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Brain diseases pose a significant global health challenge due to their complexity and 
the limitations of traditional medical strategies. Recent advancements in artificial 
intelligence (AI), especially deep learning models like Convolutional Neural Networks 
(CNNs), Recurrent Neural Networks (RNNs), and Graph Neural Networks (GNNs), offer 
powerful new tools for analysis. These neural networks are effective at extracting 
complex patterns from high-dimensional data. By integrating diverse data sources-
such as neuroimaging, multi-omics, and clinical information-multimodal AI provides 
the comprehensive view needed to understand intricate disease mechanisms. This 
review outlines how these technologies enhance precision drug development 
and enable closed-loop treatment systems for brain disorders. Key applications 
include improving diagnostic accuracy, identifying novel biomarkers, accelerating 
drug discovery through target identification and virtual screening, and predicting 
patient-specific treatment responses. These AI-driven methods have the potential 
to shift medicine from a one-size-fits-all model to a personalized approach, with 
diagnostics and therapies tailored to individual profiles. However, realizing this 
potential requires addressing significant challenges related to data access, model 
interpretability, clinical validation, and practical integration.
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1 Introduction

The epidemic burden of brain diseases, encompassing conditions such as Alzheimer’s 
disease (AD), Parkinson’s disease, and various brain tumors, constitutes a pressing global 
health challenge. These diseases exhibit complex pathogenesis, with factors ranging from 
genetic predispositions and environmental influences to multifactorial interactions leading to 
neuronal degeneration and cognitive impairment (1, 2). The prevalence of such conditions 
continues to rise, prompting urgent calls for better diagnostics and therapeutics. Clinical 
advancements face substantial roadblocks, particularly in precision treatment and drug 
development. The blood–brain barrier (BBB) significantly complicates the delivery of 
therapeutic agents, leading to many drug candidates failing to penetrate effectively to their 
targets (3). Moreover, the focus on singular pathological mechanisms, such as amyloid-β in 
AD, has yielded limited success in drug approval (4). Central nervous system (CNS) drug 
candidates are significantly more likely than non-CNS therapies to fail in clinical development, 
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reflecting late-stage attrition driven by inadequate brain exposure (5). 
Approval success rates for non-CNS indications are approximately 
20%, whereas CNS therapeutics succeed at only 7–8% (6, 7). 
Furthermore, CNS pipelines incur extended development times-20% 
longer to develop and 38% longer to obtain approval compared to 
non-CNS programs (8). Innovations like tailored therapies and 
advanced biomarker systems are being explored, yet these solutions 
raise challenges of scalability and broad applicability in diverse patient 
populations (9).

The recent advancements in artificial intelligence (AI), particularly 
in neural learning networks and multimodal data integration, offer 
promising solutions for the challenges faced in diagnosing and 
treating brain diseases. Neural networks, such as convolutional neural 
networks (CNNs) and graph neural networks (GNNs), excel in 
automated feature extraction and complex pattern recognition, 
thereby facilitating rapid analysis of extensive and heterogeneous 
datasets from neuroimaging (MRI, PET) and molecular omics studies 
(10). Multimodal AI approaches enable the integration of diverse data 
sources-such as clinical records, multi-omics data, and real-time 
neuroimaging-enhancing the understanding of disease mechanisms 
that singular modalities might overlook (11). This comprehensive data 
analysis supports improved diagnostic accuracy, identification of 
novel biomarkers, and the acceleration of drug discovery by 
pinpointing promising therapeutic targets, ultimately paving the way 
for personalized medicine tailored to individual patients (1). 
Moreover, the application of AI technologies can help address the 
pressing need for timely and effective interventions in 
neurodegenerative diseases, significantly enhancing patient 
outcomes (12).

However, the widespread clinical adoption and practical 
implementation of AI-based approaches face considerable hurdles. 
Critical challenges include data standardization, privacy concerns, and 
the availability of diverse datasets, which complicate the training of 
robust AI models capable of generalization across various patient 

populations and clinical settings (13). Furthermore, issues 
surrounding model interpretability arise, as many AI systems operate 
as “black boxes,” limiting clinicians’ ability to understand and trust the 
decision-making processes behind their predictions (14, 15). Rigorous 
validation in real-world scenarios is essential to assess the reliability 
of these models in clinical practice, where patient variability can 
significantly impact outcomes (16, 17). While current discussions 
largely focus on AI’s reliability and explainability, addressing these 
limitations is vital to unlock the full potential of neural learning 
networks and multimodal AI in precision drug development and 
treatment systems for brain diseases (18). This mini-review aims to 
provide a synthesized overview of the precision drug development and 
closed-loop treatment system for brain diseases based on neural 
learning networks and multimodal AI.

2 Foundational technologies: neural 
learning networks and multimodal AI

The escalating burden of brain diseases necessitates a robust 
foundation for developing advanced computational strategies, 
particularly in precision drug development and closed-loop treatment 
systems. Central to this endeavor are neural learning networks and 
multimodal AI, technologies capable of processing complex, high-
dimensional biomedical data that overwhelm traditional analytical 
methods (19). Neural learning networks, encompassing a range of 
architectures, provide the engine for extracting intricate patterns and 
relationships from this data, while multimodal AI enables the 
integration of information across diverse biological and clinical 
domains, offering a more comprehensive view of disease states than 
single data sources allow (20) (Figure 1).

Within the landscape of neural learning networks, several 
architectures have emerged as particularly relevant to brain disease 
research. CNNs, for instance, excel at processing grid-like data such 

FIGURE 1

Multimodal medical analysis framework. The breakthrough of AI diagnosis system for neurodegenerative diseases lies in the integration of 
spatiotemporal MRI features and clinical trajectory data, and the recognition of non-static pathological patterns through convolutional neural 
networks, which significantly improves the accuracy of dynamic tracking. CNNs, convolutional neural networks.
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as images and time-series signals (21, 22). In the context of brain 
diseases, CNNs are widely applied to neuroimaging data, including 
MRI and PET scans, for tasks such as lesion segmentation (23), brain 
atrophy analysis (24), and classification of disease states or subtypes 
(25, 26). They are also utilized for analyzing EEG/SEEG signals for 
seizure detection and prediction by capturing spatial and temporal 
features (27, 28). RNNs, notably Long Short-Term Memory (LSTM) 
networks, are designed to handle sequential data, making them 
suitable for analyzing time-series data like physiological signals (EEG/
SEEG, vocal recordings) to identify temporal dependencies crucial for 
seizure prediction or tracking symptom progression (29, 30). GNNs 
are powerful for learning from data structured as graphs, which is 
highly applicable to biological networks such as protein–protein 
interactions (PPI) (31), drug-target interactions (DTI) (32), or 
relationships within knowledge graphs (KG) (33). GNNs can capture 
intricate relationships between entities, providing insights into 
underlying biological mechanisms and facilitating tasks like drug 
repurposing (32, 34). Transformer models, characterized by attention 
mechanisms, are increasingly used for their ability to weigh the 
importance of different data elements and capture long-range 
dependencies, finding application in sequence analysis and complex 
data integration (22, 35). Generative Adversarial Networks (GANs), 
while primarily known for generating synthetic data (36), are also 
employed in analysis tasks, for example, in denoising medical images 
or identifying complex patterns by learning underlying data 
distributions (24, 37). This diverse toolkit of neural learning 
architectures offers distinct advantages depending on the data 
structure and the specific task at hand. Sun R et al. developed a deep 
learning-based source imaging framework called DeepSIF, which 
significantly improved the spatiotemporal localization accuracy of 
drug-resistant focal epileptic seizure sources through synthetic 
training data and clinical verification (spatial specificity reached 96%, 
and spatial discreteness was only 3.80 ± 5.74 mm) (36).

The necessity for multimodal AI arises directly from the 
multifaceted nature of brain diseases. No single data modality provides 
a complete picture of the complex interplay of genetic, molecular, 
structural, functional, and behavioral factors that drive disease 
progression and affect treatment response (20, 38). Neuroimaging 
techniques, such as MRI and PET, offer crucial insights into structural 
and metabolic alterations in the brain, aiding diagnosis and tracking 
progression (26, 39). Omics data, including genomics, transcriptomics, 
and proteomics, shed light on the molecular underpinnings of disease, 
identifying relevant genes, pathways, and protein alterations (33, 38). 
Clinical data, ranging from patient history and symptom scales to 
physiological signals and behavioral assessments (vocal, gait), capture 
the phenotypic manifestations of disorders and patient responses to 
interventions (30, 40, 41). Molecular data, such as drug chemical 
structures and their interactions with biological targets, are 
fundamental for drug discovery and repurposing efforts (31, 32). 
Integrating these disparate data types through multimodal AI 
techniques is crucial. Various data fusion strategies are employed, 
from simple concatenation of features from different modalities to 
more sophisticated deep learning architectures designed for joint 
learning and integration (42, 43). Knowledge graphs (KGs) represent 
a powerful framework for organizing and integrating heterogeneous 
biomedical data by structuring entities (e.g., genes, drugs, diseases) 
and their relationships, facilitating knowledge discovery and inference 
that supports both diagnosis and drug development (32, 33). This 

comprehensive integration is seen as essential for moving toward 
precision medicine, where treatment decisions are informed by a 
holistic understanding of an individual’s disease based on multiple 
data layers (44).

While deep learning models demonstrate impressive performance 
metrics, the opacity of their decision-making processes can be  a 
significant barrier to clinical trust and widespread adoption. 
Researchers are clearly grappling with how best to balance predictive 
power with explainability, exploring techniques like attention 
mechanisms or leveraging KGs not just for prediction, but for 
providing biological context to those predictions. Furthermore, the 
optimal strategy for integrating multimodal data appears highly 
dependent on the specific task and available data, indicating that a 
universal “best” approach remains elusive. Ensemble strategies, where 
multiple models are trained on distinct data modalities or architecture 
variants and their predictions are combined, offer a pragmatic route 
to both bolster performance and enhance interpretability in clinical 
settings. By aggregating outputs, ensembles not only mitigate 
individual model biases and stabilize predictions across heterogeneous 
inputs but also enable uncertainty quantification critical for clinical 
trust (45). Moreover, task-specific ensemble designs can flexibly 
accommodate varying data availability-ranging from multi-omics 
profiles to imaging-thereby sidestepping the search for a one-size-
fits-all integration scheme and promoting robust, transparent decision 
support (46). Future advancements may lie not in finding a single 
dominant architecture or integration method, but in developing 
flexible frameworks that can be tailored and validated for specific 
brain diseases and clinical applications, potentially combining the 
strengths of different network types and fusion strategies to address 
the unique characteristics of each problem. The integration of neural 
learning networks and multimodal AI into brain disease research lays 
the groundwork for more accurate diagnosis, sophisticated prediction 
models, and accelerated drug development.

