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Background: Objective tests that can be used to identify neurodegenerative

diseases and neuropsychiatric disorders are urgently needed. The primary

objective of this study is to evaluate the diagnostic accuracy of surface-

enhanced Raman spectroscopy (SERS), a novel blood-based detection method,

in di�erentiating neurodegenerative diseases and neuropsychiatric disorders.

Additionally, we aim to assess the synergistic diagnostic performance of

combining SERS with enzyme-linked immunosorbent assay (ELISA) technology

for Alzheimer’s disease (AD), mild cognitive impairment (MCI), and late-life

depression (LLD).

Methods: In total, 23 patients with AD, 24 with MCI, 20 with LLD, and 20

cognitively normal (control) individuals were enrolled. ELISA and SERS were used

to test various biomarkers in the AD, MCI, LLD, and control groups.

Results: Amyloid-β, tau, brain-derived neurotrophic factor, proinflammatory

cytokine IL-1β, and growth di�erentiation factor-15 levels as measured using

ELISA significantly di�ered among the four groups (P < 0.05). SERS peaks at 592

(P = 0.038), 725 (P = 0.001), 1,003 (P = 0.010), 1,331 (P = 0.000), and 165 cm−1

(P = 0.000) likewise significantly di�ered among the four groups. The area under

the curve was significantly higher after combining multiple blood indicators than

that with single-blood indicators.

Conclusions: Combining SERS and ELISA can significantly increase diagnostic

accuracy for AD, MCI, and LLD. The findings are expected to provide

potential therapeutic targets for precise intervention in these diseases,

thereby contributing to improved clinical stratification and personalized

treatment strategies.

Clinical trial registry number: ChiCTR2300076307 (30/09/2023).
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Background

Age-related neurodegenerative diseases and neuropsychiatric

disorders significantly increase with increased aging population

(1). Cognitive decline is a common clinical manifestation of

neurodegenerative diseases, such as Alzheimer’s disease (AD) and

neuropsychiatric disorder of late-life depression (LLD) (2). Mild

cognitive impairment (MCI) is a common preclinical manifestation

of neurodegenerative diseases and neuropsychiatric disorders in

older adults (3, 4). In addition to negative emotions and sleep

disorders, patients with LLD usually show a pseudo-cognitive and

transient decline in thinking and memory, causing misdiagnosis (5,

6).

Several cognitive and psychological tests are used to evaluate

cognitive levels (7, 8). Cerebrospinal fluid biomarker analysis

may aid in differentiating between AD and LLD (9). Similarly,

blood biomarkers are valuable objective indicators (10, 11).

The transitional phase between MCI and AD is an ambiguous

diagnostic period, where it is unclear whether the occurrence of

MCI is owing to depression or dementia. Cognitive decline can

be used to predict incipient dementia, indicating the need for

different clinical treatment options. Neuropsychiatric symptoms

may accompany these pre-dementia syndromes and help in

identifying incipient dementia. Depression may be associated with

an increased risk of dementia, particularly in older adults (12). LLD

is controllable and curable if promptly diagnosed and appropriately

treated. However, the onset of LLD is usually overlooked or

covered up by cognitive disorders. Identifying neurodegenerative

diseases and neuropsychiatric disorders using objective indicators

is essential.

Enzyme-linked immunosorbent assay (ELISA) is a popular

method for testing biomarkers in the blood of patients with AD. It

can be used to detect serum amyloid-β (Aβ) and tau proteins (13–

15). In addition, surface-enhanced Raman spectroscopy (SERS) has

been recently used to investigate the diagnosis of diseases such as

cancer and neurodegenerative diseases (16–18). SERS is a rapid,

low-cost, non-invasive, and label-free technique that has found

widespread application in in situ and ex situ biomedical diagnostics,

including for neurological disorders (17). Because most previous

studies used label-free SERS without specific target labeling,

designing an optimal data pre-processing and modeling procedure

is paramount for analyzing and interpreting untargeted spectral

data. Machine learning (ML) models, such as principal component

analysis, partial least squares, support vector machine, and k-

nearest neighbors, are the prevailing methods for Raman feature

extraction and data modeling (19). However, in the biomedical

field, these traditional and cumbersome methods may hinder

feature extraction and the identification of intricate patterns in

high-dimensional Raman data, since identification or classification

problems are complex tasks in practical applications. In recent

Abbreviations: ELISA, enzyme-linked immunosorbent assay; SERS, surface-

enhanced Raman spectroscopy; AD, Alzheimer’s disease; MCI, mild cognitive

impairment; LLD, late-life depression; HC, healthy controls; Aβ, amyloid-

β; BDNF, brain-derived neurotrophic factor; GDF-15, growth di�erentiation

factor-15; AUC, area under the curve; MMSE, Mini-Mental State Examination;

ANOVA, analysis of variance; ROC, receiver operating characteristic.

years, deep learning (DL), an end-to-end learning method, has

shown excellent ability in data pre-processing, feature extraction,

and modeling (20). DL-based chemometrics have been applied

to Raman spectral data, including cancer detection and genotype

screening (21, 22).

