.3389/fneur.2025.1615120
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Wang et al.� 10.3389/fneur.2025.1615120

Frontiers in Neurology 13 frontiersin.org

challenges that impact model performance and generalization 
ability. For example, the limited number of SOZ-related 
independent components (ICs) in datasets presents challenges for 
traditional DL techniques in learning the complex features of 
these rare events (63). Additionally, due to computational resource 
constraints, a study set the frequency resolution at 2 Hz instead of 
1 Hz. Lower frequency resolution can lead to loss of detail in 
epileptic seizure signals, thereby affecting detection accuracy (16).

Hardware limitations not only affect data processing capabilities 
but also restrict the selection of DL models. Due to Graphics 
Processing Unit (GPU) memory constraints, a study was limited in 
selecting CNN models and unable to incorporate more advanced 
network architectures such as Efficient-Net CNN and ResNet-50 
CNN—models that demonstrate excellent performance in 
computer vision tasks. If applied to AI-EEG analysis, these models 
could provide richer feature extraction capabilities, thereby 
enhancing the accuracy of epileptic seizure detection and 
prediction (16). However, the potential value of these advanced 
models has been underutilized and unvalidated due to insufficient 
hardware resources.

Hardware limitations not only affect the complexity and selection 
of models but also directly restrict the quality of signal acquisition. 
High sampling frequencies, such as FS⩾2 kHz for HFO detection, 
exponentially increase the volume of data. This, in turn, places higher 
demands on the device’s storage capacity, wireless transmission 
bandwidth, as well as the computational processing power and 
storage space of the backend server (62). This further exacerbates the 
difficulty of deploying high-performance AI-EEG systems in 
resource-limited environments, such as wearable devices and primary 
healthcare institutions. Balancing the requirements of sampling rates 
with hardware feasibility is a significant challenge in current 
technological development.

4.4 Model explainability and clinical 
trustworthiness

The DL models that currently dominate the field of EEG 
analysis typically exhibit “black-box” characteristics, which conflict 
with the high demand for transparency in clinical decision-making. 
Although DL algorithms have shown high sensitivity and specificity 
in numerous experiments, their discriminative logic often deviates 
from neurophysiological interpretations, leading to limited trust in 
their outcomes among clinicians. This issue not only can hinder the 
clinical application of the model but may also reduce physicians’ 
acceptance of AI-assisted diagnostics. For example, the study by 
Ansari AH et al. showed that compared with heuristic algorithms 
that have clear decision paths and traditional MLmodels with 
strong interpretability, such as decision trees and rule-based 
systems, the decision-making process of complex DL models is 
relatively opaque (64). It is difficult to clearly explain why a 
particular EEG segment is classified as a seizure or non-seizure. 
Unlike traditional methods based on manually designed features 
and interpretable models, the features extracted by DL models are 
often mathematical representations obtained from EEG signals after 
filtering, pooling, and rectification, lacking a direct connection with 
neurophysiological mechanisms. This makes DL-based AI-EEG 
models difficult to provide clinically intuitive diagnostic evidence 
for physicians (19).

4.5 Future perspectives

Although significant progress has been made in epilepsy 
detection, monitoring, and treatment prediction using AI-EEG, 
future advancements will require overcoming multiple challenges 
and exploring new pathways. First, algorithm optimization is critical 
for enhancing AI-EEG performance. Optimizing DL models, 
particularly through techniques such as pruning, quantization, and 
distillation, can improve for improving computational efficiency, 
predictive accuracy, and reducing hardware resource demands (65). 
Additionally, adaptive training can enhance both supervised and 
self-supervised learning in deep neural networks, addressing issues 
such as data scarcity and sample imbalance, thereby improving 
model applicability and generalizability across diverse clinical 
settings. In the future, these approaches are anticipated to 
be integrated into EEG interpretation (66). Data augmentation and 
aggregation techniques, such as synthetic EEG data generation, 
time-window segmentation, and signal perturbation, have been 
suggested to enhance data diversity and optimize model learning 
capabilities (32). Furthermore, improving model architecture is a 
key direction for enhancing generalizability. For example, integrating 
multi-channel components, such as CNN-BLSTM, into frameworks 
like SZTrack can strengthen cross-channel dependencies and 
improve prediction accuracy (32).