3 AI/ML for diagnosis and prediction 
of brain diseases

One prominent application area is the classification and subtyping 
of brain disorders. Distinguishing between different diseases or 
identifying specific subtypes within a heterogeneous condition like 
Parkinson’s disease or AD is critical for tailored treatment and 
improved outcomes (47, 48) (Figure 2).

Researchers have explored various strategies using neuroimaging 
data. For instance, deep learning models are applied to structural MRI 
(sMRI) or PET scans to classify patients into categories such as AD 
versus cognitively normal controls, or to differentiate between distinct 
stages or subtypes of cognitive impairment (25, 49). The theoretical 
basis often involves training the network to learn hierarchical features 
from the images that correlate with known pathological markers or 
clinical classifications (26). Multimodal imaging data, combining 
information from different MRI sequences (e.g., T1w, T2w, FLAIR) or 
integrating MRI and PET, is also leveraged to improve classification 
performance by providing complementary information (39, 50, 51). 
The problem of high-dimensional image data is often addressed 
through methods like feature extraction using pre-trained networks 
or dimensionality reduction techniques before classification (52). 
Similarly, in epilepsy, AI models are used to classify different types of 
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seizures based on EEG or SEEG signals (27, 53). Beyond imaging, 
clinical data, including electronic health records (EHRs) and 
behavioral assessments, are also analyzed by AI/ML models for disease 
classification and subtyping, sometimes integrating linguistic 
information from clinical notes using large language models (LLMs) 
(40, 54). The comparison of different approaches in the literature 
highlights ongoing efforts to optimize network architectures and data 
fusion strategies for maximum diagnostic accuracy across various 
disease contexts (25).

The identification and discovery of biomarkers is another key area 
where AI/ML is making significant inroads. Biomarkers, whether 
imaging-based, molecular, or clinical, are essential for early detection, 
tracking disease progression, and providing targets for therapeutic 
intervention (21, 38). AI/ML models are used to identify imaging 
biomarkers such as patterns of brain atrophy in AD or Parkinson’s 
disease from MRI (55). Techniques like GANs can be used to synthesize 
normative brain images, and the difference between a patient’s scan and 
the synthesized norm can highlight individualized pathological 
changes, acting as a biomarker (24). Quantitative image analysis 
methods, often powered by deep learning for tasks like segmentation 
or feature extraction, are used to derive precise metrics from images 
that serve as biomarkers (52). For molecular biomarkers, AI/ML 
models, particularly those using KGs, analyze large-scale omics datasets 
to identify genes, proteins, or other molecular entities by predicting 

their association with disease risk or progression (33, 38). Clinical 
biomarkers, such as those derived from vocal or gait analysis, are also 
identified and analyzed by AI/ML models, often combining different 
types of clinical data to improve detection of conditions like Parkinson’s 
disease (30, 56). The theoretical basis for biomarker identification often 
relies on the AI model’s ability to learn features that strongly correlate 
with disease status or outcome, providing a data-driven approach to 
complement traditional hypothesis-driven research (57).

Predicting disease progression and patient prognosis is a crucial 
aspect of personalized medicine and clinical trial design. AI/ML models 
are developed to forecast the likelihood and timing of disease progression 
or to predict outcomes after interventions (e.g., seizure freedom after 
surgery, recovery from stroke) (58). Survival analysis methods, often 
combined with deep learning, are employed to predict time-to-event 
outcomes based on clinical, imaging, or molecular data (51, 59). For 
complex outcomes like seizure freedom after epilepsy surgery, AI models 
analyze multimodal data including neuroimaging and SEEG recordings 
to predict the success of surgical resection based on features related to 
the seizure onset zone (SOZ) and its connectivity. The prediction 
accuracy was improved by up to 40%, with the best algorithm achieving 
96%/94%/96% prediction accuracy for core/expressive/receptive domain 
language improvement 2 months after surgery in an independent 
validation cohort (60, 61). Risk prediction models for conditions like 
stroke or atrial fibrillation recurrence are developed using AI/ML to 
analyze a variety of risk factors from clinical records and other data 
sources (62, 63). The problem of high-dimensional or imbalanced data 
in prediction tasks is addressed through techniques like feature selection 
algorithms or hybrid resampling techniques integrated into the AI 
framework (64, 65). Different modeling approaches, such as ensemble 
models or deep neural networks with attention mechanisms, are 
compared for their ability to improve prediction accuracy and provide 
interpretable insights into the factors driving outcomes (44).

There’s a notable diversity in the specific AI approaches and data 
combinations being explored, suggesting that no single “silver bullet” 
solution has yet been identified. One viewpoint emphasizes the power of 
deep learning to learn features directly from raw data, particularly 
imaging, arguing that complex patterns invisible to human eyes or 
traditional feature engineering methods can be captured effectively. An 
alternative perspective highlights the importance of incorporating prior 
biological knowledge, often through KGs or network-based approaches, 
believing that grounding the AI in known biology enhances 
interpretability and guides discovery. The integration of AI/ML into the 
diagnosis and prediction of brain diseases marks a significant step toward 
more precise and individualized patient care. By leveraging the power of 
neural learning networks and multimodal data analysis, researchers are 
developing tools capable of earlier and more accurate diagnosis, 
identification of critical biomarkers, and improved prediction of disease 
progression and treatment outcomes. The diversity of approaches, from 
deep learning on neuroimaging and omics data to network-based 
analysis and clinical prediction models, reflects the complexity of the 
diseases being studied and the active pursuit of optimal solutions.

4 AI/ML for precision drug 
development for brain diseases

A core approach in AI-driven drug discovery for brain diseases is 
the construction and analysis of KGs. Biomedical KGs integrate vast 

FIGURE 2

“Imaging-Biomics-Clinical” three-dimensional data fusion analysis 
architecture. Synergistically integrate imaging omics, multi-omics 
biomarkers and clinical time series data, build a cross-modal 
representation space through embedding networks, and innovatively 
couple XGBoost-driven interpretable classifiers and reinforcement 
learning decision modules. Not only can it achieve early detection of 
Tau protein deposition in Alzheimer’s disease, but it can also provide 
dynamic dose optimization strategies for individualized 
neuromodulatory therapies. MRI, Magnetic resonance imaging.
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amounts of heterogeneous data from diverse sources, including genes, 
diseases, drugs, pathways, and clinical information, into a structured 
format that facilitates knowledge discovery and inference (32, 33). 
Projects like TarKG and AlzKB have specifically focused on building 
comprehensive KGs tailored for target discovery and drug repurposing 
in AD, integrating data from public databases, literature, and 
traditional medicine knowledge bases (66, 67). PharmKG provides a 
broad, multi-relational KG for various biomedical entities to support 
data mining tasks (68). The theoretical basis for using KGs lies in their 
ability to represent complex relationships that are difficult to capture 
with traditional matrix-based methods. Biomedical KGs, such as 
TarKG and AlzKB, are analyzed using GNNs to predict new drug-
target interactions and identify candidates for repurposing (34, 69). 
This allows researchers to identify potential drug candidates and 
therapeutic targets by exploring the network structure and inferring 
connections based on existing knowledge (34). Some studies have 
highlighted the utility of incorporating additional information, such 
as pre-trained text embeddings from LLMs, to enhance the semantic 
richness of KG representations and improve link prediction 
performance (69). The insights gained from KG analysis can include 
identifying mechanisms of drug action, predicting adverse drug 
reactions, and suggesting novel drug candidates or targets (70).

Another crucial application is the identification of therapeutic 
targets. Brain diseases are often characterized by complex molecular 
mechanisms, and identifying the key proteins or pathways involved is 
essential for developing targeted therapies (33, 38). AI/ML models, 
can capture the interplay between different molecular layers, providing 
a more complete picture than analyzing each omics data type in 
isolation (71). Network-based approaches, often combined with deep 
learning, analyze the relationships between molecular entities (genes, 
proteins, metabolites) in disease-specific networks to prioritize 
potential targets (72). Examples from the literature include identifying 
targets for neurodegenerative diseases like DLK and JNK3 or 
exploring the roles of specific proteins like CD33 in AD (73–75). The 
theoretical basis here often involves identifying nodes or pathways 
within the network that are central or highly connected to disease-
related entities, suggesting their importance as potential therapeutic 
targets (72).

Beyond target identification, AI/ML is transforming the process 
of molecular design and screening to find potential drug candidates. 
Virtual screening, using AI/ML models to predict the binding affinity 
of large libraries of compounds to a target protein, allows for rapid 
filtering of millions of potential drug candidates before costly 
experimental testing (76, 77). Deep learning models are trained on 
data of known DTIs, learning patterns in molecular structures that 
predict binding (78). These computational predictions are often 
complemented by molecular docking simulations, which model the 
physical interaction between a drug molecule and its target protein, 
providing structural insights into binding (76). Some studies integrate 
deep learning with molecular docking or dynamics simulations to 
improve the accuracy of binding prediction and identify promising 
candidates (31, 73). Generative models represent a more advanced 
application, using deep learning to design entirely new drug molecules 
with desired properties, such as targeting specific proteins or crossing 
the blood–brain barrier, rather than just screening existing libraries 
(79, 80). Predicting drug properties like BBB permeability is crucial 
for CNS drugs, and AI/ML models have shown high accuracy in this 
task (81). Evaluating potential toxicity and other ADMET properties 

early in the process using AI/ML helps to filter out problematic 
candidates, reducing later stage failures (35, 82). The theoretical basis 
for these molecular design and screening approaches often relies on 
AI’s ability to learn complex relationships between molecular structure 
and biological activity or properties. The computational predictions 
generated by these AI/ML methods are then validated experimentally 
using in vitro or in vivo assays to confirm their therapeutic potential 
(77). Case studies highlighting the discovery of specific compounds 
or the validation of predicted targets demonstrate the practical 
applicability of these AI-driven workflows (83, 84).

AlzKB is a publicly accessible knowledge graph integrating 
118,902 entities and 1,309,527 relationships, including genes, proteins, 
compounds, and phenotypes, enable AI-driven drug repurposing for 
AD. By applying graph-based machine learning and link-prediction 
algorithms, investigators have identified novel therapeutic targets 
through similarity measures between AD and Parkinson’s disease 
subgraphs, highlighting candidate repurposed drugs for further 
validation (67).