A previous study conducted an in depth investigation of

Raman spectroscopy of blood serum for AD, MCI, and other

types of dementia (23). Raman spectroscopic-, SERS-, and blood

or cerebrospinal fluid-based tests may aid clinical assessments,

facilitating the accurate and effective differential diagnosis of

AD (24, 25). In this study, we expanded the application of

SERS to neuropsychiatric as well as neurodegenerative disorders

and compared its diagnostic accuracy with that of ELISA. We

performed two blood tests, ELISA and SERS, to investigate prompt

and accurate diagnosis. We studied a combination of the two

methods to collect blood from patients only once, reducing the

number of invasive tests while improving diagnostic accuracy.

Methods

Participants

We recruited 23 patients with AD, 24 with MCI, 20 with

LLD, and 20 cognitively normal participants (healthy control, HC)

for this study. Patients were diagnosed using the Diagnostic and

Statistical Manual of Mental Disorders, fifth edition criteria (26).

All patients met the following inclusion and exclusion criteria:

(1) diagnosis by at least two research psychiatrists; (2) provision

of informed consent; (3) disease course >3 months; (4) presence

of no other severe mental illnesses, including schizophrenia and

delirium; and (5) no severe physical diseases. TheMinimum sample

size was calculated by setting the significance level (α) to 0.05 and

the statistical power (1–β) to 70%.

Neuropsychiatric evaluation

The Mini-Mental State Examination (MMSE) comprises

cognitive questions in orientation, immediate recall, attention,

short-term memory, language, and visuospatial ability (27). The

MMSE has a maximum score of 30 points, with higher scores

indicating better cognitive performance. A score of <22 represents

patients with AD, >22 and <27 represents patients with MCI,

and >27 represents cognitively normal participants. The Hamilton

depression scale (HAMD) was adopted to evaluate depression in

patients with LLD (28).

Blood ELISA

Approximately 5ml of whole blood was collected from each

patient before breakfast in a procoagulant tube. The blood

samples were centrifuged at 3,000 rpm for 10min using a BY-

600A type medical centrifuge (Beijing Baiyang Medical Devices

Co., China). All blood samples were processed within 30min of

collection and immediately frozen at −80◦C. Serum Aβ (total Aβ,

Aβ40, and Aβ42), tau (total and phosphorylated), brain-derived
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neurotrophic factor (BDNF), proinflammatory cytokine IL-1β, and

growth differentiation factor-15 (GDF-15) levels were estimated

using ELISA kits (Shanghai Yuanye Bio-Technology Co., China).

All procedures were performed according to the manufacturer’s

instructions. The absorbance was measured at 450 nm using a

Sunrise-basic enzyme labeling instrument (Tecan Co., Switzerland)

with a reference wavelength of 690 nm. These measurements were

transformed into concentrations by comparing the optical densities

of the samples with standard curve values.

Blood SERS

For SERS measurements in this study, a substrate of the

core-shell Au@Ag nanoparticles aggregates (Au@AgNA) colloidal

solution was prepared through Ag deposition on the surface of

Au using the seed-growth method described in a previous study

(29). The thawed serum was mixed with Au@AgNAs in a 1:1 ratio

and incubated for 2 h at room temperature. Furthermore, 2 µl of

the mixture was dropped onto an aluminum substrate for SERS

measurements. The sample was dried before SERS measurements.

The SERS spectra were obtained using a RenishawinViaQontor

confocal Raman spectrometer (Renishaw, UK) coupled to a Leica

microscope with a 50× objective (NA = 0.50) backscattering

geometry. SERS signal was excited by a 785-nm laser and measured

in a wave number range of 400−1,800 cm−1 with a spectral

resolution of 1 cm−1. To reduce operational variations and

repeatability errors as well as the coffee-ring effect during drying,

the mean of five measurements at different positions served as the

final SERS spectrum for each participant (30).

Statistical analysis

For statistical analysis, data are presented as mean ± standard

deviation. Demographic and clinical variables were compared and

analyzed between the different groups using analysis of variance

(ANOVA) or t-test for continuous variables and chi-squared test

for categorical variables. SERS spectra are baseline subtracted

and normalized using Savitzky–Golay algorithm as described in

our previous literature (30, 31). Pearson’s correlation coefficient

was used to determine the correlation between cognitive levels

and blood parameters. Statistical significance was set at P <

0.05. Receiver operating characteristic (ROC) curves and the area

under the ROC curve (AUC) were used as criteria to evaluate

the performance. The AUC was calculated as a comprehensive

measure of discrimination accuracy, with 95% confidence intervals

determined through bootstrap methods. Optimal cutoff values

were identified by maximizing Youden’s index (J = sensitivity

+ specificity−1).

FIGURE 1

Overview of the study and CONSORT diagram of the primary phases of the clinical trial.
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Results

Clinical assessment

An overview of this study is shown in Figure 1. Inclusion

and exclusion criteria were used to recruit participants with AD,

MCI, LLD, and HC. All participants were asked to complete

the demographic characteristics, neuropsychological evaluations,

and blood sample collection. Subsequently, blood samples were

analyzed using ELISA and SERS along with the APOE genotype

(rs429358 and rs7412).

Table 1 presents the demographic characteristics of the

participants. There were 67 patients, including 23 with AD (seven

males and 16 females, with a mean age of 80.09 years), 24 with MCI

(11 males and 13 females, with a mean age of 79.04 years), 20 with

LLD (three males and 17 females, with a mean age of 74.10 years),

and 20 HC (four males and 16 females, with a mean age of 76.00

years). Similarly, the education years, MMSE scores, HAMD scores

and APOE SNPs are listed in Table 1. Allele C (TC+ CC) was a risk

factor for cognitive decline in the cognitive decline (MCI and AD

groups) and cognitively normal (LLD andHC groups) groups at the

SNP locus rs429358 (P < 0.05). However, there were no significant

differences between the distribution of alleles C and T at locus s7412

(P = 0.846).