Second, to address the issue of transparency and explainability, 
the integrating of explainable AI (XAI) can help simplify model 
complexity and increase clinicians’ trust in AI model judgments. For 
example, one study showed that significantly reducing the number of 
attributes and channels, and strategically selecting electrodes for 
model training, can contribute to the development of more effective 
mobile epilepsy detection applications (67). Future research should 
focus on incorporating more clinical expertise into AI-EEG models. 
Further research should be dedicated to embedding more clinical 
expertise into AI-EEG models, leveraging the automatic recognition 
of biomarkers and XAI technologies to ensure that AI can provide 
easily understandable decision support (60, 61). For instance, some 
researchers have suggested that models can be trained to recognize 
visual biomarkers used by human experts in EEG interpretation. 
However, this approach still needs further optimization. Recent 
studies have pointed out that the social barriers (data bias, patient 
safety, regulatory compliance) faced in the field of epilepsy prediction 
essentially stem from the untraceability of model decisions. However, 
this does not mean that researchers should revert to traditional 
transparent models, as such models may limit the upper bound of 
predictive performance. On the contrary, by infusing high-
performance black-box systems with post hoc interpretability (such 
as feature attribution and decision path visualization), it is possible 
to unleash the technical potential of DL while meeting the needs of 
clinical trust (68).

Additionally, DL-based multimodal fusion models can enhance the 
matching between different modalities and strengthen clinical validation, 
thereby promoting clinical applications. Research has shown that the 
combination of EEG and fMRI has become a powerful tool for exploring 
brain function, and their synchronous measurement techniques are 
helpful for the development of clinical interventions (69, 70). 
Additionally, multidisciplinary collaboration, such as in neuroimaging, 
EEG, electronic health records, medical devices, and multimodal data 
integration, will be  key to translating AI-EEG from experimental 
research to clinical practice (39). The combination functional and 
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structural brain networks is more effective than using single-modality 
data alone. The joint construction of multimodal brain networks can 
further improve the matching and working ability of different data types 
(such as EEG, fMRI, PET/CT), increase the accuracy of models, and help 
promote the realization of personalized epilepsy treatment (71). 
Wearable devices and remote monitoring are important future directions. 
There is an urgent need to develop a new generation of low-power, high-
sampling-rate, high-signal-quality, and user-friendly EEG sensing 
technologies. At the same time, research should be conducted on efficient 
edge computing algorithms to perform initial signal preprocessing and 
feature extraction on the device side, thereby alleviating the burden of 
high-sampling-rate data on transmission and cloud computing.

For clinical validation, future research should perform large-scale, 
multicenter, randomized controlled trials to validate the 
generalizability and effectiveness of AI-EEG across diverse patient 
populations. Standardization and regularization efforts are essential, 
including the establishment of unified evaluation criteria and technical 
specifications to ensure compatibility across different platforms and 
devices (19, 72, 73).

This includes establishing minimum technical specifications for EEG 
signal acquisition tailored to different application scenarios, such as 
routine monitoring, HFO detection, and seizure prediction, particularly 
clarifying the requirements for key parameters such as sampling 
frequency, number and placement of electrodes, common-mode 
rejection ratio (CMRR), and input noise. For research and applications 
aimed at capturing high-frequency biomarkers (such as HFOs), a 
sufficient sampling rate must be mandatorily required. Promoting device 
manufacturers to follow these specifications is crucial for ensuring the 
quality of signals input for AI-EEG analysis (74).

Finally, as AI-EEG technology becomes more widely applied, 
data privacy and security are as non-negligible challenges. To address 
this, researchers should implement data encryption techniques, 
blockchain, and other technologies to safeguard patient privacy and 
data security. Meanwhile, establishing regulatory frameworks is 
essential to ensure the fairness and accessibility of the technology. In 
the future, AI-EEG will need to address challenges such as data 
privacy and security, clinical validation and liability definition, 
technical fairness and accessibility. Balancing legal compliance, 
ethical considerations, and technical feasibility is the core task in 
advancing the practical application of AI-EEG (75, 76).
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