Reflecting on the diverse landscape of AI/ML applications in brain 
disease drug development, the inherent difficulty of conventional drug 
discovery for these complex conditions has spurred a remarkable 
surge in creative computational approaches. It’s particularly striking 
to observe the interplay between data-driven discovery, relying on AI 
to find patterns in vast datasets, and knowledge-guided methods, 
which seek to embed existing biological understanding into the AI 
models. Is the most effective path one that lets the AI find completely 
novel associations, or one that uses AI to more efficiently search 
within a biologically plausible space? The literature suggests a complex 
answer, often highlighting the strengths of hybrid approaches that 
combine data-driven insights with biological constraints or leverage 
KGs to provide context to purely pattern-based findings. This tension 
is understandable; while pure data-driven models can uncover 
unexpected connections, their predictions may lack biological 
interpretability, hindering translation. Conversely, relying too heavily 
on existing knowledge might limit the discovery of truly novel 
therapies. The continuous cycle of computational prediction followed 
by experimental validation, as described in several studies, 
underscores the iterative nature of this process and the essential 
partnership between AI and traditional methods. Furthermore, the 
focus on drug repurposing, while practical, also raises questions about 
whether existing compound space is sufficient to address the 
fundamental complexities of these diseases, or if de novo molecular 
design powered by generative AI will be  required to unlock truly 
transformative therapies. Both paths are being actively pursued, which 
reflects the multifaceted potential of AI in this crucial field as well as 
the pressing need for efficient treatments.

The integration of AI/ML tools for drug development is also 
increasingly focused on enabling precision medicine, tailoring 
therapies to individual patient profiles. Insights gained from diagnosis 
and prediction models, particularly those identifying disease subtypes 
or individual risk factors, can inform the drug discovery process (44). 
AI models can predict the efficacy of specific drugs for individual 
patients based on their unique clinical, genetic, or molecular profiles 
(85). This represents a significant progress from a one-size-fits-all 
approach to a more personalized strategy for therapeutic intervention. 
The ability to link identified targets, candidates, or predicted drug 
properties back to patient-specific data is a crucial step toward 
delivering on the promise of precision medicine for brain diseases (38).
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5 AI/ML for closed-loop treatment 
systems and personalized medicine

One of the main objectives of brain disease research is to convert 
diagnostic and predictive insights into efficient therapeutic 
interventions and individualized patient care. Beyond merely 
identifying disease states, AI and ML are being used more and more 
to close this gap by directly influencing or even automating treatment 
plans. A crucial frontier is the shift to closed-loop systems and 
personalized medicine, which seeks to maximize results by 
customizing interventions to each patient’s distinct biological and 
clinical characteristics.

The use of AI/ML to forecast treatment response and suggest the 
best treatments is one important application. For conditions like 
epilepsy, recent studies trained CNNs to predict the likelihood of 
seizure freedom following surgery or the effectiveness of specific 
antiseizure medications based on patient data, including clinical 
history, neuroimaging, and even genetic information (86, 87). These 
models aim to assist clinicians in selecting the most appropriate 
treatment from the outset, potentially reducing the need for trial-and-
error approaches and improving patient outcomes (86, 87). Similarly, 
in Parkinson’s disease, AI models are used to predict outcomes of deep 
brain stimulation (STN-DBS) based on multimodal data fusion, 
supporting personalized treatment planning (88). Predicting disease 
progression using AI/ML can also inform personalized 
recommendations, guiding medical practitioners on interventions to 
mitigate or postpone the effects of conditions like AD (59). The 
theoretical basis for these predictive models often involves learning 
complex, non-linear relationships between diverse patient features 
and treatment outcomes, leveraging the pattern recognition 
capabilities of deep neural networks and multimodal fusion techniques.

Enabling truly personalized treatment involves leveraging the 
wealth of data generated by AI/ML for a detailed understanding of an 
individual’s disease. Identifying specific molecular subtypes of 
Parkinson’s disease using multi-omics data analyzed by AI can guide 
the selection of therapeutic targets for drug repurposing (32). AI/ML 
models are also used to optimize drug development strategies 
specifically for neurodegenerative diseases by integrating drug-target 
information into models that predict potential therapeutic agents (89, 
90). The concept extends to the design of drug delivery systems, where 
AI models can predict promising nanoparticle-drug combinations for 
neurodegenerative diseases, tailoring the delivery strategy to enhance 
efficacy and safety (91). Frameworks that integrate diagnosis, 
prediction, and drug recommendation within a unified AI architecture 
are being explored to provide a comprehensive approach to 
personalized management (21). Multimodal reinforcement learning 
is also being investigated to optimize medication recommendations 
in Parkinson’s disease based on diverse data modalities, aiming to 
assist clinicians in making informed decisions about tailored 
medication regimes (92). This emphasizes that personalization goes 
beyond simply predicting a general outcome; it involves understanding 
the individual’s specific disease manifestations and predicting how 
they will respond to different therapeutic options at a granular 
level (93).

The vision of closed-loop treatment systems represents the 
ultimate application of AI/ML in patient management, where AI goes 
beyond providing decision support to directly influencing therapeutic 
interventions in real-time. While still largely in the research phase for 

many brain diseases, the concept involves continuous monitoring of 
a patient’s state using physiological sensors (e.g., EEG, gait sensors), 
real-time analysis of this data by AI models to detect changes or 
predict events (e.g., seizures, “wearing off ” periods), and automated 
adjustment of therapy (e.g., electrical stimulation, potentially 
medication delivery) based on the AI’s assessment (94–96). Adaptive 
deep brain stimulation (aDBS) in Parkinson’s disease serves as a 
prominent example, where AI analyzes neurophysiological 
biomarkers from implanted electrodes to adjust stimulation 
parameters dynamically (97). The theoretical basis involves training 
AI models to recognize specific physiological states or predict 
impending events from sensor data with high accuracy and low 
latency, enabling timely intervention (96, 97). Wearable sensors 
integrated with AI for real-time monitoring of symptoms like gait 
abnormalities or physiological states in Parkinson’s disease are being 
developed with the potential to inform automated or clinician-
guided adjustments (94, 96). Similarly, real-time seizure detection 
from EEG using energy-efficient neural networks is explored for 
low-power wearable or implantable devices, which could form a 
component of a closed-loop system for epilepsy management (22, 
41). The long-term goal is to create systems that can continuously 
monitor, analyze, and respond to a patient’s condition, providing 
precise, individualized therapy with minimal human oversight, 
particularly for conditions characterized by unpredictable 
fluctuations or acute events.

Adaptive deep brain stimulation (aDBS) exemplifies how closed-
loop systems integrate AI/ML to tailor neuromodulatory therapy. 
These systems continuously monitor biomarkers, such as local field 
potentials and tremor metrics, to adapt stimulation parameters in real 
time, thereby reducing side effects and improving battery longevity 
(98, 99). In parallel, wearable EEG-based systems employ machine 
learning algorithms for ongoing electrophysiological monitoring and 
dynamic adjustment of therapeutic interventions. For instance, a 
study using a closed-loop wearable ultrasound DBS system based on 
EEG in mice provided promising data regarding seizure control, 
underscoring the potential for personalized treatments (100). 
Additionally, advances in integrated wearable EEG–fNIRS technology 
further support the development of responsive, patient-specific 
modalities that enhance clinical outcomes (101). A prominent clinical 
exemplar is Medtronic’s Percept™ PC implantable pulse generator, 
which utilizes BrainSense™ technology to chronically record neural 
signals and implement adaptive DBS algorithms in Parkinson’s disease 
and epilepsy, illustrating the translation of AI-driven closed-loop 
therapies into practice (8, 45).

However, real-world clinical adoption faces notable barriers such 
as latency, false positives, and battery life. Systems developed for 
seizure forecasting using weak self-supervised learning have reported 
high false positive rates, which not only risk unnecessary stimulations 
but also significantly impact the battery longevity of implanted devices 
(102). Battery constraints indeed become critical when frequent false 
alarms lead to excessive energy consumption, as illustrated in studies 
on absence seizure controllers (103) and efficient reservoir computing 
systems (104). Achieving ultra-low latency is essential for timely 
intervention; recent advancements in neuromorphic networks have 
achieved millisecond-scale detection (105), and wireless 
neuromodulation devices emphasize low-latency signal extraction 
(106). However, ensuring consistent performance in clinical 
environments remains a challenge. Addressing these issues through 
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improved algorithmic precision and energy-efficient hardware is 
crucial for advancing personalized, closed-loop therapies.

While studies demonstrate AI’s ability to predict states like 
Parkinson’s “on” or “off ” periods or impending seizures with high 
accuracy, the decision to automatically deliver a therapy based on 
these predictions involves a level of trust and accountability that 
current models, despite their performance, may not fully warrant. 
How do we  ensure the safety and reliability of AI in triggering 
interventions, particularly when rare or unexpected events occur? 
How do we  design systems that allow for human oversight and 
override when necessary? The debates implicitly present in the 
literature suggest that while the technical feasibility of closed-loop 
systems is advancing rapidly, the ethical frameworks, regulatory 
pathways, and clinical integration strategies required to ensure their 
safe and effective use in high-stakes brain disease management are still 
very much under development. Moving forward, it seems imperative 
that the conversation extends beyond algorithmic performance 
metrics to encompass the socio-technical aspects of deploying AI that 
interacts directly with human physiology, ensuring that these powerful 
tools augment, rather than replace, the essential human element 
of care.

By leveraging AI for treatment prediction, medication 
recommendation, and dynamic therapeutic adjustments, researchers 
are paving the way for more effective and individualized patient care 
(120). While promising systems like aDBS demonstrate the early 
potential of closed-loop approaches, challenges related to clinical 
validation, regulatory approval, and building trust in automated 
interventions remain.

6 Challenges and limitations

Despite the transformative potential of AI and ML for advancing 
diagnosis, prediction, drug development, and personalized treatment 
in brain diseases, significant challenges and limitations persist that 
temper the pace of translation into widespread clinical practice. These 
hurdles are multifaceted, spanning issues related to the data used to 
train and validate models, the models themselves, and the complex 
environment of clinical integration and regulatory oversight. 
Addressing these challenges is paramount for the responsible and 
effective deployment of AI in this high-stakes domain.