Two measurements of blood biomarkers

Table 2 presents the blood levels of Aβ (total Aβ, Aβ40, and

Aβ42), tau (total and phosphorylated), BDNF, proinflammatory

cytokine IL-1β, and GDF-15. The levels of these blood biomarkers,

measured using ELISA, significantly differed among the four

groups (P < 0.05).

TABLE 1 Demographic characteristic of the participants.

Items AD
(n = 23)

MCI
(n = 24)

LLD
(n = 20)

HC
(n = 20)

F/χ2
P-value

Age 80.09± 9.39 79.04± 7.78 74.10± 6.34 76.00± 8.00 2.536 0.062

Gender (male/female) 7/16 11/13 3/17 4/16 6.046 0.109

Education years 5.74± 2.91 6.00± 2.78 6.55± 2.58 7.40± 3.28 1.363 0.260

MMSE scores 13.17± 6.57 26.00± 2.64 28.00± 1.75 29.55± 0.69 87.653 0.000

HAMD scores 0.47± 0.85 0.67± 0.87 6.70± 2.05 0.65± 1.13 115.261 0.000

APOE SNPs

rs429358

TT, n (%) 15 14 16 18 5.031 0.027

TC, n (%) 3 5 4 2

CC, n (%) 5 5 0 0

rs7412

TT, n (%) 1 0 0 0 0.038 0.846

TC, n (%) 2 3 3 2

CC, n (%) 20 21 17 18

Means± SDs. AD, Alzheimer’s disease; MCI, mild cognitive impairment; LLD, late life depression; HC, healthy controls; MMSE, Mini-Mental State Examination; HAMD, Hamilton depression

scale; APOE, apolipoprotein E; SNP, single nucleotide polymorphism.

TABLE 2 Biomarkers in serummeasured by ELISA.

Items AD
(n = 23)

MCI
(n = 24)

LLD
(n = 20)

HC
(n = 20)

F P-value

Aβ (ng/ml) 452.91± 52.59 372.72± 57.41 392.21± 63.48 274.97± 83.99 36.64 0.000

Aβ40 (pg/ml) 407.91± 76.60 322.50± 60.45 323.89± 56.62 204.25± 52.16 37.87 0.000

Aβ42 (pg/ml) 691.08± 77.52 616.66± 81.36 614.92± 89.21 386.16± 76.88 55.09 0.000

tauT (pg/ml) 237.24± 27.99 192.64± 28.97 186.37± 30.05 125.03± 27.80 54.86 0.000

tauP (pg/ml) 309.51± 43.12 271.41± 48.32 278.20± 48.71 146.92± 38.93 52.41 0.000

BDNF (ng/ml) 7.19± 1.76 8.88± 1.74 8.63± 1.77 14.55± 1.75 70.91 0.000

IL-1β (pg/ml) 85.46± 9.06 70.92± 9.86 75.76± 9.97 53.94± 9.37 40.04 0.000

GDF15 (pg/ml) 1,436.00± 210.74 1,131.06± 187.91 1,257.85± 199.37 728.97± 196.60 47.83 0.000

Means± SDs. AD, Alzheimer’s disease; MCI, mild cognitive impairment; LLD, late life depression; HC, healthy controls; Aβ, β-amyloid; BDNF, brain derived neurotrophic factor; GDF, growth

differentiation factor.
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Table 3 lists the peak positions measured using SERS for

the four groups. After performing ANOVA on the intensities of

the primary SERS peaks (each peak represents specific substance

components), five SERS peaks at 592 (P = 0.038), 725 (P =

0.001), 1,003 (P = 0.010), 1,331 (P = 0.000), and 1,656 cm−1

(P = 0.000) had statistically significant differences among the

four groups.

As shown in Figure 2A, using the ELISA measurement, the

serum biomarkers were significantly higher in the AD group than

in the other three groups. Compared with the MCI group, the

peak positions of SERS (in terms of intensity) at 725, 1,331, and

1,656 cm−1 had statistically significant differences in the LLD group

(Figure 2B).

Figures 3A–D shows the average serum SERS spectra of the

HC (Figure 3A), LLD (Figure 3B), MCI (Figure 3C), and AD

(Figure 3D) groups and the comparison of the average serum SERS

spectra between the four groups (Figure 3E). Similarly, Figure 3E

shows SERS intensities with statistically significant differences

between the four groups at peaks 592, 725, 1,003, 1,331, and

1,656 cm−1.

TABLE 3 Intensity of the primary SERS peaks of serum.

Peak position

(cm−1)

Intensity (arb. unit) F P-value Assignments

AD
(n = 23)

MCI
(n = 24)

LLD
(n = 20)

HC
(n = 20)

493 0.493± 0.026 0.486± 0.053 0.494± 0.093 0.510± 0.019 0.741 0.530 Ring vibration, cellulose, guanine,
L-arginine

592 0.307± 0.018 0.293± 0.036 0.276± 0.054 0.295± 0.015 2.946 0.038 Ascorbic acid, amide-VI

638 0.995± 0.012 0.975± 0.102 0.956± 0.169 0.999± 0.001 0.847 0.472 C-S stretching vibration, L-tyrosine,
lactose

725 0.558± 0.222 0.427± 0.198 0.566± 0.232 0.337± 0.133 6.305 0.001 C-H bending vibration, adenine,
coenzyme A

813 0.276± 0.016 0.281± 0.032 0.284± 0.053 0.296± 0.014 1.511 0.218 C-C-O stretching vibration, L-serine,
glutathione

887 0.287± 0.029 0.303± 0.029 0.306± 0.054 0.288± 0.017 1.744 0.164 C-O-H bending vibration,
glutathione, D-(+)-galactosamine

1,003 0.253± 0.035 0.232± 0.031 0.221± 0.055 0.216± 0.028 4.000 0.010 C-C symmetric stretch, phenylalanine

1,134 0.596± 0.055 0.589± 0.063 0.596± 0.116 0.573± 0.028 0.481 0.697 C-N stretching vibration, D-mannose

1,207 0.328± 0.032 0.326± 0.031 0.342± 0.065 0.320± 0.023 0.994 0.400 Ring vibration, L-tryptophan,
phenylalanine

1,331 0.341± 0.060 0.298± 0.051 0.344± 0.055 0.233± 0.039 20.059 0.000 C-H stretching vibration, nucleic acid
bases, D-mannose

1,656 0.722± 0.126 0.657± 0.119 0.752± 0.168 0.515± 0.083 13.916 0.000 C=O stretching vibration, amide-I,
α-helix

Means± SDs. AD, Alzheimer’s disease; MCI, mild cognitive impairment; LLD, late life depression; HC, healthy controls.

FIGURE 2

Two measurements of blood biomarkers. (A) Enzyme-linked immunosorbent assay (ELISA) data of total Aβ, Aβ40, Aβ42, total tau, phosphorylated tau,

brain-derived neurotrophic factor (BDNF), proinflammatory cytokine IL-1β, and growth di�erentiation factor-15 (GDF-15). (B) SERS data of peaks

position in 493, 592, 638, 725, 813, 887, 1,003, 1,134, 1,207, 1,331, and 1,656 cm−1. The gray bar represents the AD group. The red bar represents the

MCI group. The blue bar represents the LLD group. The green bar represents the HC group.*P < 0.05; **P < 0.01; ***P < 0.001.
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FIGURE 3

Intensity of the average serum SERS spectra of the AD (A), MCI (B), LLD (C), and HC groups (D) and the comparison of average serum SERS spectra

between four groups (E). The gray line represents the AD group. The red line represents the MCI group. The blue line represents the LLD group. The

green line represents the HC group.

Correlations between two types of blood
biomarkers

Figure 4 shows the Pearson correlation between cognitive and

blood biomarkers. MMSE scores were significantly correlated with

Aβ (P < 0.001, r = −0.498), Aβ40 (P < 0.001, r = −0.579),

Aβ42 (P < 0.001, r = −0.445), total tau (P < 0.001, r = −0.638),

phosphorylated tau (P < 0.001, r = −0.396), BDNF (P < 0.001, r

= 0.474), proinflammatory cytokine IL-1β (P < 0.001, r=−0.560),

and GDF-15 (P < 0.001, r =−0.509). Regarding SERS parameters,

MMSE scores were significantly correlated with 725 (P = 0.011, r

= −0.271), 1,003 (P = 0.001, r = −0.348), 1,331 (P < 0.001, r =

−0.366), and 1,656 cm−1 (P = 0.022, r =−0.245).

As presented in Table 4, all individuals with APOE rs429358

T/T genotype had lower Aβ40 and Aβ42 and higher BDNF levels

than those with APOE rs429358 T/C+ C/C genotype (t =−2.060,
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FIGURE 4

Pearson correlation of cognitive and blood biomarkers. MMSE represents the cognitive level of participants. The blood parameters included ELISA

measurements of (total Aβ, Aβ40, and Aβ42), tau (including total and phosphorylated tau), brain-derived neurotrophic factor (BDNF), proinflammatory

cytokine IL-1β, growth di�erentiation factor-15 (GDF-15) and SERS measurements of peaks position in 493, 592, 638, 725, 813, 887, 1,003, 1,134,

1,207, 1,331, and 1,656 cm−1. The scale bar represents Pearson’s correlation coe�cient r and P-values.

P = 0.042; t = −2.290, P = 0.026; t = 2.573, P = 0.012,

respectively). Compared with APOE rs429358 T/C+C/C genotype

carriers, individuals with the APOE rs429358 T/T genotype showed

no significant differences in SERS data. In contrast to individuals

with the APOE rs7412 C/C genotype, those with the APOE rs7412

T/C + T/T genotype showed no significant differences in ELISA

and SERS data (Table 5).

Table 6 shows the relation of the ELISA and SERS

measurements of blood parameters with APOE rs429358 in

MCI participants. The data on APOE rs429358 T/T and APOE

rs429358 T/C + C/C genotype carriers did not significantly differ

from the ELISA and SERS results. Table 7 shows the relation of the

blood parameters measured using ELISA and SERS with APOE

rs7412 in MCI participants. Compared with individuals with the

APOE rs7412 C/C genotype, those with the APOE rs7412 T/C +

T/T genotype showed a significantly higher level of taup value (t =

1.788, P = 0.016) on ELISA and lower value of Peak 725 on SERS

(t =−1.119, P = 0.038).

Table 8 compares the blood parameters measured using ELISA

and SERS with respect to APOE rs429358 in LLD participants.