A primary set of challenges revolves around data. Brain diseases 
are inherently complex, and capturing their heterogeneity requires 
large, diverse datasets, which are often difficult to acquire and share 
due to ethical considerations, institutional policies, and the variability 
in data acquisition protocols across different centers (43, 64). The 
heterogeneity extends to the data modalities themselves; integrating 
disparate types like neuroimages, omics data, and clinical records, 
each with its own format, resolution, and inherent noise, presents 
considerable technical hurdles (20). Standardizing data collection and 
annotation is a labor-intensive process, and the quality of available 
data can be  inconsistent, impacting model performance (52). 
Furthermore, many brain diseases, particularly rare conditions or 
specific subtypes, suffer from data scarcity and class imbalance, 
making it difficult to train robust models that perform well on 
underrepresented patient groups (30, 64). The need for real-time or 
near-real-time analysis in applications like seizure detection or closed-
loop treatment systems further complicates data handling, requiring 

efficient pipelines for data acquisition and processing (41). Privacy 
and security are paramount concerns when dealing with sensitive 
patient data, necessitating robust data governance frameworks and 
potentially privacy-preserving techniques like federated learning to 
enable multi-site collaboration without centralizing raw data (107). 
The absence of standardized, large-scale, well-annotated multimodal 
datasets remains a significant impediment to developing and 
validating AI models that can generalize effectively across diverse 
patient populations and clinical settings.

Challenges related to the AI/ML models themselves are also 
considerable. One of the most frequently cited limitations is the lack 
of interpretability and explainability of complex deep learning models 
(56, 108). Often referred to as “black boxes,” these models can provide 
highly accurate predictions or classifications, but their internal 
decision-making processes are opaque (56). This lack of transparency 
poses a significant barrier to clinical trust and adoption, as clinicians 
need to understand why a model makes a particular recommendation 
or prediction to integrate it into patient care, especially for high-stakes 
decisions like surgical planning or drug prescription (108). While 
methods like attention mechanisms or leveraging KGs can enhance 
interpretability (41, 109), achieving full explainability that satisfies 
clinical requirements remains an active area of research (108). 
Generalizability is another critical challenge; models trained on data 
from one site or population often perform poorly when applied to data 
from different sources due to variations in data acquisition, patient 
demographics, or disease presentation (27). Developing robust models 
that can adapt to these variations or perform effectively on unseen 
data is essential for widespread clinical utility (41). Scalability and 
computational efficiency are also important considerations, 
particularly for real-time applications or analyzing massive datasets. 
While some models are designed for energy-efficient hardware (110), 
deploying complex multimodal AI models at scale can 
be computationally demanding.

Several studies have noted that models with high internal 
predictive accuracy (exceeding 80%) often perform poorly when 
externally validated, with accuracy sometimes dropping below 70% 
(111). For instance, an AI/ML-derived whole-genome predictor for 
glioblastoma experienced issues of overfitting and lack of 
generalizability, highlighting challenges in replicating performance in 
prospective trials (112). Similarly, organoid models used to simulate 
patient-specific responses can demonstrate considerable inter-patient 
variability, which current algorithms may not fully account for, 
contributing to subsequent trial failures (113). In neurodegenerative 
drug research, preclinical models continue to expose the risks of 
relying solely on internal metrics, as overfitting has been linked to 
high attrition rates in later-stage trials (114).

Algorithmic bias in precision drug development for brain diseases is 
a significant concern, as biased models have been shown to underperform 
by 15–20% for underrepresented populations, potentially leading to 
misestimated drug efficacy and safety (115). Federated learning emerges 
as a promising strategy by enabling decentralized model training across 
multiple institutions, thereby increasing dataset diversity and addressing 
privacy concerns that can exacerbate bias (115). Concurrently, 
explainable artificial intelligence (XAI) methods are pivotal for making 
complex machine learning (ML) decisions transparent, which facilitates 
the detection and mitigation of systemic biases affecting marginalized 
groups (115). The U. S. Food and Drug Administration’s AI/ML Software 
Action Plan further underscores the need for regulatory oversight, 
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ensuring adaptive systems are validated on heterogeneous populations 
and maintain robust performance over time (116, 117).

The path to integrating AI/ML technologies into clinical practice 
and regulatory frameworks for brain diseases is fraught with its own 
set of challenges. Rigorous clinical validation is a non-negotiable step, 
requiring large-scale, prospective trials to demonstrate the real-world 
efficacy, safety, and clinical utility of AI-based tools (86, 118). The 
discrepancy sometimes observed between performance on internal 
validation datasets and external validation highlights the importance 
of testing models in diverse clinical settings. Regulatory bodies are still 
developing frameworks for evaluating and approving AI/ML-based 
medical devices, and the dynamic nature of some AI models that learn 
and adapt over time poses particular challenges for traditional 
approval processes (19, 118). Building clinical trust and ensuring clear 
accountability when AI is used to inform or directly influence patient 
care is also crucial (118). The acceptance of AI tools by clinicians 
depends not only on performance but also on usability, interpretability, 
and seamless integration into existing clinical workflows. Overcoming 
these barriers requires interdisciplinary collaboration between AI 
researchers, clinicians, data scientists, and regulatory experts to ensure 
that AI is developed and deployed responsibly and effectively.

Brain data often involves highly sensitive personal health 
information, such as neuroimaging scans, cognitive assessments, and 
even psychological states. Improper handling could cause significant 
ethical and privacy violations. Regulations like the EU’s General Data 
Protection Regulation (GDPR) and the US Health Insurance 
Portability and Accountability Act (HIPAA) establish frameworks for 
data use and protection (119). They require AI systems to embed 
compliance mechanisms-including data minimization, encrypted 
storage, audit trails, and informed consent processes-during design 
and application phases.

In brain disease diagnostics, the lack of transparency in black-box 
models limits physicians’ trust and adoption. This has driven 
widespread use of explainability techniques like SHAP, LIME, and 
Grad-CAM. Regulators increasingly require developers to clarify 
decision logic, particularly in high-risk scenarios. The US FDA and 
EU CE certification frameworks now oversee AI medical software, 
with FDA’s “Software as a Medical Device (SaMD)” guidelines and AI/
ML lifecycle management recommendations outlining paths for 
registration, modification, and ongoing monitoring.

However, current certification processes primarily address static 
models. For AI systems with continuous learning capabilities, robust 
mechanisms for dynamic risk assessment and version tracking remain 
underdeveloped. These models self-optimize using new post-
deployment data, risking “drift” that may invalidate original validation 
outcomes. Consequently, regulators are exploring “change protocol” 
mechanisms to log, review, and revalidate parameter updates.

The inherent complexity of brain diseases demands equally 
complex, data-intensive AI models, yet the very complexity that 
enables predictive power can undermine the interpretability, 
generalizability, and clinical trust essential for real-world impact. There 
is a visible struggle to balance the promise of cutting-edge performance 
with the need for models that are robust, fair, and understandable to 
both clinicians and patients. The varied attempts to address these 
issues-from developing novel model architectures to enhancing data 
fusion techniques or focusing on interpretability methods-reflect a 
field actively grappling with how to harness the power of AI 
responsibly. The disparities in reported performance across studies, 

even for seemingly similar tasks, underscore the sensitivity of these 
models to data characteristics and validation protocols. This variability 
is not a sign of failure, but rather a reflection of the field’s immaturity 
and the deep, complex problems it is trying to solve. The path forward 
requires a frank acknowledgment of these limitations and a concerted 
effort to build not just more powerful algorithms, but also the 
necessary infrastructure, standards, and collaborative frameworks that 
can support the rigorous development, validation, and responsible 
deployment of AI in brain disease research and clinical care.

7 Future directions

The journey toward fully realizing the potential of AI in brain 
disease research and clinical care is ongoing, with numerous 
promising avenues for future exploration. The reliance on large, high-
quality, and diverse datasets for training robust AI models necessitates 
significant effort in standardizing data collection protocols and 
establishing secure, collaborative data-sharing platforms. Future 
directions will involve developing innovative approaches for federated 
learning and other privacy-preserving techniques that allow AI 
models to be trained on distributed datasets without compromising 
patient confidentiality. Furthermore, research will continue to explore 
methods for handling data heterogeneity, noise, and imbalance to 
ensure that AI models are robust and generalizable across diverse 
patient populations and clinical settings.

The development of truly closed-loop treatment systems represents 
a long-term goal that requires continued research and technological 
advancements. While current systems in areas like adaptive deep brain 
stimulation demonstrate early potential, future efforts will aim to create 
more sophisticated systems that can continuously monitor a wider 
range of physiological and behavioral signals, predict impending events 
with higher accuracy and lower latency, and automate therapeutic 
adjustments in a safe and effective manner. This involves developing 
energy-efficient AI models that can operate on wearable or implantable 
devices, as well as establishing robust feedback control mechanisms 
that can dynamically adjust interventions based on the AI’s real-time 
assessment of the patient’s state. Wearable biosensors for sleep and 
heart rate variability monitoring are emerging research frontiers for 
enabling real-time physiological feedback in closed-loop therapeutic 
systems. The integration of multi-omics data into these closed-loop 
systems could also provide more personalized and precise therapeutic 
adjustments, tailored to the individual’s unique biological profile.

The rapid evolution of AI technology itself will continue to drive 
future directions. Researchers will explore the application of novel AI 
architectures and techniques, such as advanced generative models for 
drug design or new forms of GNNs for analyzing complex biological 
networks, to address previously intractable problems in brain disease 
research. The potential of using AI to explore less-studied aspects of 
brain diseases, such as the interplay between different neurological 
conditions or the impact of environmental factors on disease risk, also 
represents a fertile ground for future research.

8 Conclusion

This review highlights the transformative potential of AI and ML 
in addressing complex brain diseases. By leveraging neural learning 
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networks and multimodal AI, researchers can analyze diverse datasets 
from neuroimaging, genomics, and clinical records to uncover 
previously unattainable insights. Key advancements include improving 
diagnostic accuracy, discovering biomarkers for early detection, and 
accelerating precision drug development through methods like 
knowledge graph analysis and virtual molecular screening. AI is also 
paving the way for personalized medicine by predicting individual 
treatment responses and enabling adaptive closed-loop systems, such 
as adaptive deep brain stimulation. The core contribution of these 
technologies is their ability to decipher complex patterns and integrate 
heterogeneous data, guiding clinical decisions and drug discovery 
with enhanced precision.