Compared with individuals with the APOE rs429358 T/T genotype,

those with the APOE rs429358 T/C + C/C genotype showed

significantly higher Aβ and GDF15 levels (t = −2.176, P = 0.043;

t = −1.808, P = 0.021, respectively) on ELISA and a significantly

higher value of Peak 725 (t = −0.972, P = 0.025) on SERS. Table 9

shows the association of the blood parameters measured using

ELISA and SERSwith APOE rs7412 in LLD participants. Compared
with individuals with the APOE rs7412 C/C genotype, those with
the APOE rs7412 T/C + T/T genotype showed significantly higher
levels of tauT (t = 1.644, P = 0.002) on ELISA and higher values

of Peak 592 and 1,656 (t = 1.026, P = 0.030; t = 2.499, P = 0.025,
respectively) and lower value of Peak 1,331 (t =−0.737, P= 0.015)

on SERS.

Sensitivity of two measurements in the
diagnosis of MCI and LLD

For the MCI and LLD groups, the blood parameters of the
two measurements could be used to enhance the accuracy of the
cognitive disorder diagnosis. In Figure 5, the ROC curve revealed

that the AUC was significantly higher after combining multiple

blood indicators than with a single blood indicator. The results

demonstrate that SERS-based methods yielded an accuracy of 96%

for the classification of AD and LLD, and an accuracy of 85% for

the classification of MCI and LLD. The combination of SERS and

ELISA yielded an accuracy of 99% for the classification of AD

and LLD, and an accuracy of 89% for the classification of MCI

and LLD.

Discussion

This is the first study to involve using two different blood tests

to investigate biomarkers for neuropsychiatric diseases. In previous

studies, ELISA-SERS was used to detect the severe acute respiratory

syndrome coronavirus 2 and other diseases (32, 33). In this study,

we aimed to examine whether two blood tests, ELISA and SERS,

could be used to differentiate between AD, MCI, and LLD better

than single blood tests. The Aβ and tau biomarkers remained the

elevated indicators in AD, MCI, and LLD, as previously described

(34). The SERS peaks are valuable and well-established biomarkers,

characterized by specific Raman fingerprints that can be used to

identify AD, MCI, and LLD (30). We found that combining the two

methods can improve the diagnosis and that SERS complements

the ELISA.

The APOE genotype may be a genetic risk factor for

neurodegenerative diseases other than Alzheimer’s disease (35).
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TABLE 4 Blood parameters of ELISA and SERS to APOE rs429358 in all

participants.

Biomarkers rs429358 t P-
value

T/T
(n = 63)

T/C + C/C
(n = 24)

ELISA

Aβ (ng/ml) 375.91± 87.35 375.99± 76.24 −0.005 0.996

Aβ40 (pg/ml) 305.54± 91.00 351.50± 98.12 −2.060 0.042

Aβ42 (pg/ml) 564.99± 145.01 630.08± 106.67 −2.290 0.026

tauT (pg/ml) 183.12± 49.45 198.81± 45.73 −1.350 0.181

tauP (pg/ml) 249.67± 81.29 266.91± 56.24 −1.121 0.267

BDNF (ng/ml) 10.12± 3.51 8.53± 2.11 2.573 0.012

IL-1β (pg/ml) 70.54± 15.46 75.72± 12.00 −1.477 0.143

GDF15 (pg/ml) 1,111.98±
323.91

1,243.97±
304.96

−1.726 0.088

SERS

Peak 493 (cm−1) 0.50± 0.04 0.49± 0.08 0.812 0.419

Peak 592 (cm−1) 0.29± 0.03 0.29± 0.05 0.086 0.931

Peak 638 (cm−1) 0.99± 0.06 0.97± 0.15 0.948 0.346

Peak 725 (cm−1) 0.46± 0.23 0.50± 0.19 −0.809 0.421

Peak 813 (cm−1) 0.29± 0.03 0.27± 0.05 1.655 0.102

Peak 887 (cm−1) 0.30± 0.03 0.29± 0.05 0.837 0.405

Peak 1,003
(cm−1)

0.23± 0.03 0.24± 0.06 −0.929 0.355

Peak 1,134
(cm−1)

0.59± 0.05 0.58± 0.11 0.643 0.522

Peak 1,207
(cm−1)

0.33± 0.03 0.33± 0.06 0.303 0.762

Peak 1,331
(cm−1)

0.30± 0.07 0.32± 0.06 −1.328 0.188

Peak 1,656
(cm−1)

0.65± 0.15 0.70± 0.16 −1.520 0.132

Means ± SDs. Aβ, β-amyloid; BDNF, brain derived neurotrophic factor; GDF, growth

differentiation factor.

Contributions of Aβ burden and APOE genotype on cognitive

performance were also risk factors for cognitive decline in

participants with LLD (36). The SNPs of rs429358 in APOE

genotype C and rs7412 in APOE genotype T are risk factors for

cognitive decline. In this study, the blood parameters Aβ40 and

Aβ42 of ELISA were significantly different in participants with

and without SNPs of the rs429358 APOE genotype. However, in

SERS parameters, there were no statistically significant differences

between participants with and without SNPs of the rs429358 and

rs7412 APOE genotypes. This suggested that the SERS findings

were more flexible in the absence of APOE genotypes.

In a previous study, the mean SERS spectra of different groups

were the biochemical component assignments of these peaks (30).

Among these peaks, the SERS intensities at 592(P = 0.038), 725

(P = 0.001), 1,003 (P = 0.010), 1,331 (P = 0.000), and 1,656

cm−1 (P = 0.000) were significantly different among the four

TABLE 5 Blood parameters of ELISA and SERS to APOE rs7412 in all

participants.

Biomarkers rs7412 t P-
value

T/T + T/C
(n = 11)

C/C
(n = 76)

ELISA

Aβ (ng/ml) 412.04± 85.36 370.70± 83.06 1.538 0.128

Aβ40 (pg/ml) 332.83± 89.61 316.10± 95.82 0.545 0.587

Aβ42 (pg/ml) 605.59± 114.95 579.67± 141.44 0.580 0.564

tauT (pg/ml) 173.31± 42.13 189.49± 49.49 −1.030 0.306

tauP (pg/ml) 289.37± 75.55 249.37± 74.40 1.664 0.100

BDNF (ng/ml) 8.73± 3.58 9.82± 3.20 −1.038 0.302

IL-1β (pg/ml) 74.06± 13.38 71.69± 14.94 0.502 0.617

GDF15 (pg/ml) 1,129.09±
278.22

1,151.18±
330.00

−0.211 0.833

SERS

Peak 493 (cm−1) 0.50± 0.02 0.49± 0.06 0.528 0.599

Peak 592 (cm−1) 0.30± 0.01 0.29± 0.04 0.949 0.345

Peak 638 (cm−1) 0.99± 0.01 0.98± 0.10 0.533 0.595

Peak 725 (cm−1) 0.43± 0.21 0.48± 0.22 −0.775 0.440

Peak 813 (cm−1) 0.29± 0.01 0.28± 0.03 0.552 0.582

Peak 887 (cm−1) 0.29± 0.02 0.30± 0.04 0.237 0.814

Peak 1,003
(cm−1)

0.22± 0.02 0.23± 0.04 −0.984 0.328

Peak 1,134
(cm−1)

0.59± 0.03 0.58± 0.08 0.516 0.607

Peak 1,207
(cm−1)

0.34± 0.03 0.32± 0.04 1.118 0.267

Peak 1,331
(cm−1)

0.29± 0.05 0.31± 0.07 −0.532 0.596

Peak 1,656
(cm−1)

0.73± 0.17 0.65± 0.15 1.607 0.112

Means ± SDs. Aβ, β-amyloid; BDNF, brain derived neurotrophic factor; GDF, growth

differentiation factor.

groups, demonstrating the different biochemical components of

these groups. These components included L-serine, glutathione,

adenine, coenzyme A, phenylalanine, and nucleic and acid bases,

among others (37–39). Changes in these components correspond

to the processes in neuropsychiatric disorders, cellular metabolism,

and neurological functions (40, 41).

The SERS peak at 592 cm−1 represented ascorbic acid

and amide-VI. Ascorbic acid is a water-soluble antioxidant

that catalyzes the reduction of superoxide radicals and plays a

crucial role in maintaining oxidative balance (42). Many studies

have indicated that ascorbic acid deficiency is associated with

depression (43). Lower ascorbic acid status is also associated with

greater cognitive impairment (44, 45). Increased consumption

of ascorbic acid caused by oxidative stress in the brain may

lead to reduced levels in serum of patients with MCI and

AD (46).
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TABLE 6 Blood parameters of ELISA and SERS to APOE rs429358 in MCI

participants.

Biomarkers rs429358 t P-
value

T/T
(n = 14)

T/C + C/C
(n = 10)

ELISA

Aβ (ng/ml) 360.60± 56.07 381.38± 58.83 −0.870 0.394

Aβ40 (pg/ml) 316.85± 57.98 330.40± 66.04 −0.533 0.599

Aβ42 (pg/ml) 596.94± 80.48 630.74± 81.94 −1.004 0.326

tauT (pg/ml) 188.27± 28.46 195.76± 29.99 −0.615 0.542

tauP (pg/ml) 269.98± 34.95 272.43± 57.30 −0.120 0.898

BDNF (ng/ml) 9.42± 1.73 8.12± 1.52 1.902 0.065

IL-1β (pg/ml) 70.62± 9.25 71.33± 11.16 −0.170 0.866

GDF15 (pg/ml) 1,128.78±
233.59

1,132.69±
157.12

−0.046 0.961

SERS

Peak 493 (cm−1) 0.50± 0.03 0.48± 0.07 1.126 0.218

Peak 592 (cm−1) 0.30± 0.02 0.28± 0.04 1.399 0.176

Peak 638 (cm−1) 0.99± 0.01 0.96± 0.13 0.807 0.428

Peak 725 (cm−1) 0.43± 0.14 0.43± 0.23 −0.023 0.982

Peak 813 (cm−1) 0.29± 0.01 0.28± 0.04 0.714 0.482

Peak 887 (cm−1) 0.31± 0.01 0.30± 0.04 0.926 0.365

Peak 1,003
(cm−1)

0.22± 0.03 0.24± 0.03 −1.598 0.124

Peak 1,134
(cm−1)

0.60± 0.02 0.58± 0.08 0.633 0.533

Peak 1,207
(cm−1)

0.32± 0.03 0.34± 0.03 −1.332 0.177

Peak 1,331
(cm−1)

0.30± 0.06 0.30± 0.05 −0.174 0.864

Peak 1,656
(cm−1)

0.63± 0.12 0.69± 0.11 −1.202 0.242

Means ± SDs. Aβ, β-amyloid; BDNF, brain derived neurotrophic factor; GDF, growth

differentiation factor.