However, significant challenges hinder widespread clinical 
adoption. Critical issues include data acquisition, standardization, and 
privacy. The “black box” nature of many deep learning models creates 
obstacles for clinical trust and regulatory approval, highlighting the 
need for more interpretable AI. Furthermore, ensuring models are 
generalizable across diverse populations, mitigating algorithmic bias, 
and conducting rigorous prospective clinical validation are essential. 
Future work must focus on creating robust and transparent AI, 
fostering collaboration to build high-quality multimodal datasets, and 
developing clear regulatory pathways. Overcoming these hurdles is 
crucial to fully realize AI’s potential to usher in a new era of precision 
neuroscience and improve care for patients with brain diseases.

Author contributions

S-jF: Writing  – original draft, Conceptualization. Z-dY: 
Conceptualization, Writing – original draft. QC: Writing – original 

draft. L-fL: Writing – original draft. P-fZ: Writing – review & editing. 
L-zC: Conceptualization, Writing – review & editing, Supervision.

Funding

The author(s) declare that no financial support was received for 
the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Gen AI was used in the creation of 
this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

References
 1. Aguzzi A, Kampmann M. Neurodegeneration enters the era of functional genomics. 

Science. (2023) 381:eadk5693. doi: 10.1126/science.adk5693

 2. Hodson R. Alzheimer’s disease. Nature. (2018) 559:S1. doi: 
10.1038/d41586-018-05717-6

 3. Bender E. Getting Cancer drugs into the brain. Nature. (2018) 561:S46–7. doi: 
10.1038/d41586-018-06707-4

 4. Prillaman M. Alzheimer’s drug slows mental decline in trial  - but is it a 
breakthrough? Nature. (2022) 610:15–6. doi: 10.1038/d41586-022-03081-0

 5. Zhou X, Smith QR, Liu X. Brain penetrating peptides and peptide–drug conjugates 
to overcome the blood–brain barrier and target Cns diseases. Wiley Interdiscip Rev 
Nanomed Nanobiotechnol. (2021) 13:e1695. doi: 10.1002/wnan.1695

 6. Shi Z, Chu Y, Zhang Y, Wang Y, Wei DQ. Prediction of blood-brain barrier 
permeability of compounds by fusing resampling strategies and extreme gradient 
boosting. IEEE Access. (2021) 9:9557–66. doi: 10.1109/access.2020.3047852

 7. Luo X, Ding Y, Cao Y, Liu Z, Zhang W, Zeng S, et al. Few-shot meta-learning 
applied to whole brain activity maps improves systems neuropharmacology and drug 
discovery. iScience. (2024) 27:110875. doi: 10.1016/j.isci.2024.110875

 8. Holloway PM, Willaime-Morawek S, Siow R, Barber M, RnM O, Sharma AD, et al. 
Advances in microfluidic in vitro systems for neurological disease modeling. J Neurosci 
Res. (2021) 99:1276–307. doi: 10.1002/jnr.24794

 9. Servick K. Alzheimer’s experts greet China’s surprise approval of a drug for brain 
disease with Hope and caution. Science. (2019). doi: 10.1126/science.aba1117

 10. Chang C-W, Shao Q, Mucke L. Tau: enabler of diverse brain disorders and target 
of rapidly evolving therapeutic strategies. Science. (2021) 371:eabb8255. doi: 
10.1126/science.abb8255

 11. Topol EJ. As artificial intelligence Goes multimodal, medical applications multiply. 
Science. (2023) 381:adk6139. doi: 10.1126/science.adk6139

 12. Harris E. Aducanumab combined with focused brain ultrasound more effective. 
JAMA. (2024) 331:466–7. doi: 10.1001/jama.2023.27970

 13. Zalewa K, Olszak J, Kapłan W, Orłowska D, Bartoszek L, Kaus M, et al. Application 
of artificial intelligence in radiological image analysis for pulmonary disease diagnosis: 
a review of current methods and challenges. J Educ Health Sport. (2025) 77:56893. doi: 
10.12775/jehs.2025.77.56893

 14. Raghukumar R, Nair A, Raju A, D‘Cruz A, Joseph S. Ai used to predict Alzheimer’s 
disease. Int Res J Adv Engg MGT. (2024) 2:3647–51. doi: 10.47392/irjaem.2024.0541

 15. Jayaraj AF. The intersections of artificial intelligence, brain imaging tools and 
diagnostics for neurodegenerative diseases. J Stud Res. (2023) 12. doi: 
10.47611/jsrhs.v12i3.5077

 16. Al-Kadi OS, Al-Emaryeen R, Al-Nahhas S, Almallahi I, Braik R, Mahafza WS. 
Empowering brain cancer diagnosis: harnessing artificial intelligence for advanced 
imaging insights. Rev Neurosci. (2024) 35:399–419. doi: 10.1515/revneuro-2023-0115

 17. Ahmed H, Mo D, Samaila BB. Current challenges of the state-of-the-art of AI 
techniques for diagnosing brain tumor. Mater Sci Eng Int J. (2023) 7:196–208. doi: 
10.15406/mseij.2023.07.00224

 18. Ratnakar A, Sawant S, Karajagikar J. Explainable AI-driven deep learning for 
neurological disease diagnosis using MRI: a systematic review and future directions. Int 
J Sci Res Arch. (2025) 14:1799–832. doi: 10.30574/ijsra.2025.14.2.0533

 19. Suarez JI. Big data/Ai in Neurocritical care: maybe/summary. Neurocrit Care. 
(2022) 37:166–9. doi: 10.1007/s12028-021-01422-x

 20. Liu XF, Lu ZJ. Progress of bioinformatics studies for multi-omics and multi- modal 
data in complex diseases. Chin Sci Bull-Chin. (2024) 69:4432–46. doi: 
10.1360/tb-2024-0416

 21. Wang YP, Yang YF, Li S, Su ZC, Guo JJ, Wei PH, et al. Automatic localization of 
seizure onset zone based on multi-epileptogenic biomarkers analysis of single-contact 
from Interictal Seeg. Bioengineering-Basel. (2022) 9:20. doi: 
10.3390/bioengineering9120769

 22. Peng PZ, Xie LP, Wei HK. A deep Fourier neural network for seizure prediction 
using convolutional neural network and ratios of spectral power. Int J Neural Syst. (2021) 
31:2150022. doi: 10.1142/s0129065721500222

https://doi.org/10.3389/fneur.2025.1615523
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://doi.org/10.1126/science.adk5693
https://doi.org/10.1038/d41586-018-05717-6
https://doi.org/10.1038/d41586-018-06707-4
https://doi.org/10.1038/d41586-022-03081-0
https://doi.org/10.1002/wnan.1695
https://doi.org/10.1109/access.2020.3047852
https://doi.org/10.1016/j.isci.2024.110875
https://doi.org/10.1002/jnr.24794
https://doi.org/10.1126/science.aba1117
https://doi.org/10.1126/science.abb8255
https://doi.org/10.1126/science.adk6139
https://doi.org/10.1001/jama.2023.27970
https://doi.org/10.12775/jehs.2025.77.56893
https://doi.org/10.47392/irjaem.2024.0541
https://doi.org/10.47611/jsrhs.v12i3.5077
https://doi.org/10.1515/revneuro-2023-0115
https://doi.org/10.15406/mseij.2023.07.00224
https://doi.org/10.30574/ijsra.2025.14.2.0533
https://doi.org/10.1007/s12028-021-01422-x
https://doi.org/10.1360/tb-2024-0416
https://doi.org/10.3390/bioengineering9120769
https://doi.org/10.1142/s0129065721500222


Fang et al. 10.3389/fneur.2025.1615523

Frontiers in Neurology 10 frontiersin.org

 23. Aminpour A, Ebrahimi M, Widjaja E. Lesion segmentation in paediatric epilepsy 
utilizing deep learning approaches. Adv Artif Intell Mach Learn. (2022) 2:422–40. doi: 
10.54364/AAIML.2022.1128

 24. Shi R, Sheng C, Jin SC, Zhang Q, Zhang SY, Zhang L, et al. Generative adversarial 
network constrained multiple loss autoencoder: a deep learning-based individual 
atrophy detection for Alzheimer's disease and mild cognitive impairment. Hum Brain 
Mapp. (2023) 44:1129–46. doi: 10.1002/hbm.26146

 25. Chen YS, Wang LZ, Ding BJ, Shi JS, Wen TX, Huang JL, et al. Automated 
Alzheimer's disease classification using deep learning models with soft-Nms and 
improved Resnet50 integration. J Radiat Res Appl Sci. (2024) 17:100782. doi: 
10.1016/j.jrras.2023.100782

 26. El-Assy AM, Amer HM, Ibrahim HM, Mohamed MA. A novel CNN architecture 
for accurate early detection and classification of Alzheimer's disease using MRI data. Sci 
Rep. (2024) 14:19. doi: 10.1038/s41598-024-53733-6

 27. Rukhsar S, Tiwari AK. Lightweight convolution transformer for cross-patient 
seizure detection in multi-channel EEG signals. Comput Methods Prog Biomed. (2023) 
242:10. doi: 10.1016/j.cmpb.2023.107856

 28. Li Z, Fields M, Panov F, Ghatan S, Yener B, Marcuse L. Deep learning of 
simultaneous intracranial and scalp EEG for prediction, detection, and lateralization of 
mesial temporal lobe seizures. Front Neurol. (2021) 12:10. doi: 10.3389/fneur.2021.705119

 29. Jusseaume K, Valova I. Brain age prediction/classification through recurrent deep 
learning with electroencephalogram recordings of seizure subjects. Sensors. (2022) 
22:28. doi: 10.3390/s22218112

 30. Soylu E, Guel S, Koca KA, Tuerkoglu M, Terzi M, Senguer A. Speech signal-based 
accurate neurological disorders detection using convolutional neural network and 
recurrent neural network based deep network. Eng Appl Artif Intell. (2025) 149:15. doi: 
10.1016/j.engappai.2025.110558

 31. Wang MK, Hou SJ, Wei Y, Li DM, Lin JP. Discovery of novel dual adenosine A1/
A2a receptor antagonists using deep learning, pharmacophore modeling and molecular 
docking. PLoS Comput Biol. (2021) 17:e1008821. doi: 10.1371/journal.pcbi.1008821

 32. Zhang XL, Che C. Drug repurposing for Parkinson's disease by integrating 
knowledge graph completion model and knowledge fusion of medical literature. Fut 
Internet. (2021) 13:13. doi: 10.3390/fi13010014

 33. Wang SD, Du ZZ, Ding M, Rodriguez-Paton A, Song T. Kg-dti: a knowledge graph 
based deep learning method for drug-target interaction predictions and Alzheimer's 
disease drug repositions. Appl Intell. (2022) 52:846–57. doi: 10.1007/s10489-021-02454-8

 34. Gao ZX, Ding PJ, Xu R. Kg-predict: a knowledge graph computational framework 
for drug repurposing. J Biomed Inform. (2022) 132:9. doi: 10.1016/j.jbi.2022.104133

 35. Lin JZ, He YJ, Ru CX, Long WL, Li ML, Wen ZN. Advancing adverse drug reaction 
prediction with deep chemical language model for drug safety evaluation. Int J Mol Sci. 
(2024) 25:13. doi: 10.3390/ijms25084516

 36. Sun R, Zhang WB, Bagic A, He B. Deep learning based source imaging provides 
strong sublobar localization of epileptogenic zone from meg Interictal spikes. 
NeuroImage. (2023) 281:13. doi: 10.1016/j.neuroimage.2023.120366

 37. Raymond C, Zhang D, Cabello J, Liu LS, Moyaert P, Burneo JG, et al. Smart-pet: a self-
similarity-aware generative adversarial framework for reconstructing low-count 18f -fdg-pet 
brain imaging. Front Nucl Med. (2024) 4:1469490. doi: 10.3389/fnume.2024.1469490

 38. Zhang JH, Zhang XL, Sh Y, Liu BL, Hu ZY. Diagnostic AI modeling and pseudo 
time series profiling of ad and pd based on individualized serum proteome data. Front 
Bioinformatics. (2021) 1:764497. doi: 10.3389/fbinf.2021.764497

 39. Bayram B, Kunduracioglu I, Ince S, Pacal I. A systematic review of deep learning 
in Mri-based cerebral vascular occlusion-based brain diseases. Neuroscience. (2025) 
568:76–94. doi: 10.1016/j.neuroscience.2025.01.020

 40. Soman K, Nelson CA, Cerono G, Goldman SM, Baranzini SE, Brown EG. Early 
detection of Parkinson's disease through enriching the electronic health record using a 
biomedical knowledge graph. Front Med. (2023) 10:11. doi: 10.3389/fmed.2023.1081087

 41. Yang JJ, Gessner CR, Duerksen JL, Biber D, Binder JL, Ozturk M, et al. Knowledge 
graph analytics platform with Lincs and Idg for Parkinson's disease target illumination. 
BMC Bioinformatics. (2022) 23:15. doi: 10.1186/s12859-021-04530-9

 42. Yang SJ, Chen SY, Huang YL, Lu Y, Chen Y, Ye LY, et al. Combining MRI radiomics 
and clinical features for early identification of drug-resistant epilepsy in people with 
newly diagnosed epilepsy. Epilepsy Behav. (2025) 162:110165. doi: 
10.1016/j.yebeh.2024.110165

 43. Wang YP, Dai Y, Liu ZM, Guo JJ, Cao GP, Ouyang MW, et al. Computer-aided 
intracranial Eeg signal identification method based on a multi-branch deep learning 
fusion model and clinical validation. Brain Sci. (2021) 11:23. doi: 
10.3390/brainsci11050615

 44. Wang YP, Yang YF, Cao GP, Guo JJ, Wei PH, Feng T, et al. Seeg-net: an explainable and 
deep learning-based cross-subject pathological activity detection method for drug-resistant 
epilepsy. Comput Biol Med. (2022) 148:15. doi: 10.1016/j.compbiomed.2022.105703

 45. Boniolo F, Dorigatti E, Ohnmacht AJ, Saur D, Schubert B, Menden MP. Artificial 
intelligence in early drug discovery enabling precision medicine. Expert Opin Drug 
Discov. (2021) 16:991–1007. doi: 10.1080/17460441.2021.1918096

 46. Murali V, Muralidhar YP, Königs C, Nair M, Madhu S, Nedungadi P, et al. 
Predicting clinical trial outcomes using drug bioactivities through graph database 

integration and machine learning. Chem Biol Drug Des. (2022) 100:169–84. doi: 
10.1111/cbdd.14092

 47. Yang M, Zhao YZ, Yu HH, Chen SL, Gao GS, Li D, et al. A multi-label deep 
learning model for detailed classification of Alzheimer's disease. Actas Esp Psiquiatr. 
(2025) 53:89–99. doi: 10.62641/aep.v53i1.1728

 48. D'Sa K, Evans JR, Virdi GS, Vecchi G, Adam A, Bertolli O, et al. Prediction of 
mechanistic subtypes of Parkinson's using patient-derived stem cell models. Nat Mach 
Intell. (2023) 5:933–46. doi: 10.1038/s42256-023-00702-9

 49. Khatri U, Kwon GR. Explainable vision transformer with self-supervised learning 
to predict Alzheimer's disease progression using 18f-Fdg pet. Bioengineering-Basel. 
(2023) 10:20. doi: 10.3390/bioengineering10101225

 50. Schuhholz M, Ruff C, Bürkle E, Feiweier T, Clifford B, Kowarik M, et al. Ultrafast 
brain MRI at 3 T for Ms: evaluation of a 51-second deep learning-enhanced T2-epi-flair 
sequence. Diagnostics. (2024) 14:33. doi: 10.3390/diagnostics14171841

 51. Yang LQ, Wang XF, Guo Q, Gladstein S, Wooten D, Li TF, et al. Deep learning 
based multimodal progression modeling for Alzheimer's disease. Stat Biopharm Res. 
(2021) 13:337–43. doi: 10.1080/19466315.2021.1884129

 52. Niyas S, Vaisali SC, Show I, Chandrika TG, Vinayagamani S, Kesavadas C, et al. 
Segmentation of focal cortical dysplasia lesions from magnetic resonance images using 
3d convolutional neural networks. Biomed Signal Process Control. (2021) 70:11. doi: 
10.1016/j.bspc.2021.102951

 53. Alshaya H, Hussain M. Eeg-based classification of epileptic seizure types using 
deep network model. Mathematics. (2023) 11:28. doi: 10.3390/math11102286

 54. West M, Cheng Y, He YN, Leng Y, Magdamo C, Hyman B, et al. Unsupervised deep 
learning of electronic health records to characterize heterogeneity across Alzheimer 
disease and related dementias: cross-sectional study. JMIR Aging. (2025) 8:e65178. doi: 
10.2196/65178

 55. Shin DH, Heo H, Song S, Shin NY, Nam Y, Yoo SW, et al. Automated assessment 
of the substantia Nigra on susceptibility map-weighted imaging using deep convolutional 
neural networks for diagnosis of idiopathic Parkinson's disease. Parkinsonism Relat 
Disord. (2021) 85:84–90. doi: 10.1016/j.parkreldis.2021.03.004

 56. Shen MT, Mortezaagha P, Rahgozar A. Explainable artificial intelligence to 
diagnose early Parkinson's disease via voice analysis. Sci Rep. (2025) 15:19. doi: 
10.1038/s41598-025-96575-6

 57. Yang SJ, Xue JQ, Li ZQ, Zhang SQ, Zhang Z, Huang ZF, et al. Deep learning-based 
ion channel kinetics analysis for automated patch clamp recording. Adv Sci. (2025) 
12:17. doi: 10.1002/advs.202404166

 58. Ren HH, Song HJ, Cui SG, Xiong H, Long BY, Li YM. Deep learning of noncontrast 
CT for fast prediction of hemorrhagic transformation of acute ischemic stroke: a 
multicenter study. Eur Radiol Exp. (2025) 9:11. doi: 10.1186/s41747-024-00535-0

 59. Sharma R, Anand H, Badr Y, Qiu RG. Time-to-event prediction using survival 
analysis methods for Alzheimer's disease progression. Alzheimer’s Dement. (2021) 7:11. 
doi: 10.1002/trc2.12229

 60. Jeong JW, Lee MH, Kuroda N, Sakakura K, O'Hara N, Juhasz C, et al. Multi-scale 
deep learning of clinically acquired multi-modal Mri improves the localization of seizure 
onset zone in children with drug-resistant epilepsy. IEEE J Biomed Health Inform. (2022) 
26:5529–39. doi: 10.1109/jbhi.2022.3196330

 61. Peterson V, Kokkinos V, Ferrante E, Walton A, Merk T, Hadanny A, et al. Deep net 
detection and onset prediction of electrographic seizure patterns in responsive 
Neurostimulation. Epilepsia. (2023) 64:2056–69. doi: 10.1111/epi.17666

 62. Nadarajah R, Wu JH, Frangi AF, Hogg D, Cowan C, Gale C. Predicting patient-
level new-onset atrial fibrillation from population-based nationwide electronic health 
records: protocol of find-af for developing a precision medicine prediction model 
using artificial intelligence. BMJ Open. (2021) 11:7. doi: 
10.1136/bmjopen-2021-052887

 63. Pan YT, Park K, Ren JX, Volkow ND, Ling HB, Koretsky AP, et al. Dynamic 3d 
imaging of cerebral blood flow in awake mice using self-supervised-learning-enhanced 
optical coherence Doppler tomography. Commun Biol. (2023) 6:14. doi: 
10.1038/s42003-023-04656-x

 64. Abousaber I. A novel explainable attention-based meta-learning framework for 
imbalanced brain stroke prediction. Sensors (Basel). (2025) 25:32. doi: 10.3390/s25061739

 65. Galarza J, Oraby T. Functional data learning using convolutional neural networks. 
Mach Learn-Sci Technol. (2024) 5:38. doi: 10.1088/2632-2153/ad2627

 66. Zhou C, Cai CP, Huang XT, Wu S, Yu JL, Wu JW, et al. Tarkg: a comprehensive 
biomedical knowledge graph for target discovery. Bioinformatics. (2024) 40:10. doi: 
10.1093/bioinformatics/btae598

 67. Romano JD, Truong V, Kumar R, Venkatesan M, Graham BE, Hao Y, et al. The 
Alzheimer's Knowledge Base: a knowledge graph for Alzheimer disease research. J Med 
Internet Res. (2024) 26:e46777. doi: 10.2196/46777

 68. Zheng SJ, Rao JH, Song Y, Zhang JX, Xiao XL, Fang EF, et al. Pharmkg: a dedicated 
knowledge graph benchmark for Bomedical data mining. Brief Bioinform. (2021) 22:15. 
doi: 10.1093/bib/bbaa344