The SERS peak at 725 cm−1 represented C-H bending

vibration, adenine, and coenzyme A. Coenzyme A metabolism

plays a crucial role in the normal functioning andmetabolism of the

nervous system (47). Inborn errors of coenzyme A metabolism are

responsible for distinct forms of neurodegeneration with brain iron

accumulation (47, 48). The SERS peak at 1,003 cm−1 represented

the C-C symmetric stretch and phenylalanine. Dysregulation

of phenylalanine metabolism in the hippocampus may be an

important pathogenic mechanism for AD (49).

The SERS peak at 1,331 cm−1 represented C-H stretching

vibration, nucleic acid bases, andD-mannose. The results suggested

more cell-free DNA in the blood in patients with neuropsychiatric

disorders. Circulating cell-free DNA is a product of cell death.

The increase in circulating cell-free DNA levels might result from

excessive cell death in the brain due to higher oxidative stress levels

in neuropsychiatric disorders (50).

TABLE 7 Blood parameters of ELISA and SERS to APOE rs7412 in MCI

participants.

Biomarkers rs7412 t P-
value

T/T + T/C
(n = 3)

C/C
(n = 21)

ELISA

Aβ (ng/ml) 431.85± 41.95 364.27± 54.90 2.033 0.045

Aβ40 (pg/ml) 346.69± 33.34 319.04± 63.17 0.734 0.302

Aβ42 (pg/ml) 617.43± 81.65 611.23± 97.02 0.121 0.905

tauT (pg/ml) 193.49± 29.57 186.68± 29.10 0.374 0.712

tauP (pg/ml) 315.98± 20.01 265.04± 48.00 1.788 0.016

BDNF (ng/ml) 8.43± 1.24 8.94± 1.81 −0.471 0.642

IL-1β (pg/ml) 74.12± 14.00 70.46± 9.51 0.593 0.559

GDF15 (pg/ml) 1,050.05±
83.91

1,142.63±
196.91

−0.792 0.203

SERS

Peak 493 (cm−1) 0.49± 0.01 0.48± 0.06 0.453 0.655

Peak 592 (cm−1) 0.30± 0.02 0.29± 0.04 0.217 0.830

Peak 638 (cm−1) 0.99± 0.01 0.97± 0.11 0.360 0.722

Peak 725 (cm−1) 0.31± 0.06 0.44± 0.21 −1.119 0.038

Peak 813 (cm−1) 0.29± 0.01 0.28± 0.03 0.554 0.159

Peak 887 (cm−1) 0.31± 0.01 0.30± 0.03 0.168 0.710

Peak 1,003
(cm−1)

0.22± 0.01 0.23± 0.03 −0.896 0.103

Peak 1,134
(cm−1)

0.61± 0.03 0.59± 0.07 0.543 0.387

Peak 1,207
(cm−1)

0.34± 0.02 0.33± 0.03 0.574 0.572

Peak 1,331
(cm−1)

0.27± 0.01 0.30± 0.05 −0.932 0.050

Peak 1,656
(cm−1)

0.70± 0.10 0.65± 0.12 0.596 0.558

Means ± SDs. Aβ, β-amyloid; BDNF, brain derived neurotrophic factor; GDF, growth

differentiation factor.

The SERS peak of 1,656 cm−1 represented C=O stretching

vibration, amide-I, and α-helix. The results indicated increased

levels of free amino acids in the blood serum of patients with

neuropsychiatric disorders, which aligns with the findings of several

recent studies (51). Amino acids play essential roles in controlling

brain functions by acting as regulators of energy metabolism (52).

Alterations in free amino acid levels in blood may be influenced by

compromised energy metabolism, including nitrogen metabolism

and cerebral glucose metabolism in patients with neuropsychiatric

disorders (53).

The ELISA method provided information on protein

levels, including Aβ (total Aβ, Aβ40, and Aβ42), tau (total

and phosphorylated), BDNF, IL-1β, and GDF-15. GDF-

15 is significant in the biological aging of LLD (54).

Compared with patients with MCI, participants with LLD

had significantly higher GDF-15 levels. Late-life depression
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TABLE 8 Blood parameters of ELISA and SERS to APOE rs429358 in LLD

participants.

Biomarkers rs429358 t P-
value

T/T
(n = 16)

T/C + C/C
(n = 4)

ELISA

Aβ (ng/ml) 335.73± 64.81 406.33± 56.58 −2.176 0.043

Aβ40 (pg/ml) 322.15± 61.18 330.91± 38.88 −0.270 0.790

Aβ42 (pg/ml) 605.08± 91.88 654.25± 74.90 −0.985 0.338

tauT (pg/ml) 179.22± 33.71 188.16± 29.98 −0.522 0.608

tauP (pg/ml) 277.33± 68.75 278.42± 45.38 −0.039 0.969

BDNF (ng/ml) 9.40± 1.78 8.44± 1.77 0.970 0.345

IL-1β (pg/ml) 70.78± 10.33 77.00± 9.81 −1.123 0.276

GDF15 (pg/ml) 1,219.77±
201.83

1,410.19±
96.86

−1.808 0.021

SERS

Peak 493 (cm−1) 0.51± 0.03 0.43± 0.21 1.481 0.528

Peak 592 (cm−1) 0.29± 0.02 0.23± 0.11 1.961 0.407

Peak 638 (cm−1) 0.99± 0.03 0.81± 0.40 2.082 0.052

Peak 725 (cm−1) 0.54± 0.23 0.67± 0.23 −0.972 0.025

Peak 813 (cm−1) 0.30± 0.02 0.23± 0.11 2.437 0.344

Peak 887 (cm−1) 0.32± 0.01 0.25± 0.11 2.444 0.333

Peak 1,003
(cm−1)