 69. Nian Y, Hu XY, Zhang R, Feng JN, Du JC, Li F, et al. Mining on Alzheimer's 
diseases related knowledge graph to identity potential ad-related semantic triples for 
drug repurposing. BMC Bioinformatics. (2022) 23:15. doi: 10.1186/s12859-022-04934-1

https://doi.org/10.3389/fneur.2025.1615523
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://doi.org/10.54364/AAIML.2022.1128
https://doi.org/10.1002/hbm.26146
https://doi.org/10.1016/j.jrras.2023.100782
https://doi.org/10.1038/s41598-024-53733-6
https://doi.org/10.1016/j.cmpb.2023.107856
https://doi.org/10.3389/fneur.2021.705119
https://doi.org/10.3390/s22218112
https://doi.org/10.1016/j.engappai.2025.110558
https://doi.org/10.1371/journal.pcbi.1008821
https://doi.org/10.3390/fi13010014
https://doi.org/10.1007/s10489-021-02454-8
https://doi.org/10.1016/j.jbi.2022.104133
https://doi.org/10.3390/ijms25084516
https://doi.org/10.1016/j.neuroimage.2023.120366
https://doi.org/10.3389/fnume.2024.1469490
https://doi.org/10.3389/fbinf.2021.764497
https://doi.org/10.1016/j.neuroscience.2025.01.020
https://doi.org/10.3389/fmed.2023.1081087
https://doi.org/10.1186/s12859-021-04530-9
https://doi.org/10.1016/j.yebeh.2024.110165
https://doi.org/10.3390/brainsci11050615
https://doi.org/10.1016/j.compbiomed.2022.105703
https://doi.org/10.1080/17460441.2021.1918096
https://doi.org/10.1111/cbdd.14092
https://doi.org/10.62641/aep.v53i1.1728
https://doi.org/10.1038/s42256-023-00702-9
https://doi.org/10.3390/bioengineering10101225
https://doi.org/10.3390/diagnostics14171841
https://doi.org/10.1080/19466315.2021.1884129
https://doi.org/10.1016/j.bspc.2021.102951
https://doi.org/10.3390/math11102286
https://doi.org/10.2196/65178
https://doi.org/10.1016/j.parkreldis.2021.03.004
https://doi.org/10.1038/s41598-025-96575-6
https://doi.org/10.1002/advs.202404166
https://doi.org/10.1186/s41747-024-00535-0
https://doi.org/10.1002/trc2.12229
https://doi.org/10.1109/jbhi.2022.3196330
https://doi.org/10.1111/epi.17666
https://doi.org/10.1136/bmjopen-2021-052887
https://doi.org/10.1038/s42003-023-04656-x
https://doi.org/10.3390/s25061739
https://doi.org/10.1088/2632-2153/ad2627
https://doi.org/10.1093/bioinformatics/btae598
https://doi.org/10.2196/46777
https://doi.org/10.1093/bib/bbaa344
https://doi.org/10.1186/s12859-022-04934-1


Fang et al. 10.3389/fneur.2025.1615523

Frontiers in Neurology 11 frontiersin.org

 70. Kastrin A, Hristovski D. Scientometric analysis and knowledge mapping of 
literature-based discovery (1986-2020). Scientometrics. (2021) 126:1415–51. doi: 
10.1007/s11192-020-03811-z

 71. Singha M, Pu LM, Stanfield BA, Uche IK, Rider PJF, Kousoulas KG, et al. Artificial 
intelligence to guide precision anticancer therapy with multitargeted kinase inhibitors. 
BMC Cancer. (2022) 22:17. doi: 10.1186/s12885-022-10293-0

 72. Gnanadesigan NS, Dhanasegar N, Ramasamy MD, Muthusamy S, Mishra OP, 
Pugalendhi GK, et al. An integrated network topology and deep learning model for 
prediction of Alzheimer disease candidate genes. Soft Comput. (2023) 27:14189–203. 
doi: 10.1007/s00500-023-08390-8

 73. Koirala S, Samanta S, Kar P. Identification of inhibitors for neurodegenerative 
diseases targeting dual leucine zipper kinase through virtual screening and molecular 
dynamics simulations. SAR QSAR Environ Res. (2024) 35:457–82. doi: 
10.1080/1062936x.2024.2363195

 74. Yao CP, Shen ZY, Shen LT, Kadier K, Zhao JY, Guo Y, et al. Identification of potential 
Jnk3 inhibitors: a combined approach using molecular docking and deep learning-based 
virtual screening. Pharmaceuticals. (2023) 16:13. doi: 10.3390/ph16101459

 75. Raschka T, Sood M, Schultz B, Altay A, Ebeling C, Fröhlich H. Ai reveals insights 
into link between Cd33 and cognitive impairment in Alzheimer's disease. PLoS Comput 
Biol. (2023) 19:e1009894. doi: 10.1371/journal.pcbi.1009894

 76. Neelakandan AR, Rajanikant GK. A deep learning and docking simulation-based 
virtual screening strategy enables the rapid identification of Hif-1α pathway activators 
from a marine natural product database. J Biomol Struct Dyn. (2024) 42:629–51. doi: 
10.1080/07391102.2023.2194997

 77. Yang LJ, Yang GH, Chen XL, Yang Q, Yao XJ, Bing ZT, et al. Deep scoring neural 
network replacing the scoring function components to improve the performance of 
structure-based molecular docking. ACS Chem Neurosci. (2021) 12:2133–42. doi: 
10.1021/acschemneuro.1c00110

 78. Ozalp MK, Vignaux PA, Puhl AC, Lane TR, Urbina F, Ekins S. Sequential 
contrastive and deep learning models to identify selective Butyrylcholinesterase 
inhibitors. J Chem Inf Model. (2024) 64:3161–72. doi: 10.1021/acs.jcim.4c00397

 79. Gou RP, Yang JY, Guo MH, Chen YJ, Xue WW. Cnsmolgen: a bidirectional 
recurrent neural network-based generative model for De novo central nervous system 
drug design. J Chem Inf Model. (2024) 64:4059–70. doi: 10.1021/acs.jcim.4c00504

 80. Liu DY, Song T, Na K, Wang SD. Ped: a novel predictor-encoder-decoder model 
for Alzheimer drug molecular generation. Front Artif Intell. (2024) 7:1374148. doi: 
10.3389/frai.2024.1374148

 81. Jing YK, Zhao GY, Xu YY, McGuire T, Hou GQ, Zhao JC, et al. Gcn-Bbb: deep 
learning blood-brain barrier (Bbb) permeability pharmacoanalytics with graph 
convolutional neural (Gcn) network. AAPS J. (2025) 27:14. doi: 10.1208/s12248-025-01059-0

 82. Meng PR, Mu WJ, Ding DB, Chen H, Li ZH, Hou HW, et al. Discovery of positive 
allosteric modulators of Α7 nachr by an ensemble-based virtual screening method, 
molecular dynamics simulation, and in vitro biological activity testing. J Comput Biophys 
Chem. (2024) 23:925–37. doi: 10.1142/s2737416524500200

 83. Sutthibutpong T, Posansee K, Liangruksa M, Termsaithong T, Piyayotai S, 
Phitsuwan P, et al. Combining deep learning and structural modeling to identify 
potential acetylcholinesterase inhibitors from Hericium Erinaceus. ACS Omega. (2024) 
9:16311–21. doi: 10.1021/acsomega.3c10459

 84. Wang H, Xie MQ, Rizzi G, Li X, Tan K, Fussenegger M. Identification of sclareol as a 
natural neuroprotective Cav1.3-antagonist using synthetic Parkinson-mimetic gene circuits 
and computer-aided drug discovery. Adv Sci. (2022) 9:13. doi: 10.1002/advs.202102855

 85. Mansingh P, Pattanayak BK, Pati B. Deep learning-based sentiment analysis for 
the prediction of Alzheimer's drugs. Comput Sist. (2023) 27:979–89. doi: 
10.13053/CyS-27-4-4634

 86. Hakeem H, Feng W, Chen ZB, Choong J, Brodie MJ, Fong SL, et al. Development and 
validation of a deep learning model for predicting treatment response in patients with newly 
diagnosed epilepsy. JAMA Neurol. (2022) 79:986–96. doi: 10.1001/jamaneurol.2022.2514

 87. Cho D, Yu MS, Shin J, Lee JY, Kim Y, Kang HC, et al. A computational clinical 
decision-supporting system to suggest effective anti-epileptic drugs for pediatric 
epilepsy patients based on deep learning models using patient's medical history. BMC 
Med Inform Decis Mak. (2024) 24:9. doi: 10.1186/s12911-024-02552-w

 88. Chang BW, Geng Z, Mei JM, Wang ZY, Chen P, Jiang YG, et al. Application of 
multimodal deep learning and multi-instance learning fusion techniques in predicting 
Stn-Dbs outcomes for Parkinson's disease patients. Neurotherapeutics. (2024) 21:9. doi: 
10.1016/j.neurot.2024.e00471

 89. Miranda O, Jiang C, Qi XG, Kofler J, Sweet RA, Wang LR. Exploring potential 
medications for Alzheimer's disease with psychosis by integrating drug target 
information into deep learning models: a data-driven approach. Int J Mol Sci. (2025) 
26:20. doi: 10.3390/ijms26041617

 90. Wui Y, Liu Q, Qiu Y, Xie L. Deep learning prediction of chemical-induced dose-
dependent and context-specific multiplex phenotype responses and its application to 
personalized Alzheimer's disease drug repurposing. PLoS Comput Biol. (2022) 18:28. 
doi: 10.1371/journal.pcbi.1010367

 91. He S, Abarrategi JS, Bediaga H, Arrasate S, González-Díaz H. On the additive 
artificial intelligence-based discovery of nanoparticle neurodegenerative disease drug 
delivery systems. Beilstein J Nanotechnol. (2024) 15:535–55. doi: 10.3762/bjnano.15.47

 92. Kim H, Park C, Kim JH, Jang S, Lee HK. Multimodal reinforcement learning for 
embedding networks and medication recommendation in Parkinson's disease. IEEE 
Access. (2024) 12:74251–67. doi: 10.1109/access.2024.3405009

 93. Wu Z, Yao T, Wang Z, Liu B, Wu N, Lu M, et al. Association between angiotensin-
converting enzyme inhibitors and the risk of lung Cancer: a systematic review and Meta-
analysis. Br J Cancer. (2023) 128:168–76. doi: 10.1038/s41416-022-02029-5

 94. Dimoudis D, Tsolakis N, Magga-Nteve C, Meditskos G, Vrochidis S, Kompatsiaris 
I. Inseption: a robust mechanism for predicting fog episodes in Pd patients. Electronics. 
(2023) 12:18. doi: 10.3390/electronics12092088