0.23± 0.04 0.19± 0.10 1.318 0.204

Peak 1,134
(cm−1)

0.62± 0.04 0.50± 0.25 2.003 0.060

Peak 1,207
(cm−1)

0.35± 0.03 0.29± 0.14 1.483 0.155

Peak 1,331
(cm−1)

0.34± 0.06 0.37± 0.02 −1.185 0.054

Peak 1,656
(cm−1)

0.76± 0.14 0.73± 0.28 0.319 0.753

Means ± SDs. Aβ, β-amyloid; BDNF, brain derived neurotrophic factor; GDF, growth

differentiation factor.

is associated with GDF-15, a marker of age-related biological

changes. As it can measure the inelastic scattering between

monochromatic photons and detected molecules, SERS can

provide specific information on metabolic variations, which

may serve as valuable biomarkers in neurodegenerative and

neuropsychiatric disorders (55, 56). Combining ELISA and

SERS blood testing may be a valuable method to increase

diagnostic accuracy.

This study has some limitations and strengths. The strength

of this study was its elevated diagnostic accuracy using minimally

invasive methods of blood testing for material composition at

two different scales. A limitation of this study is that the sample

size was relatively small, which lead to high intra-class standard

deviations for the proposed SERS peaks. In future studies, we will

endeavor to enroll larger samples or collect a larger number of

TABLE 9 Blood parameters of ELISA and SERS to APOE rs7412 in LLD

participants.

Biomarkers rs7412 t P-
value

T/T + T/C
(n = 3)

C/C
(n = 17)

ELISA

Aβ (ng/ml) 406.06± 62.74 389.75± 65.19 0.401 0.693

Aβ40 (pg/ml) 289.43± 63.21 329.98± 55.19 −1.153 0.264

Aβ42 (pg/ml) 637.48± 75.00 610.93± 92.92 0.465 0.647

tauT (pg/ml) 190.81± 30.45 161.18± 6.22 1.644 0.002

tauP (pg/ml) 296.76± 52.26 274.92± 48.98 0.706 0.489

BDNF (ng/ml) 7.23± 1.68 8.88± 1.72 −1.535 0.142

IL-1β (pg/ml) 75.88± 9.99 75.02± 12.01 0.136 0.894

GDF15 (pg/ml) 1,274.70±
193.98

1,162.37±
245.95

0.895 0.383

SERS

Peak 493 (cm−1) 0.52± 0.02 0.49± 0.09 0.649 0.496

Peak 592 (cm−1) 0.31± 0.01 0.27± 0.06 1.026 0.030

Peak 638 (cm−1) 0.99± 0.01 0.95± 0.18 0.452 0.288

Peak 725 (cm−1) 0.42± 0.11 0.59± 0.23 −1.228 0.094

Peak 813 (cm−1) 0.29± 0.01 0.28± 0.06 0.348 0.424

Peak 887 (cm−1) 0.31± 0.01 0.31± 0.06 0.031 0.941

Peak 1,003
(cm−1)

0.20± 0.02 0.23± 0.06 −0.629 0.214

Peak 1,134
(cm−1)

0.62± 0.02 0.59± 0.12 0.434 0.327

Peak 1,207
(cm−1)

0.38± 0.02 0.33± 0.06 1.305 0.208

Peak 1,331
(cm−1)

0.32± 0.01 0.34± 0.06 −0.737 0.015

Peak 1,656
(cm−1)

0.95± 0.05 0.72± 0.16 2.449 0.025

Means ± SDs. Aβ, β-amyloid; BDNF, brain derived neurotrophic factor; GDF, growth

differentiation factor.

SERS spectra from the same samples/donors and use advanced

data analysis methods suitable for large sample processing, such

as machine learning, to train classification models and increase

diagnostic accuracy.

Conclusions

Blood biomarkers tested using ELISA and SERS are associated

with cognitive level. Combining ELISA and SERS is an innovative

technique that can significantly increase diagnostic accuracy.

Biomarkers of material composition at two scales can be

used to identify age-related neurodegenerative diseases and

neuropsychiatric disorders. Using the SERS + ELISA method can

improve the 96% accuracy for the classification of AD and LLD
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FIGURE 5

Receiver operating characteristic curves of di�erent parameters of diagnosis in cognitive decline AD (A) or MCI (B) and no cognitive decline LLD.

Combining ELISA and SERS parameters can improve the sensitivity and specificity. AD, Alzheimer’s disease; MCI, mild cognitive impairment; LLD,

late-life depression. The red line represents Aβ; the green line represents tau; the blue line represents the combination of Aβ and tau; the purple line

represents five peaks of 592, 725, 1,003, 1,331, and 1,656 cm−1; the brown line represents the combination of ELISA and SERS parameters; the black

line represents the identify line.

to 99% for the classification of MCI and LLD. The combination

of SERS and ELISA improved the accuracy of MCI and LLD

classification from 85 to 89%.
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