 95. Skampardoni I, Nasrallah IM, Abdulkadir A, Wen JH, Melhem R, Mamourian E, et al. 
Genetic and clinical correlates of Ai-based brain aging patterns in cognitively unimpaired 
individuals. JAMA Psychiatry. (2024) 81:456–67. doi: 10.1001/jamapsychiatry.2023.5599

 96. Mezzina G, De Venuto D. A digital architecture for the real-time tracking of 
wearing off phenomenon in Parkinson's disease. Sensors. (2022) 22:15. doi: 
10.3390/s22249753

 97. Sand D, Rappel P, Marmor O, Bick AS, Arkadir D, Lu BL, et al. Machine learning-
based personalized subthalamic biomarkers predict on-off levodopa states in Parkinson 
patients. J Neural Eng. (2021) 18:17. doi: 10.1088/1741-2552/abfc1d

 98. Fasano A, Helmich RC. Tremor habituation to deep brain stimulation: 
underlying mechanisms and solutions. Mov Disord. (2019) 34:1761–73. doi: 
10.1002/mds.27821

 99. Oliveira A, Coelho L, Carvalho E, Ferreira-Pinto MJ, Vaz R, Aguiar P. Machine 
learning for adaptive deep brain stimulation in Parkinson’s disease: closing the loop. J 
Neurol. (2023) 270:5313–26. doi: 10.1007/s00415-023-11873-1

 100. Zhong Y, Wang Y, He Z, Lin Z, Pang N, Niu L, et al. Closed-loop wearable 
ultrasound deep brain stimulation system based on Eeg in mice. J Neural Eng. (2021) 
18:0460e8. doi: 10.1088/1741-2552/ac1d5c

 101. Uchitel J, Vidal-Rosas EE, Cooper RJ, Zhao H. Wearable, integrated EEG–
FNIRS technologies: a review. Sensors (Basel). (2021) 21:6106. doi: 
10.3390/s21186106

 102. Yang Y, Truong ND, Eshraghian JK, Nikpour A, Kavehei O. Weak self-supervised 
learning for seizure forecasting: a feasibility study. R Soc Open Sci. (2022) 9:220374. doi: 
10.1098/rsos.220374

 103. Zhang H, Chen Y, Xie Y, Chai Y. Closed-loop controller based on reference 
signal tracking for absence seizures. Sci Rep. (2022) 12:6730. doi: 
10.1038/s41598-022-10803-x

 104. Farronato M, Mannocci P, Milozzi A, Compagnoni CM, Barcellona A, Arena A, 
et al. Seizure detection via reservoir computing in MoS(2)-based charge trap memory 
devices. Sci Adv. (2025) 11:eadr3241. doi: 10.1126/sciadv.adr3241

 105. Ronchini M, Rezaeiyan Y, Zamani M, Panuccio G, Moradi F. Net-ten: a silicon 
neuromorphic network for low-latency detection of seizures in local field potentials. J 
Neural Eng. (2023) 20:036002. doi: 10.1088/1741-2552/acd029

 106. Zhou A, Santacruz SR, Johnson BC, Alexandrov G, Moin A, Burghardt F, et al. 
A wireless and artefact-free 128-channel neuromodulation device for closed-loop 
stimulation and recording in non-human primates. Nat Biomed Eng. (2018) 3:15–26. 
doi: 10.1038/s41551-018-0323-x

 107. Baghersalimi S, Teijeiro T, Atienza D, Aminifar A. Personalized real-time 
federated learning for epileptic seizure detection. IEEE J Biomed Health Inform. (2022) 
26:898–909. doi: 10.1109/jbhi.2021.3096127

 108. Ganji Z, Azizi S, Faraji R, Zare H. Application of neuroimaging in diagnosis of 
focal cortical dysplasia: a survey of computational techniques. Neurocomputing. (2024) 
580:127418. doi: 10.1016/j.neucom.2024.127418

 109. Xiao YK, Zhang SN, Zhou HX, Li MC, Yang H, Zhang R. Fuselinker: leveraging 
LLM'S ' s pre-trained text embeddings and domain knowledge to enhance GNN-based 
link prediction on biomedical knowledge graphs. J Biomed Inform. (2024) 158:104730. 
doi: 10.1016/j.jbi.2024.104730

 110. Massoud YM, Ahmad AA, Abdelzaher M, Kuhlmann L, Abd El Ghany MA. 
Hardware implementation of deep neural network for seizure prediction. AEU-Int J 
Electron Commun. (2023) 172:154961. doi: 10.1016/j.aeue.2023.154961

 111. Vatansever S, Schlessinger A, Wacker D, Kanıskan HÜ, Jin J, Zhou MM, et al. 
Artificial intelligence and machine learning-aided drug discovery in central nervous 
system diseases: state-of-the-arts and future directions. Med Res Rev. (2020) 41:1427–73. 
doi: 10.1002/med.21764

 112. Ponnapalli SP, Miron P, Miskimen K, Waite K, Sosonkina N, Coppens SE, et al. 
Abstract A031: prospective and clinical prediction in a retrospective trial that 
experimentally validated an AI/ML-derived whole-genome predictor as the most 
accurate and precise predictor of survival and response to treatment in glioblastoma. 
Cancer Res. (2024) 84:A031–A. doi: 10.1158/1538-7445.brain23-a031

 113. Piraino F, Costa M, Meyer M, Cornish GH, Ceroni C, Garnier V, et al. Organoid 
models: the future companions of personalized drug development. Biofabrication. 
(2024) 16:032009. doi: 10.1088/1758-5090/ad3e30

 114. Marzi SJ, Schilder BM, Nott A, Frigerio CS, Willaime-Morawek S, Bucholc M, 
et al. Artificial Intelligence for Neurodegenerative Experimental Models. Alzheimer’s 
Dement. (2023) 19:5970–87. doi: 10.1002/alz.13479

https://doi.org/10.3389/fneur.2025.1615523
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://doi.org/10.1007/s11192-020-03811-z
https://doi.org/10.1186/s12885-022-10293-0
https://doi.org/10.1007/s00500-023-08390-8
https://doi.org/10.1080/1062936x.2024.2363195
https://doi.org/10.3390/ph16101459
https://doi.org/10.1371/journal.pcbi.1009894
https://doi.org/10.1080/07391102.2023.2194997
https://doi.org/10.1021/acschemneuro.1c00110
https://doi.org/10.1021/acs.jcim.4c00397
https://doi.org/10.1021/acs.jcim.4c00504
https://doi.org/10.3389/frai.2024.1374148
https://doi.org/10.1208/s12248-025-01059-0
https://doi.org/10.1142/s2737416524500200
https://doi.org/10.1021/acsomega.3c10459
https://doi.org/10.1002/advs.202102855
https://doi.org/10.13053/CyS-27-4-4634
https://doi.org/10.1001/jamaneurol.2022.2514
https://doi.org/10.1186/s12911-024-02552-w
https://doi.org/10.1016/j.neurot.2024.e00471
https://doi.org/10.3390/ijms26041617
https://doi.org/10.1371/journal.pcbi.1010367
https://doi.org/10.3762/bjnano.15.47
https://doi.org/10.1109/access.2024.3405009
https://doi.org/10.1038/s41416-022-02029-5
https://doi.org/10.3390/electronics12092088
https://doi.org/10.1001/jamapsychiatry.2023.5599
https://doi.org/10.3390/s22249753
https://doi.org/10.1088/1741-2552/abfc1d
https://doi.org/10.1002/mds.27821
https://doi.org/10.1007/s00415-023-11873-1
https://doi.org/10.1088/1741-2552/ac1d5c
https://doi.org/10.3390/s21186106
https://doi.org/10.1098/rsos.220374
https://doi.org/10.1038/s41598-022-10803-x
https://doi.org/10.1126/sciadv.adr3241
https://doi.org/10.1088/1741-2552/acd029
https://doi.org/10.1038/s41551-018-0323-x
https://doi.org/10.1109/jbhi.2021.3096127
https://doi.org/10.1016/j.neucom.2024.127418
https://doi.org/10.1016/j.jbi.2024.104730
https://doi.org/10.1016/j.aeue.2023.154961
https://doi.org/10.1002/med.21764
https://doi.org/10.1158/1538-7445.brain23-a031
https://doi.org/10.1088/1758-5090/ad3e30
https://doi.org/10.1002/alz.13479


Fang et al. 10.3389/fneur.2025.1615523

Frontiers in Neurology 12 frontiersin.org

 115. Mittermaier M, Raza M, Kvedar JC. Bias in Ai-based models for medical 
applications: challenges and mitigation strategies. NPJ Digit Med. (2023) 6:113. doi: 
10.1038/s41746-023-00858-z

 116. Vokinger KN, Feuerriegel S, Kesselheim AS. Continual learning in medical 
devices: Fda's action plan and beyond. Lancet Digit Health. (2021) 3:e337–8. doi: 
10.1016/s2589-7500(21)00076-5

 117. Vokinger KN, Gasser U. Regulating Ai in medicine in the United States and 
Europe. Nat Mach Intell. (2021) 3:738–9. doi: 10.1038/s42256-021-00386-z

 118. Abualrob MA, Itbaisha A, Mesraoua B. Unlocking new frontiers in epilepsy 
through AI: from seizure prediction to personalized medicine. Epilepsy Behav. (2025) 
166:8. doi: 10.1016/j.yebeh.2025.110327

 119. Price WN 2nd, Cohen IG. Privacy in the age of medical big data. Nat Med. (2019) 
25:37–43. doi: 10.1038/s41591-018-0272-7

 120. Wu Z, Yao T, Shen N. To face Disease X: building resilient futures in the age 
of emergent threats. BMJ Glob Health. (2025) 10:e020479. doi: 
10.1136/bmjgh-2025-020479

https://doi.org/10.3389/fneur.2025.1615523
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://doi.org/10.1038/s41746-023-00858-z
https://doi.org/10.1016/s2589-7500(21)00076-5
https://doi.org/10.1038/s42256-021-00386-z
https://doi.org/10.1016/j.yebeh.2025.110327
https://doi.org/10.1038/s41591-018-0272-7
https://doi.org/10.1136/bmjgh-2025-020479

	Harnessing artificial intelligence for brain disease: advances in diagnosis, drug discovery, and closed-loop therapeutics
	1 Introduction
	2 Foundational technologies: neural learning networks and multimodal AI
	3 AI/ML for diagnosis and prediction of brain diseases
	4 AI/ML for precision drug development for brain diseases
	5 AI/ML for closed-loop treatment systems and personalized medicine
	6 Challenges and limitations
	7 Future directions
	8 Conclusion

	